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1 Introduction

Thanks to the seminal work of Sims (1980), vector autoregressions (VARs) have a long

tradition in applied macroeconomics, and are widely used for policy analysis and

forecasting. They are flexible time series models that can capture complex dynamic

interrelationships among macroeconomic variables. The VAR framework imposes no

restrictions on the lag structure of the system and is therefore not parsimonious at all,

i.e. all variables are allowed to respond to all variables at all lags. The generality of the

VAR model brings along a large number of parameters even for systems of moderate

size. Bayesian shrinkage makes it nevertheless possible to estimate VAR models with a

large set of variables, which without Bayesian shrinkage would lead to overfitting and

poor out-of-sample forecasting performance. For a general discussion of Bayesian VARs,

see the excellent survey paper of Koop and Korobilis (2010) and the forecasting

applications of Bańbura, Giannone, and Reichlin (2010) and Giannone, Lenza, and

Primiceri (2013) as well as the references therein. Here, we only would like to emphasize

that Bayesian VARs are among the frontier forecasting models and are well suited to

include a large set of variables, just like dynamic factor models.

This document consists of two parts that are self-contained. First, we set out some

notational conventions for Bayesian VARs and derive the formulae for the posterior

distribution under various prior settings. In general, the posterior distribution is a

weighted combination of prior distribution and likelihood function. The weights are

(partly) endogenous, which is the key rationale behind Bayesian shrinkage, as will be

explained in this document. This document is rather technical and all the results are

derived from scratch.

Second, we present details on the two Bayesian VAR instruments used at the CPB,

i.e. one instrument for forecasting the Dutch economy and another instrument for

forecasting world trade. Both instruments contain a wide range of variables that cover

the full spectrum of the economy, only the relevant set of variables is different for the

two forecasting applications. For both instruments, we describe the data used, discuss

which Bayesian VAR settings are chosen, and explain what type of output we look at.

The description of the two applications is self-contained so that readers may decide to

skip the derivations of the Bayesian VAR formulae.

The organization of the rest of this document is as follows. In section 2, we set out

the notational conventions used in this document. In section 3, we derive from scratch

the formulae for the posterior distribution under various prior settings and give some

intuition behind the weighting between prior and data. In section 4, we describe the

various ways how one can set the hyperparameters of the prior distribution. In
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section 5, we explain how the Bayesian VAR framework can be used for forecasting

under missing observations and scenario analysis. In section 6, we give the Gibbs

sampling procedure that can be used to estimate Bayesian VARs with priors that are

not conjugate to the likelihood function. Finally, in section 7, we present details on the

two Bayesian VAR instruments used at the CPB.

2 Notational conventions

Consider a VAR model with 𝑛 variables and 𝑝 lags

𝑦𝑡 = 𝑐 +

𝑝∑︁
𝑖=1

𝐵𝑖𝑦𝑡−𝑖 + 𝑢𝑡 (1)

where 𝑦𝑡 is an 𝑛 × 1 vector of observed endogenous variables, 𝑐 is an 𝑛 × 1 vector of

constants, {𝐵𝑖}𝑝𝑖=1 are 𝑛 × 𝑛 matrices of autoregressive parameters, and 𝑢𝑡 is an 𝑛 × 1

vector of shocks. Shocks are assumed to be distributed according to the normal

distribution 𝑢𝑡 ∼ 𝑁 (0,Σ).

It is more convenient to rewrite the VAR in concise matrix form. Let 𝑇 denote the

number of time periods in the sample after accounting for initialization and write

𝑌 = 𝑋𝐵 + 𝑈 (2)

where 𝑌 is a 𝑇 × 𝑛 matrix of regressands, 𝑋 is a 𝑇 × 𝑘 matrix of regressors, 𝑈 is a 𝑇 ×
𝑛 matrix of shocks, and 𝐵 is a 𝑘 × 𝑛 matrix of regression parameters, with 𝑘 = 1 + 𝑝𝑛 is

the number of regression parameters per VAR equation. The matrix of regressands is

constructed as 𝑌 = [{𝑦𝑡}𝑇𝑡=1]′ and the matrix of regressors as 𝑋 = [{𝑥𝑡}𝑇𝑡=1]′ with

𝑥𝑡 = [1,
{︀
𝑦′𝑡−𝑖

}︀𝑝

𝑖=1
]′. This notation implies that the 𝑖th column of the matrix 𝐵 consists

of the regression parameters of the 𝑖th VAR equation.

To derive all the results in section 3, we also need a vectorized version of the above

matrix equation. Let ⊗ denote the Kronecker product and vec (·) the column stacking

operator. Using the vectorization rule that vec (𝐴𝐵𝐶) = (𝐶 ′ ⊗𝐴) vec (𝐵), we can derive

that

𝑦 = (𝐼𝑛 ⊗𝑋)𝛽 + 𝑢 (3)

where 𝑦 = vec (𝑌 ) is a 𝑇𝑛 × 1 vector of regressands and 𝛽 = vec (𝐵) is a 𝑘𝑛 × 1 vector

of regression parameters. Furthermore, 𝑢 = vec (𝑈) is a 𝑇𝑛 × 1 vector of shocks that

are distributed according to the normal distribution 𝑢 ∼ 𝑁 (0,Σ ⊗ 𝐼𝑇 ). Note that 𝑦

stacks the 𝑇 × 1 vectors {𝑦𝑖}𝑛𝑖=1 below each other, that is 𝑦 = [{𝑦′𝑖}
𝑛
𝑖=1]′.
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3 Bayesian VAR formulae

We first describe the likelihood function and after that we set out the prior and

posterior distributions.

3.1 Likelihood function

The likelihood function is simply the sampling distribution 𝑝 (𝑦|𝛽,Σ) but then viewed as

a function of the parameters. The multivariate normal distribution of the shocks in the

vectorized form (3) implies that

𝑝 (𝑦|𝛽,Σ) ∝ |Σ ⊗ 𝐼𝑇 |−
1
2 exp

(︂
−1

2
𝑢′ (Σ ⊗ 𝐼𝑇 )

−1
𝑢

)︂
(4a)

∝ |Σ|−
𝑇
2 exp

(︂
−1

2
tr
(︀
(𝑌 −𝑋𝐵)

′
(𝑌 −𝑋𝐵) Σ−1

)︀)︂
(4b)

where equation (4b) can be derived from equation (4a) with several steps of algebra.

Note that equation (4b) can also be derived directly from the concise matrix form (2)

using the matrix normal distribution (as opposed to the multivariate normal

distribution). We have left out the constant-of-proportionality since we do not need it

anyway.

The likelihood function can be decomposed into two components, namely a normal

(conditional) distribution for 𝛽 given Σ and an inverse-Wishart (marginal) distribution

for Σ. For this purpose, use the well-known decomposition rule that

(𝑌 −𝑋𝐵)′(𝑌 −𝑋𝐵) = (𝑌 −𝑋𝐵̂)′(𝑌 −𝑋𝐵̂) + (𝐵̂ −𝐵)′𝑋 ′𝑋(𝐵̂ −𝐵), where

𝐵̂ = (𝑋 ′𝑋)
−1

𝑋 ′𝑌 is the ordinary least squares estimate of 𝐵, giving us

𝑝 (𝑦|𝛽,Σ) ∝ |Σ|−
𝑘
2 exp

(︂
−1

2
tr
(︁

(𝐵̂ −𝐵)′𝑋 ′𝑋(𝐵̂ −𝐵)Σ−1
)︁)︂

(5a)

|Σ|−
𝑇−𝑘

2 exp

(︂
−1

2
tr
(︁

(𝑌 −𝑋𝐵̂)′(𝑌 −𝑋𝐵̂)Σ−1
)︁)︂

(5b)

The first line (5a) is the kernel of the matrix normal distribution and the second line

(5b) is the kernel of the inverse-Wishart distribution. It is more convenient to rewrite

the matrix normal distribution in terms of the multivariate normal distribution, so that

𝛽|Σ, 𝑦 ∼ 𝑁
(︁
𝛽,Σ ⊗ (𝑋 ′𝑋)

−1
)︁

(6a)

Σ|𝑦 ∼ 𝐼𝑊
(︁
𝑆, 𝑇 − 𝑘 − 𝑛− 1

)︁
(6b)

where 𝛽 = vec(𝐵̂) and 𝑆 = (𝑌 −𝑋𝐵̂)′(𝑌 −𝑋𝐵̂). Note that we can equally get

𝛽 = (𝑥′𝑥)
−1

𝑥′𝑦 with 𝑥 = (𝐼𝑛 ⊗𝑋) from the vectorized form (3).
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Altogether, under a flat prior, we have a conditional normal distribution for 𝛽 given

Σ and a marginal inverse-Wishart distribution for Σ. The joint posterior mode of the

model parameters is given by

𝛽* = 𝛽 (7a)

Σ* =
𝑆

𝑇
(7b)

implying that the posterior distribution (under a flat prior) is centered around the

ordinary least squares estimates.1 Finally, note that under the non-informative Jeffreys

prior only the degrees-of-freedom parameter of the inverse-Wishart distribution

increases by 𝑛 + 1.

3.2 Prior and posterior distributions

It turns out to be possible to specify the prior distribution in such a way that the

posterior distribution is analytically available (as in the flat prior case discussed above).

We distinguish three cases:

∙ Σ known and normal prior distribution for 𝛽

∙ Σ unknown and normal inverse-Wishart prior distribution for {Σ, 𝛽}, with

Kronecker structure

∙ Σ unknown and normal inverse-Wishart prior distribution for {Σ, 𝛽}, no restrictions

The posterior distribution is analytically available in the first two cases, but not in the

third case. Whenever the posterior distribution is analytically available and in the same

family as the prior distribution, the prior distribution is said to be conjugate to the

likelihood function.

The three cases are discussed in the remainder of this section. Moreover, at the end

of the discussion of the first case, we elaborate on the rationale behind Bayesian

shrinkage.

3.2.1 Σ known and normal prior distribution for 𝛽

The prior discussed here has come to be known as the Minnesota prior. The Minnesota

prior is based on the assumption that Σ is known, so that in practice it should be

pre-estimated.2 This is not a good Bayesian treatment, but it makes the computations

1 Note that the mode of the marginal distribution for Σ is actually 𝑆
𝑇−𝑘

. However, the degrees-of-freedom

correction drops out when accounting for the feedback from the conditional distribution for 𝛽.

2 In the original Minnesota prior Σ is assumed to be a diagonal matrix, but this is actually not needed

and relaxed in later work.
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much easier in that the posterior distribution is analytically available. With a proper

Bayesian treatment of Σ, we would need to impose some restrictions on the prior in

order to have an analytical posterior. It should be noted that the latter approach, which

is discussed in section 3.2.2, is more common nowadays and we elaborate on the

Minnesota prior just for completeness and to give a quick insight in the history of

Bayesian VARs.

When Σ is known (or pre-estimated), we only have to specify a prior distribution for

𝛽. The Minnesota prior is based on the normal prior distribution

𝛽 ∼ 𝑁
(︀
𝛽, 𝑉

)︀
(8)

where 𝛽 is a 𝑘𝑛 × 1 vector with the prior mean and 𝑉 is a 𝑘𝑛 × 𝑘𝑛 matrix with the

prior covariance. The Minnesota prior puts a particular structure on 𝛽 and 𝑉 . The idea

behind the Minnesota prior is to shrink the model towards the random walk, with

stronger shrinkage for coefficients on longer lags and across variables.

The random walk (without drift) implies that 𝛽 = vec
(︀
[𝑂𝑛×1 𝐼𝑛×𝑛 𝑂𝑛×𝑛(𝑝−1)]

′)︀,
i.e. 𝛽 is simply a vector with all zeros except for the elements corresponding to the first

own lags. Besides, the ones can be replaced by zeros or any number if the data enter the

model in growth rates as opposed to levels.

The prior covariance matrix 𝑉 is assumed to be diagonal. Let 𝑣𝑖 denote the 𝑘 × 1

vector with the diagonal elements associated with the parameters of the 𝑖th VAR

equation, so that 𝑉 = diag ({𝑣𝑖}𝑛𝑖=1). Furthermore, let 𝑣𝑖𝑞 denote the 𝑞th element of 𝑣𝑖.

Note that 𝑣𝑖1 is associated with the constant term, while 𝑣𝑖𝑞, 𝑞 ̸= 1, is associated with

the 𝑟th lag of variable 𝑗 with 𝑟 = ⌊ 𝑞−2
𝑛 ⌋ + 1 and 𝑗 = 𝑞 − 1 − ⌊ 𝑞−2

𝑛 ⌋𝑛. A common

implementation of the Minnesota prior chooses the elements of 𝑣𝑖 according to

𝑣𝑖𝑞 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋1

𝑟2 if 𝑞 ̸= 1 and 𝑗 = 𝑖 (for coefficients on the 𝑟th own lags)

𝜋2

𝑟2
𝜎𝑖𝑖

𝜎𝑗𝑗
if 𝑞 ̸= 1 and 𝑗 ̸= 𝑖 (for coefficients on the 𝑟th foreign lags)

𝜋3𝜎𝑖𝑖 if 𝑞 = 1 (for coefficients on deterministic terms)

(9)

where 𝜎𝑖𝑖 is the 𝑖th diagonal element of Σ. The 𝜎𝑖𝑖 terms are used to account for

differences in the scaling of the various variables in the model. The above rule implies

that shrinkage is stronger for longer lags and across variables (provided that 𝜋1 > 𝜋2).

Typically, 𝜋3 is chosen to be large implying very weak shrinkage for deterministic terms.

When Σ is known (or pre-estimated), we can drop several terms from the likelihood

function (5) that was derived in section 3.1 for the general case with unknown Σ. In

fact, we only need the exp (·) term on line (5a), which is the kernel of the matrix normal

distribution. It is more convenient to rewrite the matrix normal kernel in terms of the
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multivariate normal kernel, giving us

𝑝 (𝑦|𝛽) ∝ exp

(︂
−1

2

(︁
𝛽 − 𝛽

)︁′
𝑉 −1

(︁
𝛽 − 𝛽

)︁)︂
(10)

where 𝑉 = Σ ⊗ (𝑋 ′𝑋)
−1

.

Finally, the likelihood function can be combined with the prior distribution. In

particular, multiplying the likelihood kernel with the prior kernel yields the posterior

kernel, giving us

𝑝 (𝛽|𝑦) ∝ exp

(︂
−1

2

(︁
𝛽 − 𝛽

)︁′
𝑉 −1

(︁
𝛽 − 𝛽

)︁)︂
exp

(︂
−1

2

(︁
𝛽 − 𝛽

)︁′
𝑉 −1

(︁
𝛽 − 𝛽

)︁)︂
(11)

It should be noted that the sum of two quadratic expressions is just another quadratic

expression. Therefore, the result of the multiplication of the two exp (·) terms simply

yields another exp (·) term or in other words a multivariate normal kernel

𝑝 (𝛽|𝑦) ∝ exp

(︂
−1

2

(︁
𝛽 − 𝛽

)︁′
𝑉

−1
(︁
𝛽 − 𝛽

)︁)︂
(12)

By matching coefficients, which is a very powerful algebra trick, we can find 𝛽 and 𝑉 .

This yields the posterior distribution

𝛽|𝑦 ∼ 𝑁
(︀
𝛽, 𝑉

)︀
(13a)

with

𝛽 =
(︁
𝑉 −1 + 𝑉 −1

)︁−1 (︁
𝑉 −1𝛽 + 𝑉 −1𝛽

)︁
(13b)

𝑉 =
(︁
𝑉 −1 + 𝑉 −1

)︁−1

(13c)

Summing up, the Minnesota prior yields a normal posterior distribution for 𝛽 with

mean and variance equal to (13b) and (13c), respectively.

One can recognize that the posterior mean for 𝛽 is a weighted combination of the

prior mean 𝛽 and maximum likelihood estimator 𝛽, with weights 𝑉 𝑉 −1 and 𝑉 𝑉 −1,

respectively. The weights are (partly) controlled by the user who sets the

hyperparameters that enter 𝑉 . Nevertheless, the weights are also endogenous since the

data enter 𝑉 , i.e. the covariance matrix with parameter uncertainty. In fact, the data is

informative about which (combinations of) parameters are robust and which are not.

The weighting scheme takes this information into account, with relatively large data

weights for dimensions that are found to be robust and relatively large prior weights for

dimensions that are found to be unstable. The Bayesian shrinkage approach effectively

recognizes the robust relationships in the data and replaces the unstable relationships

by a parsimonious benchmark that is known to have decent forecasting performance.3

3 The parsimonious benchmark used in the Minnesota prior is the random walk with drift, yet it is also
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3.2.2 Σ unknown and normal inverse-Wishart prior distribution for {Σ, 𝛽}, with
Kronecker structure

The prior discussed here is called the natural conjugate prior as it is from the same

family of distributions as the likelihood and posterior. The natural conjugate prior is

widely used since it is the only prior that yields an analytical posterior (without

assuming that Σ is known). The natural conjugate prior has the exact same normal

inverse-Wishart structure as the likelihood function, that is

𝛽|Σ ∼ 𝑁
(︀
𝛽,Σ ⊗ 𝑉

)︀
(14a)

Σ ∼ 𝐼𝑊 (𝑆, 𝜐) (14b)

where we would like to emphasize that the Kronecker structure is strictly necessary to

get an analytical posterior. With the natural conjugate prior, also the posterior satisfies

the exact same functional form, that is

𝛽|Σ, 𝑦 ∼ 𝑁
(︀
𝛽,Σ ⊗ 𝑉

)︀
(15a)

Σ|𝑦 ∼ 𝐼𝑊
(︀
𝑆, 𝜐

)︀
(15b)

or in terms of the probability density function

𝑝 (𝛽,Σ|𝑦) ∝ |Σ|−
𝑘
2 exp

(︂
−1

2
(𝛽 − 𝛽)′

(︁
Σ−1 ⊗ 𝑉

−1
)︁

(𝛽 − 𝛽)

)︂
|Σ|−

𝜐+𝑛+1
2 exp

(︂
−1

2
tr
(︀
𝑆Σ−1

)︀)︂
(16)

In order to show that the posterior indeed follows the functional form (16), multiply

the likelihood function (5) with the prior distribution (14), giving us

𝑝 (𝛽,Σ|𝑦) ∝ |Σ|−
𝑘
2 exp

(︂
−1

2
(𝛽 − 𝛽)′

(︀
Σ−1 ⊗𝑋 ′𝑋

)︀
(𝛽 − 𝛽)

)︂
|Σ|−

𝑇−𝑘
2 exp

(︂
−1

2
tr
(︁
𝑆Σ−1

)︁)︂
|Σ|−

𝑘
2 exp

(︂
−1

2
(𝛽 − 𝛽)′

(︀
Σ−1 ⊗ 𝑉 −1

)︀
(𝛽 − 𝛽)

)︂
|Σ|−

𝜐+𝑛+1
2 exp

(︂
−1

2
tr
(︀
𝑆Σ−1

)︀)︂
(17)

where the first line is the likelihood function (rewritten in multivariate normal form)

and the second line is the prior distribution.

We can now find the unknown quantities by matching coefficients. First, from the

quadratic and linear terms in 𝛽 we can find 𝛽 and 𝑉 . This yields the (conditional)

possible to use a different parsimonious benchmark. For example, the so-called combination prior is based

on more general unit root processes, see section 3.2.2 for details.
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posterior distribution for 𝛽

𝛽|Σ, 𝑦 ∼ 𝑁
(︀
𝛽,Σ ⊗ 𝑉

)︀
(18a)

with

𝛽 = vec
(︀
𝐵
)︀

(18b)

𝐵 =
(︀
𝑋 ′𝑋 + 𝑉 −1

)︀−1 (︀
𝑋 ′𝑌 + 𝑉 −1𝐵

)︀
(18c)

𝑉 =
(︀
𝑋 ′𝑋 + 𝑉 −1

)︀−1
(18d)

where 𝑉 followed directly from matching the quadratic terms and 𝛽 followed from

matching the linear terms. For the derivation of the latter, we have also used the reverse

of the vectorization rule that vec (𝐴𝐵𝐶) = (𝐶 ′ ⊗𝐴) vec (𝐵) and the fact that

𝑋 ′𝑋𝐵̂ = 𝑋 ′𝑌 .4

It should be noted that after matching the quadratic and linear terms in 𝛽, there is

a discrepancy between the constant terms. The discrepancy, which is below denoted by

𝑆, as well as one of the two |Σ|−
𝑘
2 terms should be absorbed by the inverse-Wishart

posterior distribution for Σ.

Second, from the three remaining determinant terms we can find the

degrees-of-freedom parameter 𝜐 and from the trace terms and the discrepancy 𝑆

(rewritten in matrix form) we can find the scale matrix 𝑆. This yields the (marginal)

posterior distribution for Σ

Σ|𝑦 ∼ 𝐼𝑊
(︀
𝑆, 𝜐

)︀
(19a)

with

𝑆 = 𝑆 + 𝑆 + 𝑆 (19b)

𝑆 = 𝐵̂′𝑋 ′𝑋𝐵̂ + 𝐵′𝑉 −1𝐵 −𝐵
′
𝑉

−1
𝐵 (19c)

𝜐 = 𝑇 + 𝜐 (19d)

Finally, there are no remaining terms, which implies that the posterior distribution

indeed satisfies the normal inverse-Wishart structure given by equations (18) and (19).

Combination prior Now that we know the prior structure (and associated posterior),

how do we set the prior details? At the CPB, we are using a combination of three priors

4 The (conditional) posterior mean for 𝛽 has the same ‘endogenous weighting of prior and data’ interpre-

tation as with the Minnesota prior, i.e. the Bayesian shrinkage approach effectively recognizes the robust

relationships and replaces the unstable ones. See the last paragraph of section 3.2.1 for a more extensive

explanation.
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as in Sims and Zha (1998) and Giannone, Lenza, and Primiceri (2013) among others.

The various prior components are discussed in turn.

The baseline prior is a version of the Minnesota prior, so as to shrink the model

towards the random walk. Relative to the original Minnesota prior, we also need to

specify a prior for the covariance matrix Σ and furthermore the prior for the vector of

regression parameters 𝛽 has to satisfy the same Kronecker structure as the likelihood

function. The priors for Σ and 𝛽 are discussed in turn.

Regarding Σ, we set the degrees-of-freedom parameter of the inverse-Wishart prior

distribution equal to 𝜐 = 𝑛+ 2, which is the minimum value under which the prior mean

exists, implying that the prior for Σ is rather uninformative. The prior mean is equal to
𝑆

𝜐−𝑛−1 , which under our choice for 𝜐 simplifies to 𝑆. We set the scale matrix 𝑆 to a

diagonal matrix with on the main diagonal the variances of separately pre-estimated

AR(1) models, if necessary rescaled with 𝜐 − 𝑛− 1.5

Regarding 𝛽, the idea behind the Minnesota prior is to shrink the model towards

the random walk. Just as in section 3.2.1 we set the prior mean equal to

𝛽 = vec
(︀
[𝑂𝑛×1 𝐼𝑛×𝑛 𝑂𝑛×𝑛(𝑝−1)]

′)︀, i.e. 𝛽 is simply a vector with all zeros except for the

elements corresponding to the first own lags. Note again that the ones can be replaced

by zeros or any number if the data enter the model in growth rates as opposed to levels.

With the original Minnesota prior, the prior covariance matrix was chosen so as to

imply stronger shrinkage for coefficients on longer lags and across variables. For

convenience, here is the rule again

𝑣𝑖𝑞 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋1

𝑟2 if 𝑞 ̸= 1 and 𝑗 = 𝑖 (for coefficients on the 𝑟th own lags)

𝜋2

𝑟2
𝜎𝑖𝑖

𝜎𝑗𝑗
if 𝑞 ̸= 1 and 𝑗 ̸= 𝑖 (for coefficients on the 𝑟th foreign lags)

𝜋3𝜎𝑖𝑖 if 𝑞 = 1 (for coefficients on deterministic terms)

(20)

where 𝑟 = ⌊ 𝑞−2
𝑛 ⌋ + 1 and 𝑗 = 𝑞 − 1 − ⌊ 𝑞−2

𝑛 ⌋𝑛. With the natural conjugate prior it is not

possible to distinguish between own and foreign lags, because of the Kronecker

structure. Therefore, we have to set 𝜋1 = 𝜋2 and choose the same 𝑣𝑞 = 𝑣𝑖𝑞 for all 𝑖.

Furthermore, the Kronecker product with Σ already accounts for the 𝜎𝑖𝑖 term in the

numerator. Yet, we still need to account for the 𝜎𝑗𝑗 term in the denominator, for which

we use the diagonal elements of the prior scale matrix 𝑆𝑗𝑗 . After some

reparameterizations, we have the following rule

𝑣𝑞 =

⎧⎨⎩
𝜆2

𝑟2
1

𝑆𝑗𝑗/(𝜐−𝑛−1) if 𝑞 ̸= 1 (for coefficients on the 𝑟th lags)

𝜅 if 𝑞 = 1 (for coefficients on deterministic terms)
(21)

5 This is common practice. Although this is not a good Bayesian treatment, it will hardly influence the

results given that the prior for Σ is rather uninformative.
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where the hyperparameter 𝜆 controls the overall tightness of the prior and 𝜅 is chosen to

be large implying very weak shrinkage for deterministic terms.6 In section 4, we discuss

several approaches how one can choose a good value for the hyperparameter 𝜆.

In addition to the baseline prior, we use two additional priors. The first one favors

more general unit root processes and the second one favors cointegration. Both priors

can be implemented by using dummy observations (and are therefore conjugate by

construction).

The first additional prior is called the sum-of-coefficients prior and centers the sum

of the coefficients
∑︀𝑝

𝑖=1 𝐵𝑖 around the identity matrix 𝐼𝑛. This prior implies a unit root

in each VAR equation and is thus inconsistent with cointegration. That is why in the

literature the sum-of-coefficients prior is also referred to as the no cointegration prior.

The prior is implemented with a set of 𝑛 dummy observations

𝑦+ = diag

(︂
𝑦0
𝜇

)︂
(22a)

𝑥+ = [𝑂𝑛×1 𝑦+ · · · 𝑦+] (22b)

where 𝑦0 is an 𝑛 × 1 vector containing the averages of the first 𝑝 observations with

which the VAR model is initialized. For posterior inference, the 𝑛 × 𝑛 matrix 𝑦+ and

the 𝑛 × 𝑘 matrix 𝑥+ are added on top of the data matrices 𝑌 and 𝑋, respectively. The

hyperparameter 𝜇 controls the prior tightness and if 𝜇 → ∞, the prior becomes

uninformative. In section 4, we discuss several approaches how one can choose a good

value for the hyperparameter 𝜇.

The second additional prior is called the single-unit-root prior and pushes the VAR

either in the direction of (i) at least one unit root and zero constant or (ii) no unit root

and 𝑦0 equal to its unconditional mean. The single-unit-root prior is thus consistent

with cointegration. In the literature, this prior is also known as the

dummy-initial-observation prior, although this name is not quite informative. The prior

is implemented with a single dummy observation

𝑦++ =
𝑦′0
𝛿

(23a)

𝑥++ = [
1

𝛿
𝑦++ · · · 𝑦++] (23b)

For posterior inference, the 1 × 𝑛 vector 𝑦++ and the 1 × 𝑘 vector 𝑥++ are added on

top of the data matrices 𝑌 and 𝑋, respectively. The hyperparameter 𝛿 controls the

prior tightness and if 𝛿 → ∞, the prior becomes uninformative. In section 4, we discuss

several approaches how one can choose a good value for the hyperparameter 𝛿.

6 It is quite common to choose 𝜅 = 107.
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3.2.3 Σ unknown and normal inverse-Wishart prior distribution for {Σ, 𝛽}, no
restrictions

The prior discussed here is called the independent normal inverse-Wishart prior. This

prior has a normal inverse-Wishart structure like in section 3.2.2, yet without the

Kronecker structure and the conditioning on Σ in the prior for 𝛽. The independent

normal inverse-Wishart prior is given by

𝛽 ∼ 𝑁
(︀
𝛽, 𝑉

)︀
(24a)

Σ ∼ 𝐼𝑊 (𝑆, 𝜐) (24b)

The joint posterior distribution 𝑝 (𝛽,Σ|𝑦) is not analytically available without the

exact same Kronecker structure as in the likelihood function.7 However, the conditional

posterior distributions 𝑝 (𝛽|Σ, 𝑦) and 𝑝 (Σ|𝛽, 𝑦) are both analytically available, so that

we can use Gibbs sampling for posterior inference. It is not hard to implement the

Gibbs sampling procedure but it is computationally demanding, which can be

cumbersome for e.g. forecast competitions. In section 6, we set out the Gibbs sampling

procedure for Bayesian VARs with independent normal inverse-Wishart priors.

4 Choosing the hyperparameters

We are left with the task of choosing good values for the hyperparameters. There are

several ways how to do this:

∙ Use standard values such as the ones recommended by Sims and Zha (1998), namely

𝜆 = 0.2, 𝜇 = 1, and 𝛿 = 1. This often works well in practice, even though the

number of time periods as well as the system size vary considerably between

applications.

∙ Choose the hyperparameters by maximizing the marginal likelihood as proposed by

Giannone, Lenza, and Primiceri (2013). We will elaborate on the marginal

likelihood in section 4.1.

∙ Choose the hyperparameters to avoid overfitting as in Bańbura, Giannone, and

Reichlin (2010).

∙ Choose the hyperparameters by running a forecast competition.

7 An educated guess would be that 𝛽 follows a normal posterior distribution even without the Kronecker

structure in the prior. However, when trying to match coefficients it turns out that it is not possible to

match the determinant term of the presumed normal posterior distribution, so that the educated guess

must be wrong.
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4.1 Marginal likelihood

The marginal likelihood is analytically available for Bayesian VARs with conjugate

priors. In this subsection, we only give the formula and refer to Giannone, Lenza, and

Primiceri (2013) for the tedious but straightforward derivation.8 For the case without

dummy observations, we have

𝑝 (𝑦) = 𝜋−𝑛𝑇
2

Γ𝑛

(︁
𝑇+𝜐
2

)︁
Γ𝑛

(︁
𝜐
2

)︁ |𝑉 |−
𝑛
2
⃒⃒
𝑋 ′𝑋 + 𝑉 −1

⃒⃒−𝑛
2 |𝑆|

𝜐
2

⃒⃒⃒
𝑆 + 𝑆 + 𝑆

⃒⃒⃒−𝑇+𝜐
2

(25)

where Γ𝑛 (·) denotes the multivariate Gamma function. It should be noted that

equation (25) is numerically unstable for large systems and one should work with the

equivalent but stable expression

𝑝 (𝑦) = 𝜋−𝑛𝑇
2

Γ𝑛

(︁
𝑇+𝜐
2

)︁
Γ𝑛

(︁
𝜐
2

)︁ ⃒⃒⃒
𝐼𝑘 + 𝐷′

𝑉 𝑋
′𝑋𝐷𝑉

⃒⃒⃒−𝑛
2 |𝑆|−

𝑇
2

⃒⃒⃒
𝐼𝑛 + 𝐷′

𝑆

(︀
𝑆 + 𝑆

)︀
𝐷𝑆

⃒⃒⃒−𝑇+𝜐
2

(26)

where 𝐷𝑉 and 𝐷𝑆 are the lower-triangular parts of the Cholesky decompositions of 𝑉

and 𝑆, respectively. To compute the first determinant term, calculate the eigenvalues of

𝐷′
𝑉 𝑋

′𝑋𝐷𝑉 , add one to each eigenvalue, and take the product. The third determinant

term can be computed similarly.

Finally, we can also use expression (26) for the case with dummy observations. Let

𝑦ext denote the extended dataset including both the real and artificial data and let 𝑦art

denote the dataset including only the artificial data. The marginal likelihood is then

simply given by

𝑝 (𝑦) =
𝑝 (𝑦ext)

𝑝 (𝑦art)
(27)

5 Forecasting and scenario analysis

Yet another representation is preferred when using Bayesian VARs for forecasting and

scenario analysis. In particular, it is convenient to rewrite the VAR in state space form

and exploit the extensive toolkit that is available for this representation. The key tool of

the state space toolkit is the Kalman filter, which can be used for forecasting under

missing observations inter alia.9

8 It should be noted that the notation and representation of the marginal likelihood is slightly different

here than in Giannone, Lenza, and Primiceri (2013).

9 It should be noted that this section takes as given a point estimate of the VAR parameters, esti-

mated on the largest rectangular block of data without missing observations. Note furthermore that

14



In subsection 5.1, we derive the VAR’s measurement and state equation, which

together characterize the state space form. In subsection 5.2, we describe the Kalman

filter equations and show how to apply the Kalman filter equations for forecasting under

missing observations (which is crucial for practical work where datasets quite often have

a ragged-edge pattern).

5.1 State space representation for VAR models

For a general treatment of state space models, see, for example, the excellent book by

Durbin and Koopman (2012).10 Here, we only give a (non-unique) state space

representation for VAR models. The VAR’s measurement and state equation are given

by

𝑦𝑡 = 𝑍𝛼𝑡 (28a)

𝛼𝑡+1 = 𝐶 + 𝑇𝛼𝑡 + 𝑅𝜂𝑡 with 𝜂𝑡 ∼ 𝑁 (0, 𝑄) (28b)

The first equation is the measurement equation and the second equation is the state

equation. The state equation is simply the VAR’s companion form.11 The 𝑛𝑝 × 1 state

vector is constructed as 𝛼𝑡 = [
{︀
𝑦′𝑡−𝑖

}︀𝑝−1

𝑖=0
]′. In order to conform to the notation of

Durbin and Koopman (2012), the 𝑛 × 1 vector with state innovations is time shifted by

one period, that is 𝜂𝑡 = 𝑢𝑡+1. Below we describe how the various system matrices look

like for the general VAR(𝑝) case, while in appendix A we give an illustration for the

VAR(3) case.

Regarding the state equation, the 𝑛𝑝 × 1 vector with constants is constructed as

𝐶 = [𝐶 ′
1 𝐶 ′

2]′ where 𝐶1 = 𝑐 and 𝐶2 = 𝑂𝑛(𝑝−1)×1 and the 𝑛𝑝 × 𝑛𝑝 matrix with

autoregressive parameters is constructed as 𝑇 = [𝑇 ′
1 𝑇 ′

2]′ where 𝑇1 = [{𝐵𝑖}𝑝𝑖=1] and

𝑇2 = [𝐼𝑛(𝑝−1)×𝑛(𝑝−1) 𝑂𝑛(𝑝−1)×𝑛]. Note that 𝑐 and [{𝐵𝑖}𝑝𝑖=1] are simply the first and

remaining columns of 𝐵′, respectively. Furthermore, the 𝑛𝑝 × 𝑛 selection matrix 𝑅 is

constructed as 𝑅 = [𝐼𝑛×𝑛 𝑂𝑛×𝑛(𝑝−1)]
′ and the covariance matrix of the state

innovations is simply 𝑄 = Σ. Regarding the measurement equation, the 𝑛 × 𝑛𝑝 matrix

𝑍 is constructed as 𝑍 = [𝐼𝑛×𝑛 𝑂𝑛×𝑛(𝑝−1)].

it is straightforward to run a Monte Carlo simulation based on the posterior distribution of the VAR

parameters.

10 Since we wanted to follow the notation of Durbin and Koopman (2012) as much as possible, we have

recycled some notation in this section.

11 It is always possible to rewrite a VAR(𝑝) model with 𝑛 variables as a restricted VAR(1) model with

𝑛𝑝 variables. The latter representation is called the companion form.
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5.2 Missing observations and the Kalman filter

For the state space representation given in equation (28), the Kalman filter recursions

are given by

𝜐𝑡 = 𝑦𝑡 − 𝑍𝑎𝑡 (29a)

𝐹𝑡 = 𝑍𝑃𝑡𝑍
′ (29b)

𝐾𝑡 = 𝑇𝑃𝑡𝑍
′𝐹−1

𝑡 (29c)

𝑎𝑡+1 = 𝐶 + 𝑇𝑎𝑡 + 𝐾𝑡𝜐𝑡 (29d)

𝑃𝑡+1 = 𝑇𝑃𝑡𝑇
′ + 𝑅𝑄𝑅′ −𝐾𝑡𝐹𝑡𝐾

′
𝑡 (29e)

where 𝜐𝑡 is the prediction error, 𝐹𝑡 is the prediction error variance, 𝐾𝑡 is the Kalman

gain, 𝑎𝑡 = E
(︀
𝛼𝑡|𝑌 𝑡−1

)︀
is the filtered state, and 𝑃𝑡 = Var

(︀
𝛼𝑡|𝑌 𝑡−1

)︀
is the filtered state

variance. The notation 𝑌 𝜏 is used to denote the history of 𝑦𝑡 up to and including time

period 𝜏 . The Kalman filter recursions are initialized by

𝑎1 = 𝐶 + 𝑇𝛼0 (30a)

𝑃1 = 𝑅𝑄𝑅′ (30b)

where 𝛼0 consists of the first 𝑝 observations with which the VAR model is initialized.

In practical forecasting applications, we often need to work with a ragged-edge

dataset and/or with other types of missing observations. In the presence of missing

observations, the measurement equation needs to be adjusted, that is

𝑊𝑡𝑦𝑡 = 𝑊𝑡𝑍𝛼𝑡 (31)

where 𝑊𝑡 is a known matrix that depends on the pattern of the missing observations. In

particular, the rows of 𝑊𝑡 are a subset of the rows of 𝐼𝑛, i.e. the 𝑖th row of 𝐼𝑛 is included

in 𝑊𝑡 if and only if the 𝑖th element of 𝑦𝑡 is not missing. So 𝑊𝑡 = 𝐼𝑛 if 𝑦𝑡 is fully

observed, whereas 𝑊𝑡 is an empty 0 × 𝑛 matrix if 𝑦𝑡 is fully missing.12 In the presence

of missing observations, the Kalman filter recursions are given by

𝜐𝑡 = 𝑊𝑡𝑦𝑡 −𝑊𝑡𝑍𝑎𝑡 (32a)

𝐹𝑡 = 𝑊𝑡𝑍𝑃𝑡𝑍
′𝑊 ′

𝑡 (32b)

𝐾𝑡 = 𝑇𝑃𝑡𝑍
′𝑊 ′

𝑡𝐹
−1
𝑡 (32c)

𝑎𝑡+1 = 𝐶 + 𝑇𝑎𝑡 + 𝐾𝑡𝜐𝑡 (32d)

𝑃𝑡+1 = 𝑇𝑃𝑡𝑇
′ + 𝑅𝑄𝑅′ −𝐾𝑡𝐹𝑡𝐾

′
𝑡 (32e)

12 Standard matrix algebra can also be used for empty matrices.

16



which is simply expression (29) yet with 𝑍 replaced by 𝑊𝑡𝑍 and 𝑦𝑡 replaced by 𝑊𝑡𝑦𝑡.

Apart from this, the formulae are unchanged as well as the initialization.

After running the forward recursions of the Kalman filter, we also need to run the

backward recursions of the Kalman smoother so as to back and nowcast the missing

observations. The Kalman smoother delivers the smoothed state 𝛼̂𝑡 = E (𝛼𝑡|𝑌 ) as well

as the smoothed state variance 𝑉𝑡 = Var (𝛼𝑡|𝑌 ).13 The backward recursions of the

Kalman smoother are given by

𝑟𝑡−1 = 𝑍 ′𝑊 ′
𝑡𝐹

−1
𝑡 𝜐𝑡 + (𝑇 −𝐾𝑡𝑊𝑡𝑍)

′
𝑟𝑡 (33a)

𝛼̂𝑡 = 𝑎𝑡 + 𝑃𝑡𝑟𝑡−1 (33b)

𝑁𝑡−1 = 𝑍 ′𝑊 ′
𝑡𝐹

−1
𝑡 𝑊𝑡𝑍 + (𝑇 −𝐾𝑡𝑊𝑡𝑍)

′
𝑁𝑡 (𝑇 −𝐾𝑡𝑊𝑡𝑍) (33c)

𝑉𝑡 = 𝑃𝑡 − 𝑃𝑡𝑁𝑡−1𝑃𝑡 (33d)

where 𝑟𝑡 and 𝑁𝑡 are auxiliary variables. The backward recursions of the Kalman

smoother are initialized by 𝑟𝑇 = 0 and 𝑁𝑇 = 0.

It is straightforward to use the Kalman filter and smoother for forecasting by

treating future observations as missing. In particular, the point forecast for 𝑦𝜏 is simply

equal to 𝑍𝛼̂𝜏 . It should be noted that the Kalman filter and smoother approach delivers

the exact same forecasts as the standard iterative approach when there are no missing

observations.

Furthermore, the missing observation approach can also be used for scenario

analysis, e.g. for conditioning on a future path of anticipated observations on one of the

variables of the VAR model. Similarly, by leaving out the last data point of a variable it

is possible to determine the contribution of that variable to the forecasts for other

variables.

6 Gibbs sampling procedure for non-conjugate Bayesian VARs

For a general treatment of Gibbs sampling, see, for example, Casella and George (1992).

Here, we only explain how to implement the Gibbs sampling procedure for Bayesian

VARs with independent normal inverse-Wishart priors (see section 3.2.3 for details

about this prior). The idea behind the Gibbs sampler is to iterate between the

conditional posterior distributions, that is

0. Initialize the Gibbs sampler with 𝛽0 and set 𝑖 to 1.

13Note that the smoothed estimate of 𝛼𝜏 is based on the entire history of 𝑦𝑡, whereas the filtered estimate

of 𝛼𝜏 is just based on the history of 𝑦𝑡 up to and including time period 𝜏 − 1.
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1. Draw a covariance matrix Σ𝑖 from 𝑝(Σ|𝛽𝑖−1, 𝑦).

2. Draw a vector of regression parameters 𝛽𝑖 from 𝑝(𝛽|Σ𝑖, 𝑦).

3. Increment 𝑖 by 1 and go back to step 1 until 𝑖 > 𝑔.

4. Throw away the first 𝑏 draws as burn-in and keep the remaining 𝑔 − 𝑏 draws for

posterior inference.

Subject to regularity conditions (see, for example, Roberts and Smith, 1994), the Gibbs

sampler generates a Markov chain with 𝑝 (𝛽,Σ|𝑦) as stationary distribution. It is very

important to check convergence of the Markov chain, e.g. by comparing the results of

various independent Markov chains that have started from different initial conditions.

In the remainder of this section, we will derive the conditional posterior

distributions 𝑝 (Σ|𝛽, 𝑦) and 𝑝 (𝛽|Σ, 𝑦), which are the key ingredients for the Gibbs

sampling procedure.

6.1 Conditional posterior distribution 𝑝 (Σ|𝛽, 𝑦)

We need to combine the likelihood function with the prior distribution and collect the

relevant terms for the conditional posterior distribution 𝑝 (Σ|𝛽, 𝑦). Regarding the

likelihood function, it is most convenient to start off from the matrix normal form, i.e.

equation (4b), which for convenience is repeated here

𝑝 (𝑦|𝛽,Σ) ∝ |Σ|−
𝑇
2 exp

(︂
−1

2
tr
(︀
(𝑌 −𝑋𝐵)

′
(𝑌 −𝑋𝐵) Σ−1

)︀)︂
(34)

It should be noted that in the current Gibbs step 𝛽 = vec (𝐵) is considered to be known,

so that the above likelihood function has already an inverse-Wishart structure for Σ.

In case of the independent normal inverse-Wishart prior, the prior distribution for Σ

is given by

Σ ∼ 𝐼𝑊 (𝑆, 𝜐) (35)

or in terms of the probability density function

𝑝 (Σ) ∝ |Σ|−
𝜐+𝑛+1

2 exp

(︂
−1

2
tr
(︀
𝑆Σ−1

)︀)︂
(36)

Multiplying the likelihood function (34) with the prior distribution (36), yields the

conditional posterior distribution

𝑝 (Σ|𝛽, 𝑦) ∝ |Σ|−
𝑇+𝜐+𝑛+1

2 exp

(︂
−1

2
tr
(︀
(𝑆 + 𝑆) Σ−1

)︀)︂
(37)
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where 𝑆 = (𝑌 −𝑋𝐵)
′
(𝑌 −𝑋𝐵). This is simply an inverse-Wishart distribution with

degrees-of-freedom parameter 𝑇 + 𝜐 and scale matrix 𝑆 + 𝑆, that is

Σ|𝛽, 𝑦 ∼ 𝐼𝑊 (𝑆 + 𝑆, 𝑇 + 𝜐) (38)

6.2 Conditional posterior distribution 𝑝 (𝛽|Σ, 𝑦)

The Gibbs step discussed here follows exactly the case with the original Minnesota prior

in which Σ is assumed to be known. Therefore, we just include the conditional posterior

distribution 𝑝 (𝛽|Σ, 𝑦) and refer to section 3.2.1 for the derivation. Analogue to

expression (13), we have the conditional posterior distribution

𝛽|Σ, 𝑦 ∼ 𝑁
(︀
𝛽, 𝑉

)︀
(39a)

with

𝛽 =
(︁
𝑉 −1 + 𝑉 −1

)︁−1 (︁
𝑉 −1𝛽 + 𝑉 −1𝛽

)︁
(39b)

𝑉 =
(︁
𝑉 −1 + 𝑉 −1

)︁−1

(39c)

where 𝛽 is the ordinary least squares estimate of 𝛽 and 𝑉 = Σ ⊗ (𝑋 ′𝑋)
−1

.

7 Applications

7.1 Dutch economy

At the CPB, we have developed a Bayesian VAR model for the Dutch economy. This

instrument is used to benchmark the forecasts that come from CPB’s

macro-econometric model Saffier II and serves as input for the expert opinion that is

part of the official CPB quarterly projections (i.e. the Central Economic Plan and

Macro Economic Outlook as well as the June and December projections).

The Bayesian VAR instrument is used to generate forecasts for a wide range of

variables, including GDP, macro aggregates, and prices. These forecasts are compared

to the forecasts that come from the macro-econometric model Saffier II. We also run

various decomposition exercises in which we determine the contribution of (blocks of)

variables to the forecasts for other variables. To determine the contribution of a block of

variables we leave out the last data point of each variable in that block and look how

this impacts the forecasts for mainly GDP and the macro aggregates. This is

implemented using the missing observation approach, see section 5 for details.

Furthermore, we also analyze which variables contribute to the changes in the forecasts
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relative to the forecasts made in the previous quarter. The insights from these exercises

are used as input for expert opinion.

We use quarterly data from 2001-Q1 onwards and, as discussed in section 5, we can

handle ragged-edge patterns at the end of the sample so that we can exploit the most

recent information of various indicators.14 Our dataset consists of a wide range of

variables that cover the full spectrum of the economy, i.e. GDP and macro aggregates

(in real terms), prices and wages, indicators on consumer confidence, indicators on

business confidence, international variables, and financial variables. The full list of 22

variables is given in Table 1. We would like to emphasize that Bayesian VARs are well

suited to include a large set of variables. As explained in section 3.2.1, the Bayesian

shrinkage approach effectively recognizes the robust relationships in the data and

replaces the unstable relationships by a parsimonious benchmark that is known to have

decent forecasting performance (e.g. the random walk with drift). This makes the

Bayesian VAR framework very appealing since we do not have to worry about a variable

selection procedure.15

We include four lags in our quarterly model. The data enter the model in levels, as

is standard for Bayesian VARs, and the non-stationary variables are log-transformed.

We use the so-called combination prior, which is superior in terms of forecasting

performance relative to the Minnesota prior.16 The key difference between these priors

is that the Minnesota prior shrinks the VAR towards univariate random walks, whereas

the combination prior shrinks towards more flexible unit root processes and favors

cointegration (which likely is important for macroeconomic forecasting).17 Finally, for

the hyperparameters of the prior distribution we use the values that are recommended

by Sims and Zha (1998), that is 𝜆 = 0.2, 𝜇 = 1, and 𝛿 = 1.18

14Due to the 2014 revision of the national accounts data by Statistics Netherlands, the sample period

only starts in 2001-Q1, but data from 1995-Q1 onwards will be published shortly.

15For example, Bańbura, Giannone, and Reichlin (2010) have shown that a Bayesian VAR with 131

variables outperforms a VAR with 3 variables, although the same forecasting performance is already

achieved with 20 variables.

16We use the mean squared prediction error to evaluate the out-of-sample forecasting performance, yet

the same conclusion would be drawn based on the mean absolute error.

17 See section 3.2 for details about the various priors.

18We have also experimented with the maximum marginal likelihood procedure of Giannone, Lenza, and

Primiceri (2013) with similar forecasting performance as a result.
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Table 1 List of variables used in Dutch application

Variable description Block of economy Data source

GDP Macro CBS

Private consumption Macro CBS

Government consumption Macro CBS

Investment (private and government) Macro CBS

Exports of goods and services Macro CBS

Imports of goods and services Macro CBS

CPI Prices CBS

Wages Prices CBS

Consumer confidence Consumer CBS

Economic climate (part of consumer confidence) Consumer CBS

Willingness to buy (part of consumer confidence) Consumer CBS

Expected business activity industry Business CBS

Actual business activity industry Business CBS

Utilization rate industry Business CBS

Bankruptcies Business CBS

World trade (trade weighted for Netherlands) International CPB-WTM

OECD composite leading indicator euro area International OECD

OECD composite leading indicator US International OECD

AEX stock index Financial DNB

M1 money supply Financial DNB

Short interest rate Financial DNB

House prices Financial DNB

Data sources: Statistics Netherlands (CBS), CPB World Trade Monitor (CPB-WTM), OECD,

and De Nederlandsche Bank (DNB). Where applicable, the data are seasonally adjusted at their

source.

7.2 World trade

At the CPB, we have also developed a Bayesian VAR model for world trade. It plays a

similar role as the model for the Dutch economy. In particular, the Bayesian VAR

forecasts serve as a source of expert opinion for the international projections made by

the CPB.

We currently use the model only for forecasting world trade, although potentially

we could look at a wider range of variables. Moreover, we run the same decomposition

exercises as with the model for the Dutch economy, i.e. horizontal analyses to determine
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the contribution of blocks of variables to the world trade forecast and vertical analyses

to understand why the world trade forecast has changed relative to the previous forecast.

The data for the world trade application are available on a monthly basis from

1991-M1 onwards. The dataset suffers from a ragged-edge pattern at the end of the

sample, but with the missing observation approach, as discussed in section 5, we can

exploit the most recent information. Our dataset consists of a wide range of variables

including goods trade volumes and prices, industrial production, retail trade volumes,

composite leading indicators, purchasing managers’ indices, and various other variables.

The full list of 22 variables is given in Table 2.

We include six lags in our monthly model. We follow the exact same Bayesian VAR

settings as with the model for the Dutch economy, see the last paragraph of section 7.1

for details.

A State space representation for VAR(3) model

Regarding the measurement equation, we have

𝑍 =
(︁
𝐼𝑛×𝑛 𝑂𝑛×𝑛 𝑂𝑛×𝑛

)︁
(40)

and regarding the state equation, we have

𝐶 =

⎛⎜⎜⎝
𝑐

𝑂𝑛×1

𝑂𝑛×1

⎞⎟⎟⎠ 𝑇 =

⎛⎜⎜⎝
𝐵1 𝐵2 𝐵3

𝐼𝑛×𝑛 𝑂𝑛×𝑛 𝑂𝑛×𝑛

𝑂𝑛×𝑛 𝐼𝑛×𝑛 𝑂𝑛×𝑛

⎞⎟⎟⎠ 𝑅 =

⎛⎜⎜⎝
𝐼𝑛×𝑛

𝑂𝑛×𝑛

𝑂𝑛×𝑛

⎞⎟⎟⎠ 𝑄 = Σ (41)
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Table 2 List of variables used in world trade application

Variable description Block of economy Data source

World trade Goods trade volumes CPB-WTM

Imports (advanced economies) Goods trade volumes CPB-WTM

World trade price Goods trade prices CPB-WTM

Import price (world) Goods trade prices CPB-WTM

Import price (advanced economies) Goods trade prices CPB-WTM

Manufactures Goods trade prices CPB-WTM

Fuels (HWWI) Goods trade prices CPB-WTM

Primary commodities excl. fuels (HWWI) Goods trade prices CPB-WTM

Industrial production excl. construction (world) Industrial production CPB-WTM

Industrial production excl. construction (adv. economies) Industrial production CPB-WTM

Retail trade (OECD countries) Retail trade volumes OECD

Retail trade (euro area) Retail trade volumes OECD

Composite leading indicator (OECD countries) Composite leading indicators OECD

Composite leading indicator (China) Composite leading indicators OECD

Ifo business climate (Germany) Purchasing managers’ indices CESifo

ISM manufacturing (US) Purchasing managers’ indices FRED

Brent oil price Various Datastream

Baltic exchange dry index Various Datastream

MSCI world index Various Datastream

World steel production Various Datastream

World semiconductor billings Various WSTS

Tech pulse index Various FRBSF

Data sources: CPB World Trade Monitor (CPB-WTM), OECD, CESifo Group Munich (CESifo),

Federal Reserve Economic Data (FRED), Datastream, World Semiconductor Trade Statistics

(WSTS), and Federal Reserve Bank of San Francisco (FRBSF). Where applicable, the data are

seasonally adjusted at their source.
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