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Abstract

This paper merges two isolated bodies of literature: the Markov
chain model with macro data (MacRae, 1977) and the ecological in-
ference model (Robinson, 1950). Both are choice models. They have
the same likelihood function and the same regression equation.

Decades ago, this likelihood function was computationally demand-
ing. This has led to the use of several approximate methods. Due to
the improvement in computer hardware and software since 1977, exact
maximum likelihood should now be the preferred estimation method.
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1 Introduction

This paper merges two isolated bodies of literature: respectively about the
first order Markov chain model with macro data and about the ecological
inference model. They contain very few references to each other, while in
fact they are equivalent in the sense that they have the same likelihood
function and the same regression equation.

The second purpose of this paper is to disprove that the computational
burden of the likelihood function (which is indeed heavy) is prohibitive. I
have found only one study which uses this function (Steel et al. (2004)), al-
though the computing speed has increased very much since 1977. This is due
to improved hardware and also to improved software such as programming
languages with built-in array operations.

In sections 2 and 3, the two models are described with their respective
typical examples. followed by a common notation in section 4, linking the
symbols to each of the two models. In sections 5 and 6 the likelihood function
and the regression equation are given in the common notation, with references
to the two bodies of literature.

In section 8 some numerical examples are given, followed by the conclu-
sions in section 9. The appendices show some technical details.

All discussions below are limited to binary classifications. This is suf-
ficient for the purpose. Also, most of the ecological literature is (double)
binary.

2 The first order Markov chain model with

macro data

A first order Markov chain model is a time series model for panels with
discrete data.

In the binary case, at each time period the individuals in the panel are
in one of two states. For instance, employed or unemployed: the probability
for an individual to be employed in a given time period depends on being
employed or not in the previous time period. (In a higher order model, the
dependence is also on earlier time periods.)

With the original micro panel data, these probabilities can be estimated
easily, based on (for each time period except the first) the cross tabulation of
the state in that time period against the state in the previous time period.
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With aggregated panel data this tabulation is not available; only the marginal
frequencies are available and estimation of the probabilities is harder.

A short review of the subject’s history over the past four decades is given.
Lee et al. (1970) and Dent and Ballintine (1971) are forerunners, discussing
mainly regression analysis. They also discuss an approximate maximum like-
lihood where the data are multinomial. In the seminal MacRae (1977), re-
gression analysis and exact maximum likelihood are compared. She con-
cludes:

While it is possible to develop computational algorithms to search
for a maximum [likelihood], the iterative generalized least squares
estimator may represent a better combination of numerical and
statistical efficiency.

Rosenqvist (1986) discusses the combined use of micro and macro data and
has a large list of references. Crowder and Stephens (2011) review the history
of theoretical and applied work on the subject (though not including MacRae
(1977)) and conclude that the computation of the exact likelihood function
is “unfeasible” (p.3202).

3 The ecological inference model

Here, the word “ecological” has little to do with subjects like pollution, ex-
tinction of species, growing crops without chemicals, etcetera. Rather, as the
title of King (1997) indicates, it is about “reconstructing individual behavior
from aggregate data”.

Hence, by definition in an ecological inference model the data are aggre-
gated. Time usually does not play a role and instead of time periods we
usually have regions. In the 2 × 2 case we have two dichotomies, with data
for each region. One of the two dichotomies plays the role of the lagged infor-
mation in the Markov chain model; this dichotomy might refer to a property
of individuals which is constant over their life.

The standard example of this dichotomy is race, where the other di-
chotomy is political preference: the probability of having a given political
preference depends on one’s race. The data consist of the two marginal
frequency distributions, by race and by political preference, for multiple re-
gions. Naturally, where political preferences are expressed by some secret
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ballot, they are only available in the form of frequencies by election district,
and not in the form of individual records with personal characteristics.

The seminal paper is Robinson (1950). Wakefield (2004a) discusses the
background and the state of the research at the time. He notes that the exact
likelihood “has rarely been explicitly considered in the ecological inference
literature.” (top of p.391). See also the introductory chapter in King et al.
(2004). To the best of my knowledge, Steel et al. (2004) are the first to apply
the exact likelihood.

4 The notation

The Markov chain model

In the Markov chain model, we have 𝐼+1 observations over time. This gives
a chain of 𝐼 transitions from one time period to the next. Referring to the
employment example above, the 𝑥𝑖 are the first 𝐼 frequencies of employed
individuals and the 𝑦𝑖 are the last 𝐼 frequencies, giving

𝑥𝑖 = 𝑦𝑖−1 (1)

Note that we have no initial conditions problem here.
The symbol 𝑝1𝑖 is the probability that an individual included in the num-

ber 𝑥𝑖 is also included in the number 𝑦𝑖. Likewise, 𝑝2𝑖 is the probability that
an individual not included in the number 𝑥𝑖 is included in the number 𝑦𝑖.
Below I will use “unit” as the general term for the 𝑖 index.

Ignoring panel attrition, the 𝑛𝑖 series in the Markov chain model is
constant over 𝑖, say 𝑛𝑖 = 𝑛. With also constant probabilities 𝑝1 and 𝑝2,
the fraction 𝑦𝑖/𝑛 moves, with random ups and downs, in the direction of
𝑃 = 𝑝2/(1− 𝑝1 + 𝑝2), the solution of 𝑝1𝑃 + 𝑝2(1− 𝑃 ) = 𝑃 .

The ecological inference model

Here, typically the units are regions, without inherent ordering, indexed by
𝑖 = 1, . . . , 𝐼. Unit 𝑖 has 𝑛𝑖 individuals. Using the above standard example in
the ecological model, 𝑦𝑖 is the number of individuals in unit 𝑖 who have the
reference political preference and 𝑥𝑖 is the number of individuals with the
reference race.
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Table 1: The frequencies in unit 𝑖

lagged (Markov chain) unlagged (Markov chain)
or race (typical Ecological) or political preference (typical Ecological)

in reference state else total
in reference state 𝑘𝑖 𝑥𝑖 − 𝑘𝑖 𝑥𝑖

else 𝑦𝑖 − 𝑘𝑖 𝑛𝑖 − 𝑥𝑖 − 𝑦𝑖 + 𝑘𝑖 𝑛𝑖 − 𝑥𝑖

total 𝑦𝑖 𝑛𝑖 − 𝑦𝑖 𝑛𝑖

Notes. Only totals are observed. The unobserved frequencies are indexed by 𝑘𝑖.

The word “state” does not refer to the states of the United States.

Hence 𝑝1𝑖 is the probability that an individual in unit 𝑖 with the reference
race has the reference political preference and 𝑝2𝑖 is the probability that
an individual in 𝑖, not with the reference race, has the reference political
preference.

The relations between the frequencies

Table 1 shows the frequencies. Since the data are aggregated, only the totals
are observed; the remaining four numbers are not observed. However, if any
one of these four numbers would be known then the other three would also
be known. Without loss of generality I choose 𝑘𝑖 as the index of all possible
sets of four unobserved frequencies, given the observed totals.

Exogenous variables

The probabilities may depend on macro exogenous variables as follows. For
all 𝑖:

𝑝1𝑖 = 𝐹 (𝑧𝑖1𝛽1) and 𝑝2𝑖 = 𝐹 (𝑧𝑖2𝛽2) (2)

where the 𝑧𝑖1 and 𝑧𝑖2 are rows from exogenous data matrices 𝑍1 and 𝑍2,
respectively. (These two matrices may have columns in common.) The 𝛽1

and 𝛽2 are unknown column vectors of parameters. (They may have elements
in common.) The function 𝐹 is a strictly monotonous transformation from
the real line to the zero-one range, such as the logit and probit functions.
See MacRae (1977), p.185.
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5 The likelihood function

The unconditional distribution1 of 𝑘𝑖 and of 𝑦𝑖−𝑘𝑖; i.e., not considering 𝑦𝑖 as
given, is:

Pr (𝑘𝑖|𝑥𝑖,𝛽1) = B(𝑘𝑖, 𝑥𝑖, 𝑝1𝑖)
Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖,𝛽2) = B(𝑦𝑖 − 𝑘𝑖, 𝑛𝑖 − 𝑥𝑖, 𝑝2𝑖)

(3)

taking into account formula’s (2). The B indicates the binomial probability
with B(𝑘, 𝑛, 𝑝) = (𝑛𝑘)𝑝𝑘(1− 𝑝)𝑛−𝑘.

The 𝑦𝑖 are distributed as follows:

Pr (𝑦𝑖|𝑥𝑖,𝛽1,𝛽2) =
∑︁
𝑘𝑖

Pr (𝑘𝑖|𝑥𝑖,𝛽1) Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖,𝛽2) (4)

where the range of the summation is

max(0, 𝑥𝑖 + 𝑦𝑖 − 𝑛𝑖) ≤ 𝑘𝑖 ≤ min(𝑥𝑖, 𝑦𝑖) (5)

The likelihood function is:

𝐿 (𝛽1,𝛽2) =
𝐼∏︁

𝑖=1

Pr (𝑦𝑖|𝑥𝑖,𝛽1,𝛽2) (6)

For the first order Markov chain model, see MacRae (1977), with the general
case, not limited to binary choice. For the ecological model, see for instance
Wakefield (2004a) equation (4), discussed at the top of page 391 (as noted
above) and Wakefield (2004b), equation (1.6). Steel et al. (2004) give the
first order derivatives of the loglikelihood and the Fisher information matrix,
with a numerical application.

This likelihood is computationally more demanding than ordinary binary
choice models. The computing time of (6) is roughly equal to the computing
time of an ordinary binary choice model, times the sum over the units 𝑖 of
the size of the range of 𝑘𝑖 in (5). Of course, this sum might be anything from
a few hundred to, say, a few hundred thousand.

In order to distinguish between this likelihood and its approximations2,
in the binary case this likelihood is often called the convolution likelihood,

1 For brevity I write for example Pr(𝑥)=𝜑(𝑥), instead of the more precise Pr(𝑥=𝑋)=
𝜑(𝑋).

2 A quite different distribution of 𝑘𝑖 and 𝑦𝑖−𝑘𝑖 (given 𝑥𝑖) is presented in King (1997),
pp.93/94: the fractions 𝑘𝑖/𝑥𝑖 and (𝑦𝑖−𝑘𝑖)/(𝑛𝑖−𝑥𝑖) are drawn from a truncated bivariate
normal distribution. Compare the first line of the first formula on his page 308 with our
(4). This model has been adapted and refined; see King et al. (2004), section 0.1.4.
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named after the convolution sum in discrete form in the right-hand side of
(4).

6 Least squares regression

With (3) we have:

E [𝑦𝑖|𝑥𝑖,𝛽1,𝛽2] = E [𝑘𝑖|𝑥𝑖,𝛽1] + E [𝑦𝑖 − 𝑘𝑖|𝑥𝑖,𝛽2]

= 𝑥𝑖𝑝1𝑖 + (𝑛𝑖 − 𝑥𝑖) 𝑝2𝑖 (7)

With constant 𝑝1 and 𝑝2 we have for all 𝑖:

dE [𝑦𝑖|𝑥𝑖,𝛽1,𝛽2]

d𝑥𝑖

= 𝑝1 − 𝑝2 (8)

In words: the difference between the two probabilities is a reflection of the
correlation over the regions between 𝑥𝑖 and 𝑦𝑖.

Equation (7) is a regression equation with error variances

V [𝑦𝑖|𝑥𝑖,𝛽1,𝛽2] = 𝑥𝑖𝑝1𝑖 (1− 𝑝1𝑖) + (𝑛𝑖 − 𝑥𝑖) 𝑝2𝑖 (1− 𝑝2𝑖) (9)

Hence equation (7) can be estimated with nonlinear Feasible Generalized
Least Squares (FGLS) by minimizing

∑︁
𝑖

(𝑦𝑖 − E[𝑦𝑖|𝑥𝑖,𝛽1,𝛽2])
2

V [𝑦𝑖|𝑥𝑖,𝛽1,𝛽2]
(10)

See MacRae (1977), p.189/190.
In section 8.1 below, this regression estimate will be compared with the

maximum likelihood estimate. As we shall see, the regression estimate and
the maximum likelihood estimate converge to each other with increasing
sample size3.

3 Loosely speaking this follows from: (a) with increasing 𝑛, a binomial mass distribu-
tion converges to a normal density distribution and (b) the convolution integral of two
normal density distributions is again a normal density distribution and (c) with normally
distributed 𝑦, least squares gives the same result as maximum likelihood. See also for
instance Wakefield (2004b), p.20/21.
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7 The Ecological Fallacy

One of the examples below is about the following identification problem.
A given correlation between 𝑥𝑖 and 𝑦𝑖 can result from two quite different
models, with the same number of parameters. The first model is the basic
ecological inference model, with constant parameters 𝑝1 and 𝑝2; the direction
of the correlation depends on which parameter is the largest, as expressed by
equation (8).

The second model is a special case of (2), with only one 𝛽 parameter
vector:

𝑝1𝑖 = 𝑝2𝑖 = 𝐹 (𝛽1 + 𝛽2𝑥𝑖) (11)

The direction of the correlation depends on the sign of 𝛽2. A person’s indi-
vidual property does not influence that person’s behaviour; only the unit is
relevant. This can be important for the choice of a policy measure4.

Unfortunately it is hard to distinguish empirically between (8) and (11).
If 𝐹 is the identity function (with 𝐹 (𝑎) = 𝑎) then in both models the expec-
tation of 𝑦𝑖 is a linear function of 𝑥𝑖. On the other hand, the variance of 𝑦𝑖
differs between the two. Hence, with least squares regression, identification
depends on the feeble basis of technicalities as the 𝐹 function and the vari-
ance function. In section 8.2 the two models are estimated with maximum
likelihood, allowing the comparison of their likelihoods.

Estimating the basic ecological inference model of (8) while in fact model
(11) is true, is an example of the Ecological Fallacy, widely discussed in the
ecological inference literature. Slightly more general, we might have in (11)
a 𝑧𝑖 variable which is correlated with 𝑥𝑖, instead of 𝑥𝑖 itself.

8 Examples

As noted above, Steel et al. (2004) apply the exact likelihood function. In
their Example section, they select 𝐼 = 50 out of the 1541 Census Districts

4 With the Markov example of unemployment, the relation with (economic) policy is
obvious. For the ecological inference example of the racial aspect of voting, see for instance
King (1997), p.8: “Under present law, legally significant discrimination only exists when
plaintiffs (or the Justice Department) can first demonstrate that members of a minority
group (usually African American or Hispanic) vote both cohesively and differently from
other voters. Sometimes they must also prove that majority voters consistently prevent
minorities from electing a candidate of their choice.”
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Table 2: Percentage employment for the Markov chain model

year % year %
1986 40.0 1991 47.6
1987 40.6 1992 51.5
1988 42.5 1993 52.5
1989 43.2 1994 52.6
1990 44.8 1995 55.7

Source: Pelzer et al. (2001)

of Brisbane (Australia), with on average 22323/50 = 446 individuals. They
don’t report on the computing time, but this suggests that for this problem
size, the likelihood function is feasible.

In order to report computing times and to illustrate some issues, I com-
puted two other examples: a Markov chain model with time series data and
some ecological inference experiments with data from King (1997).

8.1 Markov chain: employment of women

I apply the Markov chain model to the data of Pelzer et al. (2001), with
emphasis on the relation between maximum likelihood and least squares re-
gression.

Although their paper is not about panels, their data come from a panel.
The panel contains women who are either employed or unemployed. The
employment percentages are in table 2. The first nine percentages are the
𝑥𝑖/𝑛𝑖 series and the last nine are the 𝑦𝑖/𝑛𝑖 series. The sample size 𝑛𝑖 (not
shown here) changes somewhat over time, with an average of 2200 persons.

The estimates are in table 3, with simulated sample sizes. A contour map
of the loglikelihood shows one maximum, surrounded by convex contour lines.

As discussed above: unlike the maximum likelihood estimate, the least
squares estimate hardly changes with the sample size. The difference between
the two decreases with increasing sample size.

Last but not least: the computing times are short. For the largest sample
size (22000), the computing time was well under ten seconds on a PC from
the year 2010. I used the built-in array facilities of the R language, with the
nlm function. I did not program analytical derivatives and started with all 𝛽
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Table 3: Estimates of probabilities for the Pelzer data (percent)

𝑛𝑖 = 𝑛 1− 𝑝1 𝑝2 long run 𝑦𝑖/𝑛 =
𝑝2/(1− 𝑝1 + 𝑝2)

maximum likelihood 220 1.6 4.6 75
2200 8.5 10.5 55
22000 9.8 11.7 54

FGLS regression any 10 12 54

Note: when employed: 𝑝1 = Pr(keeping employment);
when unemployed: 𝑝2 = Pr(finding employment)

at zero; see appendix D. Assuming that the computing time is proportional
with

∑︀
𝑛𝑖, the example of Steel et al. (2004) would take me less than 10 ×

22323/(22000× 9) ≈ 1 second. With all of Brisbane, it would take less than
half a minute.

8.2 Ecological inference: to vote or not to vote

Figure 4.1 in King (1997) shows a scatter diagram of the fraction Black
(𝑥𝑖) against the fraction Voter Turnout (𝑦𝑖) in a US Senate election in the
precincts of Marion County (Indiana). A file with these data is included
among the data files supplied by King. We have here

∑︀
𝑛𝑖 ≈ 446,000. The

fraction
∑︀

𝑥𝑖/
∑︀

𝑛𝑖 of Black people is 16%; the fraction
∑︀

𝑦𝑖/
∑︀

𝑛𝑖 of voters
is 32%. The (unweighted) correlation between 𝑥𝑖 and 𝑦𝑖 is −0.20. For more
details about the data file, see appendix E.

I estimated both models discussed in section 7 above. See table 4. The
computer program was quite similar to appendix D. As it should be, I found
both 𝑝1−𝑝2 and 𝛽2 negative, the same sign as the correlation between 𝑥𝑖

and 𝑦𝑖. The standard errors in the table are computed from the “observed
Fisher information matrix”. The model (11) has the largest loglikelihood.
The likelihood is a probability here, unlike with models with continuous
stochastic variables. For both likelihoods in table 4, exp(loglikelihood/

∑︀
𝑛𝑖)

= 94.8% (rounded).
Not shown in the table: for the model (11), the weighted average of the

estimated probability to vote is 32%.
Again, last but not least: the computing time was well under 10 seconds.
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Table 4: Maximum likelihood estimates for the King data

model (8) model (11)
𝑝1 𝑝2 𝛽1 𝛽2

%
estimate 26 33 −0.69 −0.39
estimated standard error 0.2 0.1 0.004 0.01

loglikelihood −23794 −23741

Note: when Black: 𝑝1 = Pr(voting);
when not Black: 𝑝2 = Pr(voting)

As noted above, this holds also for the maximum likelihood estimate of table
3 with the largest 𝑛𝑖. Hence, if

∑︀
𝑛𝑖 is a few hundred thousand, up to half a

million, it takes not more than 10 seconds on my PC from 2010.

9 Conclusions

The first order Markov chain model with macro data can be considered as
a special case of the ecological inference model, with the two classifications
of the ecological model being the same, recorded at two subsequent time
periods. Students of this Markov model might consult Steel et al. (2004)
for details of the exact likelihood function, which can be translated to the
Markov model using the current paper.

Students of ecological inference might have benefited from reading MacRae
(1977) at that time.

Both might do well no longer to dismiss out of hand the exact likelihood
as unfeasible.

The maximum likelihood estimate differs most from the least squares
regression in small samples, where the computation of the likelihood function
is less of a problem

Remaining work: find conditions for a stationary point of the loglikelihood
being unique.
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A The ℰ and 𝒱 operators

In the next two appendices, we shall make use of an operator indicated by
ℰ , operating on a function of 𝑘𝑖, as follows. For a function 𝑓(.), ℰ𝑓(𝑘𝑖) is a
weighted average over 𝑘𝑖:

ℰ 𝑓(𝑘𝑖) ≡
∑︀

𝑘𝑖 𝑓(𝑘𝑖) Pr (𝑘𝑖|𝑥𝑖, 𝑝1𝑖) Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖, 𝑝2𝑖)∑︀
𝑘𝑖 Pr (𝑘𝑖|𝑥𝑖, 𝑝1𝑖) Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖, 𝑝2𝑖)

=

∑︀
𝑘𝑖 𝑓(𝑘𝑖) Pr (𝑘𝑖|𝑥𝑖, 𝑝1𝑖) Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖, 𝑝2𝑖)

Pr (𝑦𝑖|𝑥𝑖, 𝑝1𝑖, 𝑝2𝑖)

=
∑︁
𝑘𝑖

𝑓(𝑘𝑖) FNH(𝑘𝑖;𝑛𝑖, 𝑦𝑖, 𝑥𝑖, 𝜔𝑖) (12)

where FNH is Fisher’s noncentral hypergeometric distribution (or the “ex-
tended hypergeometric distribution”) with noncentrality parameter

𝜔𝑖 =
𝑝1𝑖(1− 𝑝2𝑖)

(1− 𝑝1𝑖)𝑝2𝑖
(13)

The 𝑦𝑖 and 𝑥𝑖 in the last line of (12) can be swapped. If evaluated with
the parameters at their true value, this is the conditional expectation of 𝑘𝑖
(conditional on the observed value 𝑦𝑖).

With
𝒱 𝑘𝑖 ≡ ℰ

[︁
(𝑘𝑖 − ℰ𝑘𝑖)2

]︁
= ℰ

[︁
𝑘2
𝑖

]︁
− (ℰ𝑘𝑖)2 (14)

we have:
𝜕ℰ𝑘𝑖
𝜕𝜔

=
𝒱𝑘𝑖
𝜔

(15)

as a property of Fisher’s noncentral hypergeometric distribution.
The R package BiasedUrn provides functions which compute ℰ𝑘𝑖 and 𝒱𝑘𝑖

respectively.

B The EM algorithm

Below it is shown how to apply the EM algorithm to the likelihood function
discussed in this paper. In each iteration, the EM algorithm temporarily
reduces this likelihood to the likelihood of an ordinary binary choice model.

The EM algorithm was introduced in Dempster et al. (1977) and has
been widely used ever since. It is a slow but robust method of maximizing
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a likelihood such as ours, with missing, or “latent”, data. Whether or not
its robustness is needed depends on whether or not there might be multiple
stationary points of the loglikelihood; this question remains to be answered.
The EM algorithm is not discussed in King et al. (2004) or its second edition
(2012).

Without loss of generality I choose the 𝑘𝑖 (𝑖 = 1, . . . , 𝐼) as the latent class

variables. Let 𝛽
(𝜈)
1 and 𝛽

(𝜈)
2 be the parameter vectors obtained from the last

M step. Then the E step of iteration 𝜈 of the EM algorithm is the sum over
𝑖 of (12) with 𝜔𝑖 computed from 𝛽

(𝜈)
1 and 𝛽

(𝜈)
2 and with

𝑓(𝑘𝑖) = log Pr (𝑘𝑖|𝑥𝑖,𝛽1) Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖,𝛽2)

= log Pr (𝑘𝑖|𝑥𝑖,𝛽1) + log Pr (𝑦𝑖 − 𝑘𝑖|𝑥𝑖,𝛽2)

= log

(︃
𝑥𝑖

𝑘𝑖

)︃(︃
𝑛𝑖 − 𝑥𝑖

𝑦𝑖 − 𝑘𝑖

)︃
+ 𝑘𝑖 log 𝑝1𝑖 + (𝑥𝑖 − 𝑘𝑖) log (1− 𝑝1𝑖)

+ (𝑦𝑖 − 𝑘𝑖) log 𝑝2𝑖 + (𝑛𝑖 − 𝑥𝑖 − (𝑦𝑖 − 𝑘𝑖)) log (1− 𝑝2𝑖) (16)

Hence, the E step is:∑︁
𝑖

ℰ𝑓(𝑘𝑖) =
∑︁
𝑖

ℰ
[︃
log

(︃
𝑥𝑖

𝑘𝑖

)︃(︃
𝑛𝑖 − 𝑥𝑖

𝑦𝑖 − 𝑘𝑖

)︃]︃

+
∑︁
𝑖

{︁
𝑘
(𝜈)
𝑖 log 𝑝1𝑖 +

(︁
𝑥𝑖 − 𝑘

(𝜈)
𝑖

)︁
log (1− 𝑝1𝑖)

}︁
(17)

+
∑︁
𝑖

{︁(︁
𝑦𝑖 − 𝑘

(𝜈)
𝑖

)︁
log 𝑝2𝑖 +

(︁
𝑛𝑖 − 𝑥𝑖 − (𝑦𝑖 − 𝑘

(𝜈)
𝑖 )

)︁
log (1− 𝑝2𝑖)

}︁
(18)

with
𝑘
(𝜈)
𝑖 = ℰ

[︁
𝑘𝑖
⃒⃒⃒
𝛽

(𝜈)
1 ,𝛽

(𝜈)
2 , 𝑦𝑖, 𝑥𝑖

]︁
(19)

Only lines (17) and (18) depend on the parameters 𝛽1 and 𝛽2, through 𝑝1𝑖
and 𝑝2𝑖.

In the M step, this is maximized over the parameters. This can be done
by maximizing lines (17) and (18) separately: with given 𝑘

(𝜈)
𝑖 and hence also

given 𝑦𝑖 − 𝑘
(𝜈)
𝑖 , we have now two ordinary binary choice models.

Without 𝑧 variables (with all 𝑝1𝑖 = 𝑝1 and all 𝑝2𝑖 = 𝑝2) the result of the
M step is:

𝛽
(𝜈+1)
1 = 𝑝

(𝜈+1)
1 =

∑︁
𝑖

𝑘
(𝜈)
𝑖

⧸︁∑︁
𝑖

𝑥𝑖 (20)

𝛽
(𝜈+1)
2 = 𝑝

(𝜈+1)
2 =

∑︁
𝑖

(︁
𝑦𝑖 − 𝑘

(𝜈)
𝑖

)︁⧸︁∑︁
𝑖

(𝑛𝑖 − 𝑥𝑖) (21)
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and we iterate between (19) and (20) + (21).

C The derivatives of the loglikelihood

With positive 𝐿𝑖 (𝛽1,𝛽2) we have (with conditionals after a vertical bar omit-
ted for brevity):

𝜕 log𝐿𝑖 (𝛽1,𝛽2)

𝜕𝛽1

=
1

Pr (𝑦𝑖)

𝜕Pr (𝑦𝑖)

𝜕𝛽1

=
1

Pr (𝑦𝑖)

∑︁
𝑘𝑖

𝜕Pr (𝑘𝑖)

𝜕𝛽1

Pr (𝑦𝑖−𝑘𝑖)

=
1

Pr (𝑦𝑖)

∑︁
𝑘𝑖

𝜕 log Pr (𝑘𝑖)

𝜕𝛽1

Pr (𝑘𝑖) Pr (𝑦𝑖−𝑘𝑖)

= ℰ 𝜕 log Pr (𝑘𝑖)
𝜕𝛽1

= ℰ
[︃
d log Pr (𝑘𝑖)

d𝑝1𝑖

𝜕𝑝1𝑖
𝜕𝛽1

]︃

= ℰ
[︃
d log Pr (𝑘𝑖)

d𝑝1𝑖

]︃
𝜕𝑝1𝑖
𝜕𝛽1

(22)

with

ℰ d log Pr (𝑘𝑖)
d𝑝1𝑖

= ℰ
[︃
𝑘𝑖
𝑝1𝑖

− 𝑥𝑖 − 𝑘𝑖
1− 𝑝1𝑖

]︃
=

ℰ𝑘𝑖
𝑝1𝑖

− 𝑥𝑖 − ℰ𝑘𝑖
1− 𝑝1𝑖

=
ℰ𝑘𝑖 − 𝑝1𝑖𝑥𝑖

𝑝1𝑖 (1− 𝑝1𝑖)
(23)

Similarly we have for 𝛽2:

𝜕 log𝐿𝑖 (𝛽1,𝛽2)

𝜕𝛽2

= ℰ
[︃
d log Pr (𝑦𝑖−𝑘𝑖)

d𝑝2𝑖

]︃
𝜕𝑝2𝑖
𝜕𝛽2

(24)

with

ℰ d log Pr (𝑦𝑖−𝑘𝑖)

d𝑝2𝑖
=

𝑦𝑖 − ℰ [𝑘𝑖]− 𝑝2𝑖 (𝑛𝑖 − 𝑥𝑖)

𝑝2𝑖 (1− 𝑝2𝑖)
(25)

The last member of (23) and of (25) are given by Steel et al. (2004), p.58,
summed over 𝑖. (Of course, here, with varying 𝜕𝑝1𝑖/𝜕𝛽1 and 𝜕𝑝2𝑖/𝜕𝛽2, this
summation is not meaningful.)

For a single unit 𝑖, there is a stationary point which is a saddle point,
with 𝑝1𝑖 = 𝑝2𝑖; see for instance the various 3D graphs in King et al. (2004)
and figure 6(a) at page 403 of Wakefield (2004a).

For the second order derivatives, use might be made of (15).
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D The R program of section 8.1

print(paste("n=",n <- 2200))

minimand <- function(beta) {

value <- 0

for (i in 1:NROW(x)) {

# A = reference (employed)

xA <- x[i]

xB <- n-x[i]

yA <- y[i]

pAA <- toZeroOneRange(beta[1])

pBA <- toZeroOneRange(beta[2])

AA <- max(0,yA-xB) : min(xA,yA) # paper: k_i

BA <- yA - AA

if (maxlik) {

liki <- sum(dbinom(AA,xA,pAA) * dbinom(BA,xB,pBA))

value <- value - log(liki)

} else {

residual <- yA - (xA*pAA + xB*pBA)

residVar <- xA*pAA*(1-pAA) + xB*pBA*(1-pBA)

value <- value + (residual^2)/residVar

}

}

return(value)

}

toZeroOneRange <- function(x) {1/(1+exp(-x))}

series <- c(0.406,0.425,0.432,0.448,0.476,0.515,0.525,0.526)

y <- round(n * c(series,0.557))

x <- round(n * c(0.400,series))

for (maxlik in c(TRUE,FALSE)) {

print(paste("maxlik=",maxlik))

start <- c(0,0)

result <- nlm(minimand, start, hessian=TRUE)

print(paste("return code=",result$code))

print(paste("beta=",beta <- result$estimate))

print(paste("p1=", p1 <- toZeroOneRange(beta[1])))

print(paste("p2=", p2 <- toZeroOneRange(beta[2])))

if (maxlik) {

print(paste("stderr",sqrt(-diag(solve(-result$hessian)))))

}

print(paste("long run=",p2/(1-p1+p2)))

}
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E The data of section 8.2

I used data file in90.asc from http://doi.org/10.3886/ICPSR01132.v1 . In
this file, four records have a turnout fraction 𝑦𝑖/𝑛𝑖 of more than 100%, for
reasons such as the census being collected at a different point in time than
electoral data (private communication with the book’s author). I removed
these records, with 𝐼 = 657 records remaining.

These data were chosen because this file is one of the three ascii files in
the book’s set of data files. (I could not read the binary Gauss files with
Gauss 13 for Windows, or the unix files or the Windows NT files.) The two
other ascii data files are pa90.asc (with more and much larger errors in the
turnout fraction) and hisp.asc (without the 𝑛𝑖).
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