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Abstract in English

In many countries, collective funded pension schemes with defined benefits (DB) are being

replaced by individual schemes with defined contributions. Collective funded DB pensions may

indeed reduce social welfare. This will be the case when the schemes feature income-related

contributions that distort the labour-leisure decision. However, these schemes also share risks

between generations. This adds to welfare if these risks cannot be traded on capital markets.

This paper compares the welfare gains from intergenerational risk sharing with the welfare

losses that are due to labour market distortions. We adopt a two-period overlapping-generations

model for a small open economy with risky returns to equity holdings. We derive analytically

that the gains dominate the losses for the case of Cobb-Douglas preferences between labour and

leisure. Numerical simulations for the more general CES case confirm these findings which also

withstand a number of other model modifications, like the introduction of a short-sale constraint

for households and the inclusion of a labour income tax. These results suggest that collective

funded schemes with well-organized risk sharing are preferable over individual schemes, even if

labour market distortions are taken into account.

Key words: risk sharing, labour market distortion, funded pensions, defined benefits

JEL Code: E21, G11, H55

Abstract in Dutch

Het is algemeen bekend dat collectieve kapitaalgedekte pensioenstelsels die risico’s spreiden

over generaties, bijdragen aan een hogere welvaart. Het is evenwel minder bekend dat dergelijke

pensioenstelsels ook een verstorend effect hebben op de arbeidsaanbodbeslissing en langs die

route de welvaart juist kunnen verlagen. De reden hiervoor is dat pensioenpremies in veel

gevallen impliciete belastingen (of subsidies) bevatten die samenhangen met een discrepantie

tussen de risico’s waaraan pensioenvermogens en -verplichtingen blootgesteld zijn. Dit paper

weegt de voordelen van collectieve kapitaalgedekte pensioenstelsels in termen van risicodeling

af tegen de nadelen in termen van arbeidsmarktverstoring. Daartoe wordt een stochastisch model

ontwikkeld met twee overlappende generaties dat een kleine open economie (zoals de

Nederlandse) representeert. We vinden dat de welvaartswinsten van risicodeling veel groter zijn

dan de welvaartsverliezen van arbeidsmarktverstoringen. Dit resultaat is robuust voor een breed

scala aan alternatieve modelspecificaties, zoals de specificatie van de nutsfunctie, de

implementatie van een verbod om met geleend geld in aandelen te beleggen en de introductie

van een initiële belasting op arbeid.
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Summary

It is widely recognized that risk sharing across generations can be welfare improving.

Competitive financial markets often fail to fully exploit the merits of intergenerational risk

sharing because current generations cannot sign insurance contracts with those who are not born

yet. This market incompleteness leaves a role for collective institutions like pension funds. By

offering collective contracts, pension funds are able to commit future generations to an

intergenerational risk-sharing scheme.

The key feature of these collective schemes is that they smooth shocks over and beyond the

lifetime of any single generation. A collective pension scheme makes intergenerational risk

sharing possible by disconnecting individual contributions to individual benefits. Because in

most real-world pension plans contributions are related to labour income, this disconnection

between contributions and benefits distorts the labour supply decision. The aim of this paper is

to trade the advantages of funded collective pensions in terms of intergenerational risk sharing

against its drawbacks that are due to labour market distortions.

This trade-off is analysed with a stochastic overlapping-generations model that represents a

small open economy. The economy is subject to macroeconomic capital-market risk. There are

two overlapping generations, a young generation that is active in the labour market and an old

generation which is retired. The young generation decides upon the amount of private savings,

labour supply and the portfolio allocation in order to maximize expected lifetime utility. The

pension fund offers risk-free benefits and raises state-contingent contributions proportional to

labour income. Given the optimal behavioural responses of the consumer, the pension fund acts

as a benevolent Stackelberg leader by optimally choosing its portfolio allocation in order to

maximize (ex ante) social welfare.

The source of market incompleteness that justifies the existence of the collective pension

fund in the model is the inability of generations to trade risks before they are born. By defining

benefits independently from realized financial returns, the pension fund facilitates opportunities

for intergenerational risk sharing that agents cannot undo through transactions in financial

markets. In this way, the pension fund creates an opportunity for the young generation to

exchange financial risk with the old generation ex ante, which reduces market incompleteness.

This young generation is better equipped to bear capital-market risk than the old generation

because they can use their human capital (which is assumed to be risk free in our model) to

absorb financial shocks and they still have the flexibility to adjust their labour supply. When

there is no collective pension arrangement, the old generation only has financial wealth as

consumption source which makes them vulnerable for financial shocks.

For a specific utility function we analytically show that the introduction of a collective

funded scheme with defined benefits and state-contingent contributions involves an ex ante

Pareto improvement. The benefit of this risk-sharing pension scheme is not to reduce risk but
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rather to increase the expected pay-off from risky investments by generations who have not

entered the labour market yet. We find that the welfare gains from intergenerational risk sharing

outweigh the losses from labour market distortions. Using numerical simulations, we show that

this result also holds for more general utility functions. However, we also find that proportional

transfers reduce the risk-bearing capacity of the working generation because they introduce a

positive correlation between returns on financial assets and labour income.

The results of this paper have an important implication related to the current pension reforms

worldwide. Due to increasing demographic pressure, in various countries collective defined

benefit pension schemes are being replaced by individual defined contribution systems, in which

benefits are subject to various types of risk. Our result emphasizes that individual pension

schemes that do not share risks among generations are not optimal, even if we take care of the

potential labour market distortions that are related to collective funded pension schemes.
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1 Introduction

In the industrialized world, population ageing and the current financial crisis jeopardize the

sustainability of public finances. Consequently, many countries are reforming or planning to

reform their social security systems. Various countries are gradually reducing their

pay-as-you-go (PAYG) systems in favour of more funded-based systems. In other countries with

traditionally large funded systems, like Australia, Switzerland, the United States and the

Netherlands, we observe a clear trend away from collective defined-benefit (DB) systems

towards individual defined-contribution (DC) systems. Currently DC schemes represent 42% of

total pension assets, compared to 40% in 2004 and 32% in 1999 (Towers Watson (2010)). This

move to DC schemes is a global trend, driven largely by financial considerations, as sponsors

seek to take control of both the volatility and the overall cost of their DB plans.

A priori it is not immediately clear that a movement from collective funded DB pensions

towards individual funded DC pensions will improve social welfare. On the one hand, collective

funded DB pension schemes allow for welfare-improving intergenerational risk sharing wich

better protect workers for sizeable downturns of financial markets. As demonstrated in e.g.

Gordon and Varian (1988), Shiller (1999) and Gottardi and Kubler (2006), in competitive

financial markets currently living generations are not able to share risks with those who are not

born yet. Mandatory participation in a collective funded DB pension scheme can (at least partly)

solve this market incompleteness. The main feature of such a pension scheme is that it smoothes

shocks over and beyond the lifetime of a single generation by disconnecting individual

contributions from individual benefits.

On the other hand, collective funded DB pensions often involve distortions on labour

markets, an aspect that certainly decreases welfare. In most real-world pension plans, pension

contributions are related to labour income.1 A disconnection between individual contributions

and benefits then implies that the contribution rate contains an implicit tax or subsidy which

distorts the labour supply decision. The aim of this paper is to trade the advantage of collective

funded DB pensions in terms of intergenerational risk sharing against the drawback of a labour

market distortion.

The risk-sharing characteristics of alternative pension and social security systems have

recently gained increasing attention in the literature. Much of these papers focus on PAYG

schemes (see, e.g., Krueger and Kubler (2006), Sánchez-Marcos and Sánchez-Martín (2006),

Miles and C̆erný (2006), Nishiyama and Smetters (2007) and Fehr and Habermann (2008)).

Some recent papers also look at the role of funded pension schemes in facilitating

1 Since individual abilities are unobservable, policy makers (or pension funds) necessarily use observable wages to

distribute shocks. Wage-related contributions can also be justified from constant relative risk aversion. In that case,

optimal risk sharing implies that shocks should be distributed proportionally over pension members, based on total wealth

(Bovenberg et al. (2007)). One way to implement this is to use income-related contributions.
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intergenerational risk sharing (see, e.g., Beetsma et al. (2008), Bovenberg et al. (2007), Cui et al.

(2006), Gollier (2008), Matsen and Thøgersen (2004) and Teulings and de Vries (2006)).

Although these papers differ in the way risk sharing is designed, they all conclude that funded

pension schemes allow for substantial welfare gains. However, none of these studies compares

these gains with the losses due to labour market distortions.

To analyse this trade-off, we consider a model that represents a small open economy

populated with two overlapping generations and a collective pension fund. The economy is

subject to macroeconomic capital-market risk. The old generation is retired, while the young

generation is active in the labour market. The two overlapping generations cannot trade risks

because the young is not able to participate in the capital market before shocks occur. The young

generation decides upon the amount of private saving, labour supply and the portfolio allocation

in order to maximize expected lifetime utility. The pension fund provides risk-free benefits and

raises state-contingent contributions proportional to individual labour income. Hence, the young

generation bears the full mismatch risk between the benefit guarantees provided to the old and

the accumulated pension assets. Labour is assumed to be perfectly immobile so that agents are

not able to avoid implicit taxes by moving abroad. Taking into account the behavioural response

of the consumer to its actions, the pension fund optimally chooses the portfolio allocation in

order to maximize an (ex ante) social welfare function.

This paper provides some interesting results. For a specific utility function we analytically

show that the introduction of a collective funded scheme with defined benefits and

state-contingent contributions involves an ex ante Pareto improvement. Using numerical

simulations, we show that this result also holds for more general utility functions. As

demonstrated by Gollier (2008), the benefits of risk sharing do not only imply a lower level of

risk, but also show up in a different guise. Indeed, in his and our paper, households react to the

risk reduction that is due to the risk-sharing scheme by shifting their portfolios towards equity.

This increases the average rate of return that households earn on their portfolios and increases

the welfare gain from the pension scheme. The present paper adds that households may also

choose a different combination of labour and leisure, thereby even further increasing the welfare

gain from risk sharing.

In addition, we find that labour supply flexibility decreases the risk appetite of consumers if

pension contributions are distortionary. This result contrasts with existing studies on the

interaction between labour supply and portfolio choice (see e.g. Bodie et al. (1992), Choi and

Shim (2006) and Farhi and Panageas (2007)). These studies show that labour supply flexibility

offers insurance against adverse shocks which justifies more risky asset portfolios. The idea is

that income effects in labour supply behaviour cause a negative correlation between asset returns

and labour income allowing individuals to take more risk. This paper, however, shows that

income-related intergenerational transfers also introduce substitution effects. These substitution

effects work in the opposite direction and generate a positive correlation between labour income
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and asset returns. Hence, labour supply is subject to pro-cyclical pressure which reduces the

risk-bearing capacity of consumers.

The results of this paper are relevant for the worldwide pension reform towards the

establishment of individual DC-type schemes. Indeed, our results emphasize that individual

pension schemes that do not share risks among generations may not be optimal. Collective

funded schemes with well-structured intergenerational risk sharing are preferable from a welfare

point of view, even if the losses from labour market distortions are taken into account.

A few other studies are related to the present study. Mehlkopf (2009) assesses also the labour

market distortions from collective funded schemes, but relates them to the gains of a different

kind of market incompleteness. Indeed, he focuses on the inability of individual agents to

borrow against their human capital. He shows that the welfare costs of recovery policies (due to

labour market distortions) are smaller than the associated welfare gains (due to the alleviation of

borrowing constraints). Also related is Draper and Westerhout (2009) who, like us, conclude that

the gains from intergenerational risk sharing dominate the losses from labour market distortions.

Their model is multi-period and allows for a more detailed modelling of household behaviour.

However, they do not present analytical solutions and they do not optimize on the investment

policy of the pension fund, as we do here.

The remainder of this paper is structured as follows. In Section 2 we discuss the model.

Section 3 derives an analytical solution for the ex ante welfare gain of the pension scheme in

case of a Cobb-Douglas felicity function in consumption and leisure. Section 4 decomposes the

derived welfare gain into the gain due to risk sharing and the loss due to the labour supply

distortion. Section 5 presents numerical simulation results for the more general version of the

model that allows the intratemporal substitution elasticity to be lower or higher than one. This

section also explores the welfare consequences of a short-sale constraint for households and of

the inclusion of a labour income tax. Finally, Section 6 concludes.
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2 Model

We consider an economy populated with two overlapping generations of households and a

collective pension fund. Each generation is modelled as a representative household who

consumes in the two periods of his life and can supply labour when young. We abstract from

demographic risk: all generations are equally large (normalized at unity). There are two financial

assets in the economy, a risk-free bond and risky equity. We will jointly optimize on the

investment policy of the pension fund and on household behaviour in terms of consumption,

labour supply and portfolio allocation. The model represents a small open economy for which

factor prices (the wage rate, the risk-free interest rate and the rate of return on equity) can be

taken as given. As usual, capital is assumed to be perfectly mobile and labour is perfectly

immobile.

The added value of the pension is that it alleviates the distortion of a missing market, i.e. the

market for risks that occur before a generation is born. In particular, by providing safe benefits to

the elderly, investing savings (partly) in equity and imposing the mismatch risk between assets

and liabilities upon young generations, the pension fund lets young generations share in risks in

which they cannot trade on the private capital market. The creation of a new asset will, if

supplied in the right amount, increase the welfare of all generations that participate in the

scheme.

2.1 Timing

The sequence of events is graphically shown in Figure 2.1. At the beginning of period t, a shock

occurs in the equity rate of return (Re,t ). After this shock has revealed, first the pension fund

decides on the contribution rate (πt ) and the portfolio share (λp,t ) to be invested in equity. The

pension fund acts as a benevolent Stackelberg leader, taking into account the future reactions of

households to its decisions. An important property of the model is that the portfolio choice of

the pension fund at time t only affects lifetime utility of the next generation, born in t +1. As

Figure 2.1 Timing of events

-

Re,t

t

πt

λp,t

-St

Lt

λh,t

t+1

Et Re,t+1

VartRe,t+1
← Re,t+1

πt+1

λp,t+1

13



visually emphasized with an arrow in Figure 2.1, this dependency is driven by the direct impact

of the pension fund’s equity investment on next period’s contribution rate. After the actions of

the pension fund, the consumers decide upon their private savings (St ), the amount of leisure (Lt )

and the portfolio share (λh,t ) to be invested in equity, taking the pension contribution rate as

given. The decisions of the consumers are based on the distribution of the future asset return.

Since future pension benefits are safe, consumers only face uncertainty about the return on their

private savings.

2.2 Households

Agents derive utility from consumption and leisure. The preference structure is represented by a

time-separable, nested constant-elasticity-of-substitution (CES) utility function that separates the

aversion to risk and to intertemporal variation (Epstein and Zin (1991)). This separation is

important for the analysis of pension contracts that alter both the risk properties and the timing

of individual consumption flows. The utility function of an agent born at time t is defined as:

Ut =

{
u (C1,t ,Lt)

1−γ +β

[
Et u (C2,t+1,1)

1−θ

] 1−γ

1−θ

} 1
1−γ

, γ > 0, θ > 0 (2.1)

where C1,t and Lt denote consumption and leisure when young at time t, C2,t+1 denotes

consumption when old at time t +1 and β is the time discount factor. The parameters θ and γ

define the coefficient of relative risk aversion and the inverse of the intertemporal substitution

elasticity.2 When γ = θ , equation (2.1) reduces to a standard expected utility formation where no

distinction is made between risk aversion and intertemporal substitution. The felicity function

u(·) is defined over commodities and leisure consumption, assuming a CES specification:

u(C,L) =


[
(1−η)C1−ρ +ηL1−ρ

] 1
1−ρ for ρ > 0, ρ 6= 1

C1−η Lη for ρ = 1
(2.2)

with 0 < η < 1. The inverse of the intratemporal substitution elasticity is given by ρ; the utility

parameter η governs the relative preference for leisure. In the following, we will use the

following shorthand notation: u1,t ≡ u(C1,t ,Lt) and u2,t+1 ≡ u(C2,t+1,1).

There are two assets in the economy, a risk-free asset with return R f and a risky asset with

return Re. When young, agents start to save out of their labour income (they enter the economy

with zero endowment of assets). They determine the portfolio allocation by choosing a share λh,t

of private savings to invest in the risky asset and a share 1−λh,t to invest in the risk-free asset.

The rate of return on the private portfolio is thus equal to:

Rh,t+1 =
(
1−λh,t

)
R f +λh,tRe,t+1 (2.3)

2 The parameters θ and γ define risk aversion and the aversion to intertemporal substitution with respect to total

consumption, i.e. consumption of goods and leisure. Risk aversion and aversion to intertemporal substitution for the two

goods separately will be defined below.
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We impose that the log return on the risky asset in excess of the log risk-free return, i.e.

log(1+Re)− log(1+R f ), is an independently and identically distributed normal variable with

mean µ and variance σ
2.

When young, an agent spends a fraction Lt of his time endowment on leisure. We normalize

the time endowment at unity, so that 0≤ Lt ≤ 1. A fraction πt of labour income is contributed to

the pension fund; the rest is devoted to consumption and private saving St . During the second

period, the agent is retired. Consumption in this period consists of a labour-related pension

benefit (1−Lt)B, where B denotes the maximum attainable level and the factor 1−Lt reflects

the accumulation of pension benefits. The consolidated lifetime budget constraint reads as:

C1,t +
C2,t+1

1+Rh,t+1
= (1−Lt)(1−πt)Y +

(1−Lt)B
1+Rh,t+1

(2.4)

where Y denotes the wage rate, which is assumed to be constant over time.3

Maximizing the objective function, equation (2.1), subject to the intertemporal budget

constraint, equation (2.4), gives the following set of first-order conditions with respect to C1,t , Lt

and λh,t :

uρ−γ

1,t C−ρ

1,t = β

(
Et u1−θ

2,t+1

) θ−γ

1−θ

Et

[(
1+Rh,t+1

)
uρ−θ

2,t+1C−ρ

2,t+1

]
(2.5a)

ηuρ−γ

1,t L−ρ

t = (1−η)β
(

Et u1−θ

2,t+1

) θ−γ

1−θ

Et

{[(
1+Rh,t+1

)
(1−πt)Y +B

]
uρ−θ

2,t+1C−ρ

2,t+1

}
(2.5b)

0 = Et

[(
Re,t+1−R f

)
uρ−θ

2,t+1C−ρ

2,t+1

]
(2.5c)

Equation (2.5a) is the Euler equation which equalizes the marginal utility of first-period

consumption to the discounted expected marginal utility of second-period consumption.

Equation (2.5b) is the first-order condition with respect to leisure, while equation (2.5c) is the

condition for optimal portfolio allocation.

The Euler equation specifies a relation between the marginal utility of consumption and the

rate of return on assets. This relation becomes more clear by rewriting equation (2.5a) in the

form Et
[
mt+1

(
1+Rh,t+1

)]
= 1, where

mt+1 =

[(
Et u1−θ

2,t+1

) 1
1−θ

u2,t+1

]
θ−γ(

C2,t+1

C1,t

)−ρ
(

u2,t+1

u1,t

)
ρ−γ

β (2.6)

defines the stochastic discount factor (SDF). The SDF measures the marginal value of a unit of

consumption next period per unit of current consumption. The term in square brackets enters

because of non-expected utility and compares next-period utility with its certainty-equivalent

counterpart. A consumer that is relatively risk averse (θ > γ ) has a certainty-equivalent utility

that is lower than expected utility.4 That is, the consumer applies a correction factor to next

3 Non-stochastic wages can go together with stochastic equity returns if i) there is depreciation risk and no productivity

risk and ii) the production function is linear in capital and labour implying an infinite elasticity of substitution.

4 By Jensen’s inequality, we have that
(

Et u1−θ

2,t+1

) 1
1−θ

< Et u2,t+1.
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period’s marginal utility which is less than one on average, implying that he discounts the future

more heavily on average than an expected-utility consumer.

The equation for the SDF can be used to derive a few more relations, which we will apply

further on in the paper. From equation (2.5c), using (2.3), it follows that:

Et

[
uρ−θ

2,t+1C−ρ

2,t+1(1+Rh,t+1)
]
= Et

[
uρ−θ

2,t+1C−ρ

2,t+1(1+Ri,t+1)
]
, i = f ,e (2.7)

Using equation (2.5a), we then have:

Et
[
mt+1 (1+Ri,t+1)

]
= 1, i = f ,h,e (2.8)

and, hence,

1
1+R f

= Et mt+1 (2.9)

2.3 Pension fund

We consider a collective pension fund scheme in which households are obliged to participate.

Switching from obligatory participation to voluntary participation could give rise to

discontinuity problems. These problems will be discussed later on.

The pension fund collects contributions from the young generation, invests these

contributions in the capital market and pays out benefits to the same generation in the second

period of life. The maximal attainable pension benefit B is risk free and defined as:

B = αY (2.10)

with α the replacement rate. Recall that the pension contract is related to labour history so that

the actual pension benefit paid out to the old generation at time t +1 equals (1−Lt)B.

The pension fund invests the collected pension contributions in the risk-free asset and the

risky asset. It invests a share λp,t of the contributions in the risky asset and the remaining part

1−λp,t in the risk-free asset. The portfolio return of the pension fund Rp is thus equal to:

Rp,t+1 = (1−λp,t)R f +λp,tRe,t+1 (2.11)

If the pension fund chooses a risky investment strategy (i.e. λp,t 6= 0), the contribution rate

expressed as percentage of the wage rate (πt ) consists of two parts: a cost-effective component

(πb,t ) and a recovery component (πc,t ) reflecting the mismatch risk between liabilities and assets,

i.e. πt = πb,t +πc,t . From an ex ante point of view, the pension scheme is a fair deal if the

cost-effective component of the contribution rate is equal to the value the participant attaches to

the future pension benefit. That is,

πb,t(1−Lt)Y = Et
[
mt+1(1−Lt)B

]
(2.12)
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Equation (2.12) is the funding condition which ensures that the pension contract does not

contain ex ante redistribution. Solving for the cost-effective component of the contribution rate,

using (2.9), then gives:

πb,t =
α

1+R f
(2.13)

Let us now focus upon the recovery component, πc,t . This component reflects the transfers

that the young generation will make to or receive from the old generation. In case of a funding

deficit, the recovery rate is positive and the young generation effectively makes a payment to the

retired generation. In case of a funding surplus, this rate is negative and it is the old generation

who makes a transfer to the young generation. Hence, risk sharing is restricted to only two

overlapping generations. The solvency constraint for the pension fund thus equals:

(1+Rp,t+1)πb,t(1−Lt)Y +πc,t+1(1−Lt+1)Y = B(1−Lt)

This equation says that the pension fund finances pension benefits in period t +1 (that reflects

the rights accumulated in period t) with cost-effective premiums levied in period t, the portfolio

return earned on this in period t +1 and an intergenerational transfer levied in period t +1 on the

basis of period t +1 labour supply. Hence, risk sharing is confined to two overlapping

generations. As one model period represents roughly twenty years, the potential for risk sharing

is maximized at forty years. This is not unrealistic if we look at risk-sharing mechanisms in

actual pension schemes, which are often restricted by rigid solvency regimes.

Using equations (2.10), (2.11) and (2.13), we can convert the solvency constraint into an

expression for the recovery rate πc,t+1:

πc,t+1 =−
Nt
(
Re,t+1−R f

)
(1−Lt+1)Y

(2.14)

where Nt ≡ πb,tλp,t (1−Lt)Y is the absolute amount of collected contributions invested in equity.

For this pension scheme to be sustainable, we must have that πc,t+1 < 1. Otherwise the young

generation is not always able to guarantee a safe benefit to the old generation. Later on, when we

solve the model, we will derive the necessary and sufficient condition such that πc,t+1 < 1. Note

from equation (2.14) that πc,t+1 = 0 if the pension fund does not invest in equity. Further, note

that the average transfer is negative: even if the rate of return on equity happens to be equal to its

mean, there is a non-zero transfer which reflects the risk premium on equity. Since the

intergenerational transfer is related to income of the young, it serves on average as an implicit

subsidy to labour supply.

The pension fund uses its investment policy (Nt ) to maximize social welfare. Due to the

simple model structure, this boils down to a static optimization problem. The only

intergenerational link in the model is the recovery rate. As already shown in Figure 2.1, the

portfolio decision of the pension fund at time t only affects lifetime utility of the generation born

at t +1 − through its direct impact on the intergenerational transfer. This property is a
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consequence of the utility-based valuation of the cost-effective contribution rate which is based

on the risk-free return (and not the portfolio return!). Hence, both the benefit of a risky

investment strategy at time t (i.e. a higher expected portfolio return) and the mismatch risk

between assets and liabilities only shows up in the transfer of a single generation which is young

at time t +1.

For the benevolent pension fund who aims to maximize expected utility of all currently living

and future generations, it it therefore sufficient to maximize ex ante lifetime utility of one

representative generation, i.e. lifetime utility evaluated before the occurrence of the shock in the

first period of the life of the household and based upon the distribution of shocks in the two

periods of his life. Consequently, if the investment strategy of the pension fund improves welfare

for this single generation, the policy is automatically a Pareto improvement. The pension fund

thus maximizes the following social welfare function:

Wt =
(
Et U1−θ

t+1
) 1

1−θ (2.15)

subject to the solvency constraint (2.14) and the first-order conditions of the household,

equations (2.5a)-(2.5c).
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3 Solution

For Cobb-Douglas felicity utility (ρ = 1) the model can be solved analytically. In the

simulations later on, we will present results for the general model in which we can play around

with the intratemporal substitution elasticity. In case of Cobb-Douglas utility, the first-order

conditions (2.5a)-(2.5c) simplify to:

C−ψ

1,t L1−ω

t = β
(
1+R f

)(
Et C1−ζ

2,t+1

)
ν

Et C−ζ

2,t+1 (3.1a)

ηC1−ψ

1,t L−ω

t = (1−η)β
(
1+R f

)
(1−πc,t)Y

(
Et C1−ζ

2,t+1

)
ν

Et C−ζ

2,t+1 (3.1b)

0 = Et

[(
Re,t+1−R f

)
C−ζ

2,t+1

]
(3.1c)

where we used equation (2.7) to substitute out the stochastic portfolio return Rh,t+1 for the

risk-free return R f .

Equations (3.1a) to (3.1c) include the parameters ψ ≡ 1− (1−η)(1− γ )> 0,

ω ≡ 1−η(1− γ )> 0, ζ ≡ 1− (1−η)(1− θ)> 0 and ν ≡ (θ − γ )/(1− θ). The parameters ψ

and ω are the inverse of the intertemporal substitution elasticity with respect to consumption and

leisure, respectively; ζ denotes the coefficient of relative risk aversion with respect to

consumption and ν reflects the importance of non-expected utility.

3.1 Consumer problem

We start to solve for the individual portfolio allocation. We first rewrite the intertemporal budget

constraint (2.4) into:

C2,t+1 = (1+RT,t+1)
[
(1−Lt)(1−πc,t)Y −C1,t

]
(3.2)

with,

RT,t+1 ≡ (1−at)R f +atRe,t+1 (3.3)

at ≡
λh,tSt

St +
(1−Lt )B

1+R f

(3.4)

Note that the portfolio share at relates the household’s investment in equity to its total wealth,

which is defined as the sum of financial wealth and pension wealth. As a result, RT,t+1 is the

effective return on the individual’s total portfolio. Substituting equation (3.2) in first-order

condition (3.1c) gives:

Et

[
(1+RT,t+1)

−ζ
(
Re,t+1−R f

)]
= 0 (3.5)

Since shocks in Re,t+1 are independently and identically distributed, there is a unique solution to

equation (3.5). In Appendix A.1 we show that at is approximately equal to:

a =
µ̄

ζ σ2 (3.6)
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where µ̄ = µ + 1
2 σ

2 is the expectation of the excess return on the risky asset. Equation (3.6) is

similar to the result obtained by Merton (1969) and Samuelson (1969). The portfolio fraction

invested in the risky asset is increasing in the expected excess return of the risky asset and

decreasing in the variance of the excess return and the preference from consumption smoothing

as measured by relative risk aversion ζ .5 In the limit of continuous time with continuous paths

for asset prices, equation (3.6) is exact (Campbell and Viceira (2002)).

To solve for consumption and leisure demand, we first substitute the budget constraint (3.2)

in first-order condition (3.1a) to obtain:

C1,t =
1

Zt +1
(1−Lt)(1−πc,t)Y

with Zt and the certainty-equivalent (CE) rate of return R̄t defined as:

Zt ≡
[
βLω−1

t (1+ R̄)1−ψ
] 1

ψ (3.7)

1+ R̄t ≡
[
Et (1+RT,t+1)

1−ζ

] 1+ν

1−ψ

(3.8)

The CE rate of return is the return on a hypothetical risk-free investment strategy that provides

individuals the same expected utility level as they receive from optimally investing their wealth

into the tradable risk-free and risky asset.6 Since it is assumed that the equity return is

independently and identically distributed, the CE rate of return can be treated as an

unconditional expectation. In Appendix A.2 we show that this return is approximately equal to:

R̄ = R f +
1
2

µ̄
2

ζ σ2 (3.9)

If the risky asset offers no excess return (µ̄ = 0), agents will not invest in the risky asset so that

the CE rate of return is equal to the risk-free return. In the more interesting case in which µ̄ > 0,

the CE rate of return exceeds the risk-free rate of return. The second term on the right-hand side

of equation (3.9) is the risk premium of the market portfolio. It follows that dR̄/d µ̄ > 0 and

dR̄/dσ
2 < 0. Hence, if the expected excess return increases, the CE rate of return also increases.

When uncertainty increases, however, the CE return decreases.

Dividing (3.1b) by equation (3.1a) shows that the marginal rate of substitution between

leisure and consumption is equal to the price of leisure,

η

1−η

C1,t

Lt
= (1−πc,t)Y (3.10)

5 In Appendix A.1 we show that µ̄ ≈ E(Re−R f ) and σ
2 ≈ Var(Re−R f ).

6 To derive the definition of R̄ we use:

Et (1+RT,t+1)
1−ζ = Et

[
(1+RT,t+1)

−ζ (1+RT,t+1)
]

= Et(1+RT,t+1)
−ζ
(
1+R f

)
+a Et

[
(1+RT,t+1)

−ζ
(
Re,t+1−R f

)]
= Et(1+RT,t+1)

−ζ
(
1+R f

)
where the last step follows from first-order condition (3.5).
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Only the recovery rate shows up in the price of leisure, because, by construction, the

cost-effective contribution rate is equal to the utility-based value of the accrued pension

entitlement (that is, the cost-effective contribution rate is actuarially fair). Using equation (3.10),

we can solve for consumption and leisure demand:

C1,t =
1−η

(1−η)Zt +1
(1−πc,t)Y (3.11)

C2,t+1 =
(1−η)Zt (1+RT,t+1)

(1−η)Zt +1
(1−πc,t)Y (3.12)

Lt =
η

(1−η)Zt +1
(3.13)

We can define Zt as an implicit equation that only depends on exogenous variables and structural

parameters. Inserting equation (3.13) in (3.7), yields:

Zt = β
1
ψ

[
(1−η)Zt +1

η

] 1−ω

ψ

(1+ R̄)
1−ψ

ψ (3.14)

We assume that this equation has a unique and positive solution for Z. Note that this solution is

constant over time.

The solution for consumption enables us to solve for the fraction of private savings invested

in the risky asset. This fraction is equal to:

λh,t =
aZC1,t

St
=

a (1−πc,t)Z
(1−πc,t)Z− (1+Z)πb,t

(3.15)

If the pension fund increases the cost-effective contribution rate it levies upon workers, workers

respond by increasing the fraction of private savings that they invest in the risky asset. Since the

pension benefit is risk free, the cost-effective contribution is equivalent to an investment in the

risk-free asset. Agents counteract the actions of the pension fund with their private savings in

such a way that − in terms of total wealth − the investment in the risky asset is constant. This

offsetting response will be reinforced when agents are confronted with a positive surcharge

(πc,t > 0), because in that case the share of financial wealth in total wealth declines. To ensure

that the stock of risky asset holdings in total wealth does not change, agents invest a larger share

of financial wealth in the risky asset. Note that λh,t can be larger than unity. In that case, the

worker goes short in bonds to buy risky equity.

Equation (3.14) can be used to derive the effect of uncertainty on the consumption and

leisure decision. Taking the total differential of this equation and rearranging terms gives:

dZ
dR̄

=

1−ψ

ψ

Z
1+R̄

1− 1−ω

ψ

(1−η)Z
(1−η)Z+1

(3.16)

Using the definition of ψ , it can be shown that equation (3.16) is positive for γ < 1, negative for

γ > 1 and zero for γ = 1. Recall from equation (3.9) that dR̄/d µ̄ > 0 and dR̄/dσ
2 < 0. Hence,

if γ > 1, Z increases if σ
2 increases, implying that first-period consumption and leisure both

decrease. This corresponds to the case that the negative income effect on consumption
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dominates the positive substitution effect (Sandmo (1970)). The additional savings can then be

viewed as a self-insurance on capital markets against future income risk (i.e. precautionary

savings). Similarly, Z decreases if µ̄ increases, leading to higher first-period consumption and

leisure. If γ < 1, the substitution effect of a change in the CE rate of return dominates the

corresponding income effect, thereby reversing the signs of dZ/d µ̄ and dZ/dσ
2.

The constancy of Z has some important implications. First, note from equation (3.13) that

labour supply is a constant. This is due to the Cobb-Douglas specification that features a zero

uncompensated labour supply elasticity. Hence, we omit the time index of labour supply in the

rest of the section. Second, it implies that first-period consumption is a constant fraction of

lifetime income (1−πc,t)Y .

3.2 Pension fund problem

To derive the optimal policy of the pension fund we need to specify the indirect utility function

for young agents. Substitution of the solution for consumption, equation (3.11) and

equation (3.12), and leisure, equation (3.13), in equation (2.1), gives the following indirect utility

function:

Vt =
(1+Z)

1
1−γ η

η(1−η)1−η

(1−η)Z +1
[
(1−πc,t)Y

]1−η (3.17)

Inserting this function together with the recovery rate, equation (2.14), in the objective function

of the pension fund, equation (2.15), and taking the derivative with respect to Nt , we obtain the

following first-order condition:

Et

{[
1+R f +αλp,t

(
Re,t+1−R f

)]−ζ
(
Re,t+1−R f

)}
= 0 (3.18)

Note that condition (3.18) has exactly the same structure as the optimality condition of the

portfolio choice of households, see equation (3.5). This implies that αλp,t = at so that equation

(3.19) describes the share of equity in the pension fund’s portfolio:

λp =
µ̄

αζ σ2 (3.19)

N =
µ̄ (1−L)Y

ζ σ2
(
1+R f

) (3.20)

Equation (3.20) describes the pension fund’s absolute investment in equity. Each period the

pension fund invests a fixed amount in the risky asset. Like households, the pension fund invests

a smaller amount in the risky asset if risk aversion increases (higher ζ ), reflecting the higher

preference for consumption smoothing across states of nature. Note that the absolute amount of

equity exposure in the pension fund portfolio does not depend on the accrual rate α. For lower

(higher) values of α, the fund collects relatively less (much) pension contributions. In these

cases, the pension fund will invest a larger (smaller) share λ
p of the contributions in the risky

asset so that its risk exposure in absolute terms is left unchanged.
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The maximum loss young agents can be confronted with occurs when Re,t =−1. Then the

implicit tax equals:

π
MAX
c =

µ̄

ζ σ2

Hence, as long as µ̄ < ζ σ
2, the pension scheme is always sustainable. That is, the young

generation will in any case be able to provide safe benefits to the old generation.

3.3 Welfare measure

In this section, we show that the collective DB pension scheme involves an ex ante Pareto

improvement compared to the situation without a collective pension scheme. We denote this

benchmark situation as the individual DC system. We measure the welfare change as an

income-equivalent variation: we ask with how much the labour income of the representative

agent (x) should be increased in the situation without a pension scheme in order to make him

indifferent between participating in the funded pension scheme or not. We answer this question

from an ex ante perspective, i.e., before an agent knows the state of nature in the first period of

life. Positive numbers thus indicate welfare gains and negative numbers welfare losses. Let

W 0(·) denote ex ante indirect utility in case there is no collective pension scheme and W 1(·) ex

ante indirect utility in case there is a collective scheme. Then we have to solve for x that satisfies

the following equality:7

W 1(Y ) =W 0[(1+ x)Y
]

(3.21)

In Appendix A.3 we show that x is approximately equal to:

x =
1
2

µ̄
2

ζ σ2 (3.22)

If µ̄ = 0, then it follows from equation (3.22) that x = 0: if the expected excess return of the

risky asset is zero, the pension fund will not invest in this asset, thereby eliminating the scope for

intergenerational risk sharing. As long as the expected excess return is positive (µ̄ > 0), the

pension will invest in the risky asset so that households can capture the equity premium which is

welfare enhancing (x > 0).

To show that this pension scheme is Pareto-improving, suppose that the pension scheme is

introduced at time t∗. Then the generations born before time t∗+1 are obviously indifferent

between the case with and without a pension fund. The young generation at time t∗ only

contributes the cost-effective rate πb,t∗ of disposable income to the pension fund. Since there are

no intergenerational transfers in t∗ (i.e. πc,t∗ = 0), we have that the utility of this generation also

7 For brevity, we suppress the time index t: the welfare change from the introduction of the pension scheme is

independent of the initial state.
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remains unaffected. The generations born at the beginning of time t∗+1 and beyond, benefit

from the introduction of the pension scheme. The reform is thus Pareto-improving.

The welfare gain is increasing with the reward for risk taking (µ̄/σ) and decreasing with the

coefficient of relative risk aversion (ζ ). From equation (3.20) it follows that a higher reward for

risk taking increases the intergenerational payments and hence, raises the scope for

intergenerational risk sharing. For higher degrees of risk aversion, in turn, it follows from

equation (3.20) that the pension fund invests a smaller amount in the risky asset. As a

consequence, the scope for intergenerational risk sharing decreases, resulting in lower welfare

gains.

Interestingly, equation (3.22) does not depend on the pension fund size α. In the most

extreme case, in which α = 0, the pension fund does not collect cost-effective contributions from

the young at all but still provides a welfare gain of x . In this situation, the pension fund explicitly

takes short positions in safe assets to buy stocks on behalf of future generations (Teulings and

de Vries (2006)). However, if we introduce short-sale constraints on investment behaviour of

consumers, equation (3.15), or the pension fund, equation (3.19), this independency between the

welfare gain and the pension fund size breaks down, as will be discussed in Section 5.6.
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4 Lump sum transfers

To disentangle the welfare gains from intergenerational risk sharing from the labour market

distortions associated with income-related intergenerational transfers, we now solve the model in

case of lump sum transfers. We continue to assume Cobb-Douglas utility (ρ = 1). The budget

constraint now becomes:

C2,t+1 = (1+RT,t+1)
[
(1−Lt)Y +Tt −C1,t

]
with Tt ≡ Nt−1

(
Re,t −R f

)
. Defined in this way, a positive transfer (Tt > 0) implies that an agent

receives a transfer from the pension fund, a negative transfer (Tt < 0) means that an agent pays a

transfer to the pension fund. With lump sum transfers, the first-order condition with respect to

consumption, equation (3.1a), and the first-order condition with respect to optimal portfolio

allocation, equation (3.5), do not change, implying that a = µ̄/ζ σ
2 continues to hold true. The

first-order conditions with respect to leisure changes, however, into:

ηC1−ψ

1,t L−ω

t = (1−η)β
(
1+R f

)
Y
(

Et C1−ζ

2,t+1

)
ν

Et C−ζ

2,t+1 (4.1)

Combining (4.1) with (3.1a) gives the result that the marginal rate of substitution between leisure

and consumption equals the gross wage rate rather than the wage rate after pension contributions

as in the previous section (see equation (3.10)),

η

1−η

C1,t

Lt
= Y (4.2)

First-period consumption, second-period consumption and leisure then satisfy:

C1,t =
1−η

(1−η)Zt +1
(Y +Tt) (4.3)

C2,t+1 =
(1−η)Zt (1+RT,t+1)

(1−η)Zt +1
(Y +Tt) (4.4)

Lt =
η

(1−η)Zt +1
Y +Tt

Y
(4.5)

with Zt already defined in equation (3.7).

Equations (4.3)-(4.5) are no closed-form solutions in the sense that their right-hand sides

contain endogenous variables. Indeed, Zt is a function of leisure which in case of lump sum

transfers is not a constant. As a consequence, it is not possible in general to solve for the optimal

investment policy of the pension fund analytically. Only for a particular case, when lifetime

utility is log-linear in first-period and second-period consumption and leisure (i.e.

γ = θ = ρ = 1), is it possible to get closed-form expressions and to derive the optimal pension

fund policy. In the case of log-linear lifetime utility, Zt is constant and does not depend on

leisure. Appendix A.4 shows that for log-linear lifetime utility the optimal pension fund policy is
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given by equation (4.6):

λp,t =
µ̄

α (1−Lt)σ2 (4.6)

N =
µ̄Y

σ2
(
1+R f

) (4.7)

Comparing solution (4.7) with the solution in case of distortionary transfers, see equation (3.20)

with γ = θ = ρ = 1, it follows that in the latter case the pension fund invests a smaller amount in

the risky asset. In the numerical simulations, later on, it will be shown that this result also holds

if γ = θ = ρ = 1 does not apply.

If contributions relate to labour income, the intergenerational payments introduce a

substitution effect in the labour supply decision. This substitution effect creates a positive

correlation between labour income and asset returns, because if equity returns drop down, the

pension fund has to increase the contribution rate which reduces the price of leisure, depresses

labour supply and hence, reduces labour income. This procyclical pressure on labour supply

behaviour reduces the risk-bearing capacity of consumers leading to lower equity investments of

the pension fund in case of income-dependent transfers. As discussed in the introduction, this

result differs from the existing literature on the interaction between labour supply and portfolio

selection (see e.g. Bodie et al. (1992)).

For the case of log-linear lifetime utility, the welfare gain can be decomposed into the

welfare gain from risk sharing and the welfare loss from the labour market distortion associated

with the recovery rate. Let us denote xL as the income-equivalent variation for lump sum

transfers expressed as percentage of labour income: it measures the additional amount of income

that should be given to an agent in the situation without a pension scheme in order to make him

indifferent between participating in the funded pension scheme or not. Then we have:8

xL =
1
2

µ̄
2

ζ σ2

[
1+

η

(1−η)(1+β)

]
(4.8)

We define the labour market distortion (xD) as the difference between the income-equivalent

variation in the presence of proportional transfers and that in the presence of lump sum transfers,

i.e. xD ≡ x− xL. Hence,

xD =−1
2

µ̄
2

σ2
η

(1−η)(1+β)
(4.9)

Note that xD < 0 is negative, implying that the welfare gain from risk sharing is larger in case of

lump sum transfers than in case of proportional transfers. From equation (4.9), it follows that if

the share of leisure expenditures in total expenditures increases (higher η), the welfare loss

associated with the labour market distortion increases. In addition, if more weight is given to

future consumption (higher β ), the welfare loss decreases. The reason is that the labour market

distortion only affects first-period consumption since people are retired in the second period.

8 See Appendix A.4 for the derivation.
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5 Simulations

5.1 Numerical procedure

This section reports on numerical simulations with the model. There are two reasons for

switching to numerical simulation. First, the model version with CES preferences (ρ 6= 1) cannot

be solved explicitly for optimal consumption, asset accumulation, labour supply and the optimal

pension fund policy. Second, in the case of Cobb-Douglas preferences (ρ = 1), the computation

of an analytical solution involves some approximation of the portfolio choice. Indeed, the

derivations of the portfolio choices and the welfare gain are based on an approximation of the

log portfolio return which exactly holds in continuous time, but becomes somewhat less accurate

over longer time intervals (Barberis (2000)). To illustrate, based on the numerical approach we

calculate an equity share in the individual portfolio of 25%, whereas a calculation based on the

approximate analytical solution (3.6) gives an equity share of 27%.9

We use Monte Carlo simulation methods to solve the first-order conditions (2.5a)-(2.5c) of

the consumer and first-order condition (3.18) of the pension fund. Recall that equation (3.18)

only solves the pension fund problem for Cobb-Douglas utility. In case of CES utility, we will

use grid search to compute to what extent the Cobb-Douglas solution must be adapted to obtain

the CES optimum.

In solving the individual optimization problem, individuals form rational expectations based

on the true distribution of variables. So in each period a young agent makes a decision, based on

the state variable at that time (which is the net wage rate) in such a way that the first-order

conditions are satisfied and expectations are based on the assumed distributions of next-period

random variables. We will use 2,000 realized paths of the equity return to compute the

distribution of the endogenous stochastic variables. This seems a natural choice in the trade-off

between sufficient accuracy of the results and very long computer running time.10

5.2 Model parameters

The key parameters in the model are the utility parameters, i.e., the time discount factor (β ), the

(inverse of the) intertemporal substitution elasticity (γ ), the coefficient of relative risk aversion

(θ ), the parameter governing the relative preference for leisure (η) and the (inverse of the)

intratemporal substitution elasticity (ρ). The rest of the parameters involve the replacement rate

(α), the risk-free rate of return (R f ), the wage rate (Y ) and, finally, the mean and standard

deviation of the stochastic equity return. Table 5.1 provides the values for these parameters used

9 To derive equation (3.6), we assume that 1+RT is lognormally distributed (see appendix A). This is not completely true

because 1+RT is a linear combination of the risk-free return 1+R f and the lognormally distributed equity return 1+Re .

10 See Appendix B for more details.
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Table 5.1 Benchmark parameterization

Parameter θ γ η ρ β α R f E(Re) Stdev(Re) Y
Value 5 2 0.5 1 0.8 0.4 0.02 0.05 0.20 1

The risk-free return and the mean and standard deviation of the equity return are annual figures.

in the baseline scenario.

In our model economy, agents live for two periods. Therefore, we interpret one model period

to last twenty years. Like in van Hemert (2005), we set the time discount factor at β = 0.8 in the

baseline calculation, which corresponds to an annual time discount rate of 1.1%. We choose as

benchmark an intertemporal elasticity of substitution of 0.5 (i.e. γ = 2) and an intratemporal

substitution of ρ = 1. An intertemporal substitution elasticity of one half is commonly used in

the macro and public finance literature and it lies well within the range of available estimates

(e.g., Attanasio and Weber (1995) or Blundell et al. (1994)). We set the coefficient of relative

risk aversion at θ = 5. The calibrated share parameter η is set at 0.5 and the risk-free return (R f )

is set at 2% per year, implying that the the twenty-year return is 48.5%. The replacement rate α

is set at 40%, which is quite realistic for Dutch occupational pension schemes.11 The wage rate

Y is normalized at unity so that consumption and leisure have the same order of dimension in the

utility function.

We assume that the annual mean of the equity return is 5%, implying a risk premium of 3%

per year. The standard deviation of the annual equity return is set at 20%. To construct

twenty-year shocks, we transform the annual mean and variance of the lognormal distribution

(of equity returns) to the corresponding moments of the normal distribution (of log equity

returns).12 Then we calculate twenty-year log returns as the sum of twenty randomly chosen

yearly log returns. To reduce the sample variation, these twenty-year log returns are scaled in a

uniform way to ensure that their mean and standard deviation are equal to the theoretical values.

5.3 Baseline results

Since the wage rate is normalized at unity, variables like consumption (C1 and C2) and the stock

of risky assets of the pension fund (N) can be interpreted as percentages of the wage rate.

11 In the Netherlands, an individual with an average income level and an unbroken career typically has a (gross)

replacement rate of 70%, which consists for about 30%-points of (first pillar) PAYG public pensions and for 40%-points of

(second pillar) funded occupational pensions.

12 If E(1+Re) and Var(1+Re) are the mean and variance of the lognormally distributed gross equity return, then µ and

σ
2 satisfy:

µ = 2logE(1+Re)− log
(
1+R f

)
− 1

2
log
{

Var(1+Re)+ [E(1+Re)]
2
}

σ
2 = log

{
Var(1+Re)

[E(1+Re)]
2 +1

}
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Table 5.2 Simulation results in the benchmark economy

C1 C2 L a λhS N x
Individual DC

expectation 39.4 37.8 39.4 24.9 5.3

10% quantile 39.4 27.2 39.4 24.9 5.3

90% quantile 39.4 52.4 39.4 24.9 5.3

Collective DB: proportional

expectation 47.0 45.5 39.4 24.9 6.3 10.2 7.0

10% quantile 33.9 26.0 39.4 24.9 4.6

90% quantile 65.2 69.9 39.4 24.9 8.8

Collective DB: lump sum

expectation 44.1 44.7 43.9 24.9 6.2 11.2 7.8

10% quantile 35.9 26.5 35.9 24.9 4.7

90% quantile 55.2 67.5 55.2 24.9 8.3

Results are based on 2,000 simulations and expressed in percentages. The wage rate Y is normalized at unity.

Table 5.2 shows the simulation results for the benchmark parameterization. The table shows

results for the private economy (which we denote as an individual DC system) and the economy

with a collective DB scheme, whereby it distinguishes between proportional and lump sum

intergenerational transfers.13 The table reports expected outcomes and 10% and 90% quantiles.

Note first that in all situations, regardless of whether there is a funded DB scheme or not,

agents invest the same percentage (24.9%) of lifetime income in the risky asset. Because the

pension benefit is safe, the asset span of households in the presence of collective pensions is the

same as that in the private economy resulting in equivalent lifetime portfolio choices.

In the private economy and the DB pension economy with lump sum transfers, in which

labour market distortions are absent, the marginal rate of substitution between first-period

consumption and leisure equals the gross wage rate. Since we assume that agents spend the same

fraction of total expenditures on both goods (η = 0.5), first-period consumption (expressed as

percentage of the wage rate) and leisure should then be equal to each other. This is only

approximately true in the case of lump sum transfers. This is due to the fact that leisure cannot

exceed the value of one. This boundary constraint is binding in case of an extremely large shock

in the excess return on the risky asset. The numerical effect of this boundary constraint is, as

Table 5.2 shows, very small however.

The introduction of the collective pension scheme does not change labour supply due to our

assumption of a unitary elasticity of intratemporal substitution. However, compared to the

private economy, the introduction of the pension scheme does increase the expected

consumption levels in the first and second period. At the same time, it also raises the risk born

by each generation as reflected by the wider 80%-confidence intervals of both first-period and

13 In the following, if we do not explicitly mention how transfers are financed, we refer to the pension scheme with

proportional premiums on labour income.
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Figure 5.1 Distribution of the intergenerational transfer
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second-period consumption. The intuition is that the risk sharing provided by the pension

scheme increases lifetime wealth of consumers which leads them, in turn, to raise their demand

for risky assets (λhS) from 5.3% to an average level of 6.3%. Hence, in our small open economy

setting, the benefit of risk sharing is not to reduce risk but rather to increase the expected payoff

from risky investments by generations who have not entered the labour market yet. Cui et al.

(2006), Bovenberg et al. (2007) and Gollier (2008) also point to this effect of intergenerational

risk sharing.

Consumers can only capture the equity premium in the first period if they choose to work in

this period. In this way, the equity premium acts as a subsidy on labour supply. Indeed, leisure is

about 4.5%-points lower than if transfers were financed lump sum, while average first-period

consumption is about 3%-points higher. The distortionary effect of the intergenerational

payments leads to a slightly lower investment in the risky asset by the pension fund: in case of

lump sum transfer, risk taking by the pension fund is 10.2%, while in case of proportional

transfers it is 11.2%. We have already shown that this result holds analytically for a specific

version of the model. It also holds for a more general case however: labour market distortions

reduce the risk-bearing capacity of consumers.14

The pension scheme involves a significant ex ante Pareto improvement. The

income-equivalent variation amounts 7%.15 The income-equivalent variation in case of lump

14 See Mehlkopf (2009) for a similar result.

15 If we compute the income-equivalent variation from the analytical solution, equation (3.22), we obtain a welfare gain

of 7.9%.
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sum transfers is 7.8%. This means that the distortionary effect of income-related transfers is

0.8%-point, roughly 10% of the pure welfare gain from risk sharing.

Within our intergenerational risk-sharing contract, any transfer between generations is

positive in expectation, but it can be negative for some bad states of the world. In principle,

consumers are only willing to participate in the contract if the initial loss is not larger than the

expected gains from risk sharing. We have avoided this discontinuity issue by imposing

mandatory participation, but it is still useful to analyse the sustainability of the contract under

voluntary participation. Figure 5.3 show the histogram of the intergenerational transfer as

percentage of the wage rate. The expected transfer is positive and equal to 19% of the wage rate,

but there is a probability of 40% that agents enter the pension contract with a negative transfer.

The profits are generally much larger than the losses: the average loss agents incur is 10% of the

wage rate, while the average profit amounts to 39% of the wage rate. Note that the minimum

transfer is bounded at a value of about 25%.

5.4 Sensitivity analysis

In this section, we check the robustness of the baseline result by solving the model for alternative

parameter values. We will solve for the income-equivalent variation in the presence of

proportional and lump sum transfers in order to be able to calculate the size of the labour market

distortion. We consider alternative values for the time discount factor (β ), the inverse of the

intertemporal substitution elasticity (γ ), the preference parameter for leisure (η), the equity

premium (µ̄), the standard deviation of the excess return (σ) and the coefficient of relative risk

aversion (θ ). The findings are shown in Table 5.3. To make a comparison of the results easier,

we consider for each parameter reported a value change of +50% and −50% compared to the

baseline value.

Consistent with equation (3.22), the computed income-equivalent variations do not depend

on the time discount factor or the intertemporal substitution elasticity in case of proportional

transfers.16 In case of lump sum transfers, however, the income-equivalent variation increases

(decreases) if the time discount factor decreases (increases). Recall that the labour market

distortion only affects the intratemporal decision between consumption and leisure in the first

period because in the second period people do not work at all. As a result, the distortion

increases for lower values of β and decreases for higher values of β , although quantitatively this

effect is very small.

The welfare effects of changes in the leisure parameter and in the degree of risk aversion are

similar in size. Note first that the welfare gain is decreasing with the coefficient of relative risk

16 Given that the welfare gain is not very sensitive to changes in the intertemporal substitution elasticity, we lose not much

generality if we would confine the analysis to the standard expected utility formation instead of non-expected utility. At this

stage, however, we prefer to use the more general non-expected utility framework.
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Table 5.3 Sensitivity analysis: welfare gains

Parameter Value Proportional Lump sum Distortion

β 0.4 7.0 7.9 − 0.9

0.8∗ 7.0 7.8 − 0.8

1.2 7.0 7.7 − 0.7

γ 1.1 7.0 7.8 − 0.8

2.0∗ 7.0 7.8 − 0.8

3.0 7.0 7.8 − 0.8

η 0.25 5.1 5.3 − 0.2

0.50∗ 7.0 7.8 − 0.8

0.75 11.3 15.3 − 4.1

θ 2.5 13.2 16.5 − 3.2

5.0∗ 7.0 7.8 − 0.8

7.5 4.8 5.1 − 0.3

µ̄ 0.015 1.5 1.7 − 0.2

0.030∗ 7.0 7.8 − 0.8

0.045 17.8 19.8 − 2.0

σ 0.1 36.3 42.3 − 5.9

0.2∗ 7.0 7.8 − 0.8

0.3 2.2 2.5 − 0.2

Results are based on 2,000 simulations. All equivalent variations are expressed as percentages (of the wage rate), with benchmark

parameters marked as ∗.

aversion, a result already derived in the analytical exposition. For lower degrees of risk aversion,

the pension fund takes more risk which raises the scope for risk sharing (and hence, welfare). On

the contrary, the income-equivalent variation is increasing in the leisure parameter η . If η

increases (decreases), the welfare gain increases (decreases) because the average subsidy the

pension scheme provides increases (decreases) as a percentage of labour income. At the same

time, an increase in η also increases the volatility of the intergenerational payments, which

widens the gap between the income-equivalent variation in case of proportional transfers and

lump sum transfers.

The income-equivalent variation is very sensitive to changes in the equity premium and the

standard deviation of the excess return. The increase (decrease) of the equity premium with 1.5

%-point raises the welfare gain by almost 11%-points (5.5%-points). A 50%-increase of the

standard deviation of the yearly excess return from 20% to 30%, in turn, reduces the

income-equivalent variation from 7% to 2.2%. A 50%-decrease of the standard deviation,

however, increases the welfare gain to more than 36%.

Calculated for a wide range of realistic parameter values, the welfare gain has a large spread

of possible values; it varies somewhere between 2% and 36% of the wage rate. Most

importantly, the figures in Table 5.3 show that the welfare gains from risk sharing in a funded
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DB scheme are large compared to the labour market distortion associated with the

intergenerational payments. Still, the welfare costs of labour market distortions are not

negligible. For some cases, the fraction of surplus that is eroded by distortions is almost 30%.

5.5 Simulations with CES utility

So far, we have assumed that the intratemporal substitution elasticity between consumption and

leisure (1/ρ) is unity, implying an uncompensated labour supply elasticity (ε) of zero (see

Appendix A.5 for the relationship between the two). Actually, there is a lot of evidence

suggesting a non-zero labour supply elasticity (see Blundell and MaCurdy (1999) for an

overview). Evers et al. (2008) use 30 different studies to construct a data set of empirical

estimates of the uncompensated labour supply elasticity. They show that the mean elasticity of

men equals 0.07, while for women it equals 0.34. Mean elasticities for men range between

−0.08 and 0.18. For women, mean elasticities range between 0.03 and 2.79. To capture the

empirical evidence regaring the labour supply elasticity, we present simulation results for

different values for the intratemporal substitution elasticity.

Table 5.4 Results with CES utility: individual DC scheme

1/ρ C1 L a

0.5 36.8 36.8 17.7

1.0 39.4 39.4 24.9

2.0 41.9 41.9 37.9

Results are based on 2,000 simulations.

Table 5.4 reports the simulation results for the private economy and Table 5.5 shows the

simulation results for the economy with DB pensions. In Appendix A.5 we formally show that

the labour supply elasticity is positive if the intratemporal labour supply elasticity is larger than

unity, zero if it is equal to unity and negative if the intratemporal substitution elasticity is smaller

than unity. Tables 5.4 and 5.5 show simulation results for three different values for the

intratemporal substitution elasticity, corresponding to an interval for ε that ranges from −0.2 to

0.3.

If the labour supply elasticity is unequal to zero, the income and substitution effect on leisure

are different so that labour supply and portfolio allocation become state-dependent. For

example, suppose ε > 0, then agents will work less hours if they are confronted with a positive

recovery rate (πc > 0) implying that they build up less pension rights to finance future

consumption. To compensate for this, agents take more risk by investing a larger share of total

wealth in the risky asset (higher a).

Compared to the private economy, consumption is higher in the DB pension economy,

reflecting the welfare gain from risk sharing. The average level of labour supply, instead, is
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Table 5.5 Results with CES utility: collective DB scheme

Proportional transfer Lump sum transfer

1/ρ ε C1 L a N C1 L a N

0.5 expectation − 0.2 42.3 38.4 18.1 9.7 41.2 41.1 18.0 10.2

10% quantile − 0.2 33.0 35.3 17.4 9.7 33.7 33.7 17.4 10.2

90% quantile − 0.2 55.3 42.9 19.1 9.7 51.4 51.4 18.8 10.2

1.0 expectation 0.0 47.0 39.4 24.9 10.2 44.1 43.9 24.9 11.2

10% quantile 0.0 33.9 39.4 24.9 10.2 35.9 35.9 24.9 11.2

90% quantile 0.0 65.2 39.4 24.9 10.2 55.2 55.2 24.9 11.2

2.0 expectation 0.3 51.8 39.5 36.6 9.7 46.9 46.7 36.5 12.2

10% quantile 0.3 33.2 31.8 32.4 9.7 38.2 38.2 32.0 12.2

90% quantile 0.4 76.8 45.7 40.2 9.7 58.6 58.6 39.9 12.2

Results are based on 2,000 simulations.

higher if the labour supply elasticity is positive and lower if this elasticity is negative. Recall that

the pension scheme enables agents to capture the equity premium already in the first period. In

this way, the pension scheme stimulates labour supply if ε > 0 (the substitution effect dominates

the income effect) and depresses labour supply if ε < 0 (vice versa).

The fourth and fifth column of Table 5.5 reveal that the levels of consumption and leisure are

diverging in the DB pension economy for higher levels of the intratemporal substitution

elasticity, reflecting the fact that the two goods become closer substitutes. In addition, since the

substitution effect on leisure becomes more dominant relative to the income effect, consumption

and leisure get also further away from the corresponding lump sum levels. As a consequence,

the distortionary effect of the intergenerational transfers becomes larger for higher levels of the

intratemporal substitution elasticity which drives away the optimal equity investment of the

pension fund from the corresponding lump sum levels. For an intratemporal substitution

elasticity of 0.5, the equity investment of the pension fund is only 0.5%-points lower than in case

of lump sum transfers. When the intratemporal substitution elasticity is 2, however, this

difference has been increased to 2.5%-points.

But even if intratemporal substitution is high, the labour market distortion is quite modest

compared to the pure welfare gains of risk sharing. Figure 5.2 shows the welfare gain of risk

sharing as function of the intratemporal substitution elasticity. The displayed values of

substitution elasticities from (approximately) 0 to 3 correspond to an interval for the labour

supply elasticity that ranges between −0.4 and 0.7. The difference between the solid line

(corresponding to lump sum transfers) and the dashed line (corresponding to proportional

transfers) is the labour market distortion. The labour market distortion increases from 0% of the

wage rate to about 2.5% of the wage rate for a substitution elasticity of 3. The pure welfare gain

belonging to this high level of intratemporal substitution is 9.3%, hence, the labour market
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Figure 5.2 Welfare gain in case of CES utility
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distortion amounts more than one quarter of this percentage.17

5.6 Short-sale constraint consumers

Until now, we have assumed that agents do not face any borrowing or liquidity constraint. That

means, agents can take short positions in either the risky asset or the risk-free asset. In addition,

if that would be optimal, agents can choose to borrow in the first period (negative private

savings) to optimally smooth consumption over the first and second period. In practice, though,

it is often difficult or even impossible for young people to take short positions in an asset,

because human capital alone does not collateralize major loans in modern economies for reasons

of moral hazard and adverse selection problems. To overcome this objection, this section solves

the model with a short-sale constraint for households, i.e. 0≤ λh,t ≤ 1. We do not have to

consider a non-negativity constraint on private savings because in the baseline scenario the

young’s optimal savings turn out to be always positive in the simulations.

In case there is no short-sale constraint, the size of the collective pension scheme in terms of

the exogenous accrual rate (α) does not play a role in the model. Any actions by the pension

scheme can be undone by the household. However, if there is a short-sale constraint, the size of

the pension sector will matter because there is a possibility that agents cannot offset the decision

17 As an additional check, we have also calculated the sensitivity of the labour market distortion for changes in the

intratemporal substitution elasticity keeping constant the ratio between first-period and second-period consumption at the

baseline level. To that end, we considered several model parameters to recalibrate this consumption ratio. In all cases,

these modifications hardly changed the welfare effects as represented in Figure 5.2.
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Table 5.6 Short selling versus no short selling

λh λp x
Baseline

expectation 136.9 62.2 7.0

10% quantile 46.3 62.2

90% quantile 227.8 62.2

No short selling

expectation 80.5 59.2 6.7

10% quantile 47.1 59.1

90% quantile 100.0 59.2

Results are based on 2,000 simulations and expressed in percentages.

of the pension fund. In our DB pension scheme, whose size is based on Dutch evidence, it is

indeed true that the implementation of a short-sale constraint restricts household behaviour in

some states. We already discussed that for the benchmark parameterization agents invest 25% of

total wealth in the risky asset. As a percentage of financial wealth, however, this equity

investment is much larger in the economy with a funded DB scheme. Table 5.6 shows that the

equity investment is 137% of financial wealth in the expected path, which means that agents take

short positions in the risk-free asset on average.

The introduction of the short-sale constraint reduces the risk exposure considerably: the

expected value of λh declines from 136.9% to 80.5% and the 90% quantile decreases from

227.8% to the threshold value of 100%. The pension fund does not take short positions. In the

baseline scenario the pension fund invests 62.2% of the collected contributions in the risky asset.

In case of a short-sale constraint, it is optimal to decrease this share to 59.2%. As discussed in

Section 3.1, agents are inclined to take short positions if there are funding deficits (πc > 0) to

ensure that the fraction of their risky asset holdings in total wealth will not change. However,

when agents are not allowed to do this, a welfare-maximizing pension fund takes care of this by

investing a smaller amount in stocks. This investment strategy decreases the probability of

funding surpluses and deficits, and hence, the probability that the short-sale constraint will bind

the household. The welfare consequences of the inability to take short positions are modest: the

income equivalence decreases with only 0.3%-points.

5.7 Labour income tax

In general, the labour supply decision is determined by the total marginal tax burden which is

not only affected by implicit taxes or subsidies in collective pension schemes but also by explicit

labour income taxes. In the model analysed so far, we have ignored the role of labour income

taxation. This section investigates how the introduction of a funded DB pension scheme affects

individual welfare if there is already an initial labour income tax in the economy. We consider
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Table 5.7 Welfare effects in case of labour income taxation

Without lump sum transfer With lump sum transfer

1/ρ τ = 0 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.2 τ = 0.3 τ = 0.4

0.5 6.5 6.3 6.1 5.9 6.4 6.3 6.1

1.0 7.0 7.0 7.0 7.0 6.7 6.4 6.0

2.0 7.1 7.6 7.9 8.3 6.1 5.5 4.9

Results are based on 2,000 simulations and expressed in percentages.

two different cases: in the first case the government spends the tax revenues on services from

which the consumer does not derive utility while in the second case tax revenues are

redistributed back in the form of lump sum income transfers. Hence, in the first case the labour

income tax has a substitution and income effect, in the second case it only has a substitution

effect. We analyse the welfare implications for a labour income tax rate (τ ) of 20%, 30% and

40% and for different values of the intratemporal substitution elasticity.

Table 5.7 shows the results. Consider first the case without lump sum redistribution of the

collected tax revenues, the left panel of the table. Note that in the benchmark parameterization

with a substitution elasticity of unity the welfare gain is independent of labour income

taxation.18 If ρ = 1 the income and substitution effects cancel against each other so that the

labour supply decision is not affected by labour income taxation. For substitution elasticities

below unity, however, the welfare gain of the funded pension scheme is lower in case there is an

initial tax distortion. In this case, the income effect dominates the substitution effect implying

that labour supply in the economy is higher if τ > 0 compared to τ = 0. Consequently, if there is

an initial tax distortion, the welfare-improving intergenerational transfers associated with the

risk-sharing contract decrease as percentage of net disposable labour income. This reduces the

scope for risk sharing, resulting in lower welfare gains. If the substitution elasticity is higher

than unity, instead, the opposite holds. In this case income taxation reduces labour supply

incentives which relatively increases the welfare-improving intergenerational transfers.

Concentrating on the case in which the government redistributes the collected tax receipts

using lump sum payments, the right panel of Table 5.7, it follows that the welfare gain of the

pension scheme is unambiguously lower if τ > 0 compared to τ = 0. Labour income taxation

introduces an additional (negative) substitution effect on labour supply which reduces the

risk-bearing capacity of consumers. The optimizing pension fund responds to this by therefore

reducing its equity exposure, resulting in lower welfare gains.

18 This can also be proved formally. If ρ = 1, we have that λ̃p,t = (1− τ )λp,t , where λ̃p,t denotes the optimal equity

investment of the pension fund in case of an initial income tax rate τ . Substituting this expression in the condition for xt ,

i.e. (1+ xt)
1−ζ = Et

[
1+πb,t λ̃p,t(1− τ )−1 (Re,t+1−R f

)]1−ζ
, we obtain equation (A.13), which does not depend on τ

anymore.
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6 Concluding remarks

In this paper, we have developed a stylized two-period overlapping-generations model to

investigate the welfare gains from intergenerational risk sharing in collective funded pension

schemes. We have analysed the welfare implications of collective funded pensions both in terms

of risk sharing and in terms of labour market distortions. To that end, we have contructed a

pension scheme with defined benefits related to previous working life and with contributions

contingent on the capital-market shock. This funded DB scheme creates opportunities for

intergenerational risk sharing that agents cannot offset through transactions in financial markets.

In our model, the pension fund facilitates intergenerational risk sharing by allowing the young

generation to trade in equity before it is born. As the contingent intergenerational transfers in

this pension scheme relate to labour income, they also distort the labour-leisure decision.

We have analytically shown for a Cobb-Douglas felicity function that a funded DB scheme

involves an ex ante Pareto improvement, implying that the welfare gains from risk sharing

outweigh the negative effect regarding labour market distortions. Using numerical simulations,

we showed that this result also holds under a more general CES felicity function. In terms of

income-equivalent variation, the welfare gain of risk sharing can be quite substantial, varying

somewhere between 2% and 36%. We have also shown that a funded DB scheme may change

labour supply, because the pension contract changes the price of leisure. To the earlier literature

that emphasizes that risk sharing may be reflected in a higher average portfolio rate of return, our

paper thus adds that risk sharing may also affect labour supply.

Our findings are relevant for the debate on worldwide pension reforms. Due to increasing

demographic pressure, various countries have moved or are considering to move away from

collective funded DB schemes towards individual funded DC schemes. Our result emphasizes

that the loss this implies in terms of reduced intergenerational risk sharing may be far more

important than the gain that is due to reduced labour market distortions.

While our model allows studying the welfare effects of collective pensions, it has its

limitations. It restricts intergenerational risk sharing to two generations only. Because one model

period represents twenty years, shocks can maximally be smoothed out over a period of fourthy

years. One might argue that this time span is relatively short. Extending risk-sharing possibilities

to more generations will increase the welfare gains from risk sharing.19 In this respect, our

calculated welfare gain can be viewed as a lower bound of the potential gains of risk sharing.

We have abstracted from stochastic labour productivity. Accounting for the stochastic nature

19 Increasing the risk-sharing possibilities could be implemented in the model by spreading risks over an infinite number of

generations. However, extending the model along this line is numerically much more demanding. For a particular version

of the model (i.e. when per-period utility has a Cobb-Douglas form and transfers are income-related) this problem is

analytically well-defined. It gives a welfare gain of 8.7%, which is only 1.7%-points higher than if risk sharing is restricted

to two generations. Hence, alleviation of this restriction does not seem to add much potential for welfare improvement.
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of labour productivity would enhance the role of the pension scheme, which then would not only

share equity return risks across generations, but also labour productivity risks. This would

increase the scope for risk sharing. This also suggests that our analysis underestimates the

welfare gain from funded DB schemes. Furthermore, as riskless assets are rarely seen in practice,

a model with two types of risky assets to describe equity and bonds could be more realistic. In

such a world, pension schemes would be even more attractive, as they provide nonstochastic

benefits which households cannot obtain if pension funds are absent. This adds to our claim that

our result on the welfare gain of collective pension schemes should not be interpreted literally.
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Appendix A Derivations

In this appendix we derive equation (3.6), equation (3.9), equation (3.22) and equations

(4.7)-(4.9). We also derive the labour supply elasticity (ε) reported in Table 5.5.

A.1 Portfolio allocation households

Following Campbell and Viceira (2002), we assume that both 1+RT,t+1 and

(1+Re,t+1)/(1+R f ) are lognormally distributed. If a variable X is lognormally distributed,

then there holds:

logEt Xt+1 = Et logXt+1 +
1
2

Vart logXt+1 (A.1)

Taking logs of equation (3.5) and using equation (A.1), we obtain:

Et (−ζrT,t+1 + re,t+1)+
1
2

Vart (−ζrT,t+1 + re,t+1) =

Et
(
−ζrT,t+1 + r f

)
+

1
2

Vart
(
−ζrT,t+1 + r f

)
where ri ≡ log(1+Ri) and i = e, f ,T . Simplifying this expression gives:

Et re,t+1 +
1
2

Vartre,t+1− r f = ζCovt (rT,t+1,re,t+1) (A.2)

As the return on the portfolio is a linear combination of the return on stocks and the return on

bonds, see equation (2.3), and the log of a linear combination is not the same as a linear

combination of logs, we follow Campbell and Viceira (2002) and use a Taylor approximation of

the nonlinear function relating log individual-asset returns to log portfolio returns. First note that

equation (3.3) can be written as:

1+RT,t+1 = 1+R f +at
[
(1+Re,t+1)−

(
1−R f

)]
(A.3)

Dividing this expression by 1+R f and then taking logs gives:

rT,t+1− r f = log
{

1+at
[
exp
(
re,t+1− r f

)
−1
]}︸ ︷︷ ︸

f (re,t+1−r f )

Now we take a second-order Taylor expansion of f (·) around re,t+1− r f = 0, which gives:

rT,t+1 ≈ r f +at
(
re,t+1− r f

)
+

1
2

at(1−at)Vartre,t+1 (A.4)

From equation (A.4) it follows:

Covt (rT,t+1,re,t+1) = atVartre,t+1 (A.5)

Substituting equation (A.5) into (A.2) then gives:

at =
Et re,t+1− r f +

1
2 Vartre,t+1

ζVartre,t+1
(A.6)
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Recall our statistical assumptions:

Et
(
re,t+1− r f

)
= µ (A.7)

Vartre,t+1 = σ
2 (A.8)

Note from equation (A.1) that:

µ̄ ≡ logEt

(
1+Re,t+1

1+R f

)
= µ +

1
2

σ
2 (A.9)

Inserting equations (A.7)-(A.9) in equation (A.6) gives equation (3.6).

Note that for small x we have that log(1+ x)≈ x . Then it follows from (A.9) that µ̄ is

approximately equal to the excess return:

µ̄ ≈ E
(
Re−R f

)
We can also derive that:

Var
(
Re−R f

)
= Var(Re) = [E(1+Re)]

2 [exp
(

σ
2)−1

]
≈ [E(1+Re)]

2
σ

2 ≈ σ
2

where the two ≈ signs are associated with small σ
2 and small E(Re). Hence, σ

2 is

approximately equal to the variance of the (excess) equity return.

A.2 Certainty-equivalent rate of return

Taking logs of equation (3.8) and using (A.1), we obtain:

r̄t =
1+ ν

1−ψ

[
(1− ζ)Et rT,t+1 +

1
2
(1− ζ)2VartrT,t+1︸ ︷︷ ︸

kt

]
(A.10)

with r̄ ≡ log(1+ R̄). Using equation (A.4), the term kt can be rewritten to:

kt = (1− ζ)r f +(1− ζ)at
(
Et re,t+1− r f

)
+

1
2
(1− ζ)at(1−at)Vartre,t+1

+
1
2
(1− ζ)2a2

t Vartre,t+1 (A.11)

Inserting equation (A.6) into (A.11) and rearranging gives:

kt = (1− ζ)r f +
1− ζ

2ζ

(
Et re,t+1− r f +

1
2 Vartre,t+1

)2

Vartre,t+1

Using equations (A.7)-(A.8) together with equation (A.9), we obtain:

kt = (1− ζ)

(
r f +

1
2

µ̄
2

ζ σ2

)
(A.12)

Inserting equation (A.12) in equation (A.10), and again using the fact that log(1+ x)≈ x , we

obtain equation (3.9).
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A.3 Welfare gain

Substituting the indirect utility function (3.17) in the objective function of the pension fund,

equation (2.15), gives the following expression for W 1
t (·):

W 1
t (Y ) =

(1+Z)
1

1−γ η
η [(1−η)Y ]1−η

(1−η)Z +1

[
Et (1−πc,t+1)

1−ζ

] 1
1−θ

Note that W 0
t (·) is simply equal to:

W 0
t (Y ) =

(1+Z)
1

1−γ η
η [(1−η)Y ]1−η

(1−η)Z +1

Then equation (3.21) implies:

(1+ xt)
1−ζ = Et

[
1+πb,tλp,t

(
Re,t+1−R f

)]1−ζ (A.13)

Multiplying both sides of equation (A.13) with
(
1+R f

)1−ζ gives:

[
(1+ xt)

(
1+R f

)]1−ζ
= Et

[
1+R f +αλp,t

(
Re,t+1−R f

)]1−ζ

Recall that at = αλp,t . Hence, this equation can rewritten into:

[
(1+ xt)

(
1+R f

)]1−ζ
= Et (1+RT,t+1)

1−ζ

Taking logs on both sides gives:

(1− ζ) log(1+ xt)+(1− ζ)r f = kt (A.14)

Substituting equation (A.12) in (A.14) and (again) using the approximation log(1+ x)≈ x , we

obtain equation (3.22).

A.4 Labour market distortion

For log-linear lifetime utility (i.e. γ = θ = ρ = 1) we are able to solve the model with lump sum

transfers analytically. In that case, it follows from equation (3.7) that Z = β and, hence, does not

depend on leisure anymore. Lifetime utility equals,

Ut = (1−η) logC1,t +η logLt +β(1−η)Et logC2,t+1

Substituting equation (4.3)-(4.5) in this expression gives the following indirect utility function:

Vt = F−η logY +[1+β(1−η)] log(Y +Tt) (A.15)

F ≡ (1−η)(1+β) log(1−η)+η logη +β(1−η) logβ +β(1−η)Et rT,t+1

− [1+β(1−η)] log [1+β(1−η)]
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Note that F is a constant term. Social welfare is maximized if,

∂Wt

∂Nt
=

∂ Et Vt+1

∂Nt
= 0

leading to first-order condition:

Et


[

1+R f +

(
1+R f

)
Nt

Y

(
Re,t+1−R f

)]−1 (
Re,t+1−R f

)= 0 (A.16)

Comparing equation (3.5) and (A.16), there must hold:(
1+R f

)
Nt

Y
= at (A.17)

This implies:

N =
µ̄Y

σ2
(
1+R f

) (A.18)

λp,t =
µ̄

α (1−Lt)σ2 (A.19)

To derive the welfare gain of the pension scheme in the presence of lump sum transfers, we need

to solve for the additional amount of income (xL) an agent in the situation without a pension

scheme needs in order to make him indifferent between participating in the pension scheme or

not:

Et V 1
t+1(Y ) = Et V 0

t+1
[
(1+ xL

t )Y
]

(A.20)

From equation (A.15) it follows:

V 0
t (Y ) = (1−η)(1+β) logY +F (A.21)

V 1
t (Y ) = F−η logY +[1+β(1−η)] log(Y +Tt) (A.22)

Inserting equation (A.21) and (A.22) in equation (A.20) then gives:

(1−η)(1+β) log(1+ xL
t ) = − [1+β(1−η)]r f +[1+β(1−η)]

×Et log

[
1+R f +

(
1+R f

)
Nt

Y

(
Re,t+1−R f

)]
(A.23)

Using equation (A.3) and (A.17), this expression can be simplified to:

(1−η)(1+β) log(1+ xL
t ) = [1+β(1−η)]

(
Et rT,t+1− r f

)
(A.24)

Using equations (A.4), (A.6) and (A.7)-(A.9), it follows that:

Et rT,t+1 = r f +
1
2

µ̄
2

σ2

Inserting this expression in equation (A.24), we find:

xL =
1
2

µ̄
2

σ2

[
1+

η

(1−η)(1+β)

]
(A.25)

Equation (A.25) and (3.22) determine the labour market distortion xD ≡ x− xL mentioned in

equation (4.9).
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A.5 Labour supply elasticity

This section derives the uncompensated labour supply elasticity, as shown in Table 5.5. To that

end, we first need to approximate u1,t and u2,t+1. Taking logs of equation (2.2) for the first

period gives:

logu1,t =
1

1−ρ
log
{

exp [log(1−η)+(1−ρ) logC1,t ]+ exp [logη +(1−ρ) logLt ]
}

︸ ︷︷ ︸
f (logC1,t ,logLt)

Approximating f (·) with a first-order Taylor expansion around the point (logC1,t , logLt) = (0,0)

gives:

f (logC1,t , logLt)≈ (1−ρ) [(1−η) logC1,t +η logLt ]

So, we have:

u1,t ≈C1−η

1,t Lη

t (A.26)

Along the same lines, we can approximate equation (2.2) for the second period, resulting in:

u2,t+1 ≈C1−η

2,t+1 (A.27)

Substituting equation (A.26) and (A.27) in (2.5a), gives:

C1,t =
1

Zt +1
(1−Lt)(1−πc,t)Y

with:

Zt =
{

β
(
1+R f

)
Lω−1

t Et(1+RT,t+1)
−ζ

[
Et(1+RT,t+1)

(1−η)(1−θ)
]

ν
} 1

ψ

and ψ ≡ ρ− (1−η)(ρ− γ ), ζ ≡ ρ− (1−η)(ρ− θ), ω ≡ 1−η(ρ− γ ) and ν defined as in the

text. Dividing equation (2.5b) by equation (2.5a), we obtain:

C1,t

Lt
=

(
1−η

η
It

) 1
ρ

with It ≡ (1−πc,t)Y the price of leisure. Using this condition, we have:

C1,t =

(
1−η

η
It
) 1

ρ

(1+Zt)
(

1−η

η

) 1
ρ

I
1
ρ
−1

t +1

Lt =
1

(1+Zt)
(

1−η

η

) 1
ρ

I
1
ρ
−1

t +1
(A.28)

From equation (A.28) we derive the labour supply elasticity ε, which is equal to:

ε ≡ d (1−Lt)

dIt

It
1−Lt

=
Lt

1−Lt

1−ρ

ρ

1+Zt

1+ γ

ψ
Zt +

(
η

1−η

) 1
ρ

I
1− 1

ρ

t

so we have that ε > 0 if ρ < 1, ε < 0 if ρ > 1 and ε = 0 if ρ = 1.
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Appendix B Accuracy of the simulations

Table B.1 shows the distribution of the income-equivalent variation for various sets of drawings.

As the number of drawings increase, the standard deviation of the computed welfare gains

declines from 0.21 (in case of 250 drawings) to 0.07 (in case of 2,000 drawings). The difference

between the maximum and minimum value decreases from 0.67%-points to 0.24%-points.

Running more simulations increases the accuracy of the results, but it also increases the

solvency time exponentially. Hence, we are forced to make a trade-off between accuracy on the

one hand and a feasible solvency time on the other hand. Our results in the text are based on

2,000 simulations. For this number of drawings the difference between the maximum and

minimum value of the income-equivalent variation will not exceed the 0.25%-points, which we

consider as a reasonable margin of error.

Table B.1 Accuracy simulations

Number of drawings

250 500 1000 2000

Mean 6.94 7.05 7.02 7.03

Median 6.89 7.00 7.04 7.03

Stdev 0.21 0.16 0.11 0.07

Min 6.61 6.75 6.78 6.92

Max 7.28 7.37 7.18 7.15

Reported statistics are based on 25 observations.
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