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1 Introduction

Bubbles can pose a serious risk to investors’ wealth if they crash but might also offer

profitable trading opportunities. As Abreu and Brunnermeier (2003) derive theoretically

and Guenster et al. (2008) document empirically, actively investing in bubbly assets, or

“riding the bubble”, seems to be the optimal choice at very short horizons. However, it

is questionable whether this conclusion is generalizable to investors with longer horizons.

Empirical studies analyzing the behavior of mutual fund managers’ behavior during the

internet bubble, such as Greenwood and Nagel (2007) and Dass et al. (2008), provide

evidence that managers who were heavily invested in bubble stocks earned high returns in

the short run. However, in the long run, as the bubble started deflating, they were also the

ones incurring the largest losses. Managers who invested less heavily in tech stocks kept

loosing money in the short-term but outperformed as the bubble burst.

From a theoretical perspective, the relation between the investor’s horizon and his

optimal strategy during bubbles is not straightforward. The efficient market hypothesis

predicts that investors short overpriced assets, independent of their horizon. However, in

the limits-to-arbitrage literature (see, for example, De Long et al. (1990a) and Shleifer and

Vishny (1997)), short horizons induce investors to refrain from trading against the bubble.

In turn, De Long et al. (1990b) and Abreu and Brunnermeier (2003) suggest that investors

should ride the bubble at short horizons and sell out as the risk of the crash increases.

Empirically, Brunnermeier and Nagel (2004) and Temin and Voth (2004) document that

this strategy is profitable for sophisticated investors who possess the ability to predict the

crash.

To understand the impact of time horizons on the optimal asset allocation is not only

relevant for investors but also important from a general equilibrium perspective. If bubbles

do not affect the fundamental value of the asset, as assumed in the models discussed above,

they must in the end be a zero-sum game. This reasoning implies that riding bubbles

can only be a profitable strategy for a limited time horizon. This argument no longer

holds if bubbles have an impact on the real economy. Jerzmanowski and Nabar (2008)

provide evidence that the NASDAQ bubble had a positive effect on aggregate net wealth.

Hirshleifer et al. (2006) present a model that includes a feedback effect from the firm’s
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stock price to its cash-flows. In this setting, even irrational investors can earn positive

abnormal returns. Their irrationally high expectations of the firm’s future cash-flows drive

up the price. The higher price motivates stakeholders, for example employees, to make

more firm-specific investments, which in turn raises the fundamental value of the firm.

In such a setting, crashes will not wipe out all gains accrued during the bubble: at least

the increase in fundamental value caused by the bubble will remain. Consequently, riding

bubbles can in this setting even be a profitable investment strategy for long-term investors

without timing capabilities.

In this paper, we investigate how the investor’s optimal strategy during bubbles is

affected by his horizon. Our analysis is based on a Markov regime switching model as

proposed by Hamilton (1994). This methodology allows us to replicate the uncertainty a

real-world investor faces. Further, we can explicitly derive how the risk and return forecasts

as well as the optimal weight develop over time. We disentangle how different effects,

such as crash probability, the probability that the bubble continues and the distribution

parameters of the different regimes, determine the development of the forecasts over time.

Our analysis is based on industry returns. Famous historical episodes of bubbles that

started in specific industries are the recent internet bubble, the electricity and the railway

boom.

The investor infers from past abnormal returns whether the asset’s return is currently

in the bubble, normal or crash regime. To compute the abnormal returns, we use three

asset pricing models: the CAPM, the Fama and French (1993)-Model (hereafter: 3-Factor

Model) and the Carhart (1997)-Model (hereafter: 4-Factor Model). The bubble regime is

characterized by large positive mean abnormal returns. They range from 2.46% per month

for the 3-Factor Model to 2.67% per month for the CAPM. In the normal regime where the

growth rate of the price should in expectation be equal to fundamental value, the mean

abnormal returns are close to zero. The crash regime is characterized by large negative

abnormal returns, which are around -8.5% per month. To ensure that the bubbles we

detect are substantial deviations from fundamental value and to clearly distinguish them

from industry momentum described by Moskowitz and Grinblatt (1999), we require bubbles

to last at least one year. In our estimation, we also require that a bubble ends with a crash

since historical episodes of bubbles are associated with subsequent crashes. Whether these
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crashes wipe out all gains, depends on the probability of a crash and its size.

We investigate the optimal choice of a mean-variance investor and a downside risk

averse investor. Paying special attention to downside risk ensures that we take crash risk

appropriately into account. We assume that the investor holds a zero-investment portfolio

and can choose between a bubbly and a non-bubbly asset, implying that he holds a long-

short position. Our evidence shows that riding bubbles, i.e., taking a long position in the

bubbly asset and a short position in the non-bubbly asset, is the optimal strategy for most

horizons. We observe a rather large positive weight allocated to the bubbly asset during

the first month following the bubble regime. For the mean-variance investor, it ranges

from 80% of every dollar invested for the CAPM to 16% for the 4-Factor Model. For the

downside risk averse investor, it is somewhat lower, but still economically large. Following

the first month, the optimal weight allocated to the bubbly asset declines substantially. The

risk and return forecasts deteriorate due to a sharp rise in crash probability. However, this

increase is only temporary and after a couple of months, we observe that the bubbly asset

becomes again more and more attractive. Our results show that even for horizons up to

five years, the weight allocated to the bubbly asset is rather high. Our most conservative

estimates indicate an optimal weight of 0.32 for the variance risk averse investor and a

weight of 0.18 for the downside risk averse investor at the 5-year horizon.

This evidence is consistent with models that propose a positive effect of bubbles on

the asset’s fundamental value, such as Jerzmanowski and Nabar (2008) and Hirshleifer

et al. (2006). Since bubbles lead to increases in fundamental value, subsequent crashes will

not wipe out all gains. Therefore, in line with our findings, riding bubbles can even be a

profitable strategy in the long run and for investors who have no timing ability.

We proceed our analysis as follows. First, we discuss the theoretical and empirical

literature. Then, we present our model to detect bubbles. In the third section, we derive

the investors optimal asset allocation. In section 5, we start our empirical analysis. First,

we estimate the regime switching model. Subsequently, we evaluate the risk and return

forecasts over time and analyze the optimal weight. Section 6 concludes.
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2 Literature Review

2.1 Theoretical Literature

The theoretical proposition on how the rational investor’s optimal trading strategy dur-

ing bubbles varies with his horizon diverge.1 The traditional efficient market hypothesis

predicts that it is optimal for any investor to short the bubbly asset (see Fama, 1965)) in-

dependent of his horizon. The fact that this literature does not explicitly address horizons

is a direct consequence of its prediction that prices will immediately return to fundamental

value. As Fama (1965, p. 38) puts it: “For example, if there are many sophisticated traders

who are extremely good at estimating intrinsic values, they will be able to recognize situ-

ations where the price of a common stock is beginning to run up above its intrinsic value.

Since they expect the price to move eventually back toward its intrinsic value, they have an

incentive to sell this security or to sell it short. If there are enough of these sophisticated

traders, they may tend to prevent these “bubbles” from ever occurring.”

However, history suggests that this theory is incomplete as we observe many examples

of prices that deviate from fundamental value.2 As a response the limits-to-arbitrage

literature has evolved, which explains why rational investors do not trade against bubbles

and do not prevent their existence. In this line of literature, a crucial factor that deters

investors from trading against bubbles is their short horizon. In De Long et al. (1990a)

irrational noise traders push prices away from fundamental value. The rational arbitrageurs

do not take offsetting positions, as they do not know whether noise trader sentiment will

change during their investment horizon. Only if the arbitrageur can be sure that his horizon

is longer than the noise traders’ horizon, it is optimal for him to short the bubbly asset.

Shleifer and Vishny (1997) extend the analysis of De Long et al. (1990a) by providing an

explanation of why sophisticated investors have short horizons. They model sophisticated

investors as delegated portfolio managers hired by less sophisticated individuals. These

individuals do not understand the investment strategy. They observe the returns and

accordingly evaluate the manager. If they observe a prolonged sequence of low or even

1Throughout this literature review, we will use the term “rational” investor and “informed” investor

interchangeably
2For an overview, see Hirshleifer (2001).
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negative returns (while the mispricing persists), they doubt the manager’s capabilities and

withdraw their funds. The manager is forced to liquidate his position, potentially at a loss,

before prices return to fundamental value.

More recently, Barberis and Shleifer (2003) use the general idea of De Long et al. (1990a)

to explain the performance of different investment styles over time. In their model, two

groups of traders, “switchers” and “fundamental traders”, can allocate their resources to

two different styles. Switchers, who are similar to positive feedback traders, allocate their

assets to a specific style based on the style’s relative past performance. Thereby, they push

up prices away from fundamental value. The “fundamental traders” do not take opposing

positions due to their short horizons. The Barberis and Shleifer (2003)-model can, for

example, explain the difference in returns between old and new economy stocks in the late

90s and the poor returns of value stocks despite their relatively good cashflow performance.

The model of Dow and Gorton (1994) complements the previous theoretical studies

by introducing the concept of arbitrage chains. They show that it is only profitable for

an informed investors with a short horizon to trade upon his information, if he can be

sufficiently certain that subsequent arbitrageurs will trade into the same direction before

he has to sell out. As a consequence, not the relative length in horizons between the rational

and irrational traders is crucial. Instead, the important factor is the length of the informed

investor’s horizon relative to the speed at which other investors become informed and act.

As the likelihood that other investors become informed increases as time progresses, the

Dow and Gorton (1994)-model also supports the prediction that the longer the rational

investor’s horizon, the more likely it will be profitable for him to short the bubbly asset.

Two theoretical models predict that it can be profitable for rational investors to fuel

bubbles independent of their horizon. In the first model, written by De Long et al. (1990b),

the market consists of feedback traders and rational arbitrageurs. The feedback traders

demand is positively correlated with past price changes. As the rational arbitrageurs

anticipate their demand, they buy more than they would in the absence of feedback traders.

The feedback traders observe the positive returns, start buying and thereby push prices

even further away from fundamental value. As the rational arbitrageurs are aware of the

mispricing and the firm’s liquidation in the following period, they sell their holdings and

profit at the expense of the feedback traders. The second model, proposed by Abreu and
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Brunnermeier (2003), stresses the need of coordination among rational arbitrageurs. As

every rational arbitrageur cannot burst the bubble by himself, his optimal strategy is to

ride the bubble and profit at the expense of the noise traders. It is only profitable for

him to sell his holdings if the risk of a crash outweighs the positive returns he earns from

riding the bubble. Both models lead to the conclusion that rational investors actively ride

bubbles independent of their horizon. However, such a strategy only seems profitable if

investors are able to predict the time of the crash. Otherwise, all their gains might be lost

again.

While the models discussed so far all focus on rational investors, the model of Hirshleifer

et al. (2006) proposes that irrational investors can benefit from bubbles. The crucial dif-

ference between their work and the previous studies is that they introduce a feedback loop

from prices to cashflows. The irrational traders drive up prices, which in turn motivates

stakeholders of the firm to increase their firm-specific investment. The higher stakeholder

investment raise the firm’s cashflows which in turn has positive effect on prices in the fol-

lowing period. In this way, the bubble has a positive effect on the real value of the firm

and the irrational investors potentially profit from the mispricing they originally caused.

Because the price rise leads to an increase in fundamental value, investing in the bubbly

asset might in this models even be a good strategy in the long run. A crash that happens

subsequently should only wipe out the irrational part of the price increase but not the part

that can be attributed to an increase in fundamental value.

2.2 Empirical Literature

Empirical studies commonly analyze how different types of investors behaved during his-

torical bubble periods. Brunnermeier and Nagel (2004) analyze the behavior of hedge fund

managers and find that they were riding the tech bubble. Interestingly, hedge funds had

superior timing ability and were able to leave the market before the crash. Thereby, they

profited greatly from less informed traders. A similar strategy is documented by Temin

and Voth (2004) for a highly sophisticated investor, Hoare’s Bank, during the South Sea

Bubble.

However, not all investors have these timing abilities, eventually needed to make riding
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bubbles a profitable strategy. Greenwood and Nagel (2007) document that experienced

mutual fund managers did not ride the tech bubble, but inexperienced managers were

heavily invested in tech stocks. Managers who were riding the bubble earned higher returns

in the short run. However, they also faced larger losses as the bubble started deflating and

they were not able to time the crash. Dass et al. (2008) provide evidence that managers

with higher incentive contracts invested less in bubble stocks. The high incentive managers

earned about 2% lower returns per quarter during the bubble period. However, they earned

2.7% higher returns per quarter once the bubble started deflating.

A rather different approach is taken by Guenster et al. (2008). They do not analyze the

behavior of a specific type of investor. Instead, they investigate the risk-return trade-off of

bubbles in a large sample of industry returns. Their findings show that riding bubbles is a

very risky but also profitable strategy at a one-month horizon. The additional return an

investor can earn from riding bubbles ranges from 0.41% to 0.64% per month. However,

the risk of a crash is also more than twice as large.

We can conclude that first investing in the bubbly asset and then shorting the bubbly

asset is a profitable strategy for investors who can foresee the crash. However, we need to

take into account that a lot of investors, even professional ones like mutual fund managers,

do not have these capabilities. For these investors, previous theoretical and empirical

research suggests that their optimal strategy changes along their horizon. It seems that the

theoretical predictions made by Abreu and Brunnermeier (2003) and De Long et al. (1990b)

are applicable for investors with a very short, one-month horizon. As the investor’s horizon

increases and simultaneously the risk that the bubble starts deflating, the propositions of

the limits-to-arbitrage literature might be become increasingly relevant. Riding bubbles

is dangerous due to crash risk. However, the fact that the bubble might also continue

makes it risky to take an extreme short position. At intermediate horizons, it seems that

sidelining, i.e., not trading upon the information might be the optimal strategy. If the

investor has long horizon and can be reasonable certain that the bubble will crash before

he has to close his position, going short seems to be the optimal strategy given that bubbles

are zero-sum games. If, following the idea of Hirshleifer et al. (2006), bubbles are related

to increases in fundamental value, this conclusion might not be valid and holding a long

position might even be a good long-run strategy.
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While we can draw these inferences by combining the findings of current empirical

and theoretical papers, it is far from certain whether they correctly describe reality. To

our knowledge, there is currently no study that investigates the profitability of different

strategies in relation to the investor’s horizon. We intend to fill this gap.

3 A Regime-Switching Model for Bubbles

3.1 Model Design

Our analysis is based on a regime switching model since it allows us to separately describe

the price process in case a bubble continues to inflate, in case a crash possibly ends a

bubble, and the base case in which no bubble is present. Evans (1991), van Norden and

Schaller (1999) and Brooks and Katsaris (2005) are examples of the use of regime switching

models to study asset price bubbles.

An advantage of using a regime switching model is the ease with which the actual

presence of the bubble can remain latent. As in reality, the investor does not know for

sure whether a bubble is present but has to make a probabilistic inference. In determining

his optimal allocation he has to take into account that his inference may be wrong. This

approach allows us to describe a more realistic setting than most theoretical models, where

at least a fraction of investors knows with certainty that the price contains a bubble

component (see among others Abreu and Brunnermeier (2003), De Long et al. (1990b), or

De Long et al. (1990a)).

We let the latent process for the presence of a bubble be governed by a first order

Markov chain. With a certain probability, the process can switch from one state to another

and eventually to the bubble state. This switch can correspond with a displacement in a

Minsky model (see Kindleberger, 2000) or “new economy thinking” as in Shiller (2000).

Once the process switched to the bubble state, it can remain there for the following periods

or leave it with a crash. We deviate from van Norden and Schaller (1999) and Brooks and

Katsaris (2005), who do not use a Markov chain. In their studies, the latent process of a

bubble evolves much more gradually and cannot accommodate the sudden switches that

are considered typical characteristics of bubbles (see for example Figures 2 and 3 in Brooks

9



and Katsaris, 2005).

Besides by a sudden change, bubbles are characterized by a price that grows faster than

fundamental value. While such exuberant growth is present in all bubble models, we tie

it directly to an asset pricing model like the CAPM or a multi-factor model. We do not

assume that the fundamental growth rate is simply given, as is typical for the theoretical

rational bubble literature (see, for example, Blanchard and Watson, 1982), nor do we tie

it to dividends as many articles on testing for bubbles propose (see Flood and Hodrick,

1990, for an overview).

In our setting, structural growth beyond what can be explained from covariance with

systematic risk factors (or, equivalently, the pricing kernel) is considered a bubble. We

do not require that bubble growth is constant over time. Instead, we allow a stochastic

growth rate which is strictly positive in expectation as in Brooks and Katsaris (2005).

Mathematically, the asset return rt obeys

rt = rf,t + β′ft + σtut(St), (1)

where rf,t is the risk-free rate, ft denotes the vector of realizations of the (traded) risk

factors, β the vector of sensitivities to the risk factor, σt the idiosyncratic (deterministic)

volatility of the asset, and ut(St) a random variable, independent from ft, and depending

on a latent state variable St. The first two terms capture the systematic part of the asset

return. The last term captures the idiosyncratic part of the asset return, which may contain

a bubble depending on the realization of St.

The latent process St can be in one out of three regimes. In the normal regime N, no

bubble is present, and the asset price grows at the fundamental growth rate. The expec-

tation of ut under this regime, denoted by µN, will be close to zero. In the bubble regime

B, the expected value of ut, denoted by µB, will be strictly larger than zero. Under both

regimes ut follows a normal distribution, with equal standard deviation ω. We explicitly

incorporate that bubbles end with a crash, and therefore introduce a crash regime C. To

ensure that the realization of ut under the crash regime is always below some minimum

crash value k < 0, ut follows a transformed lognormal distribution, k − eZ , where Z fol-

lows a normal distribution with mean µc and standard deviation ωC. This approach puts

our model in line with other models that distinguish return sources for tranquil and for
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stressful periods, such as Das and Uppal (2004). We summarize the model for ut(St):

ut ∼


N(µN, ω

2) if St = N

N(µB, ω
2) if St = B

k − eZ , Z ∼ N(µC, ω
2
C) if St = C

(2)

While the distributions of ut conditional on St have well-defined characteristics, the uncon-

ditional distribution of ut will be time-varying, and exhibit skewness and excess kurtosis.

The process St is governed by a first order Markov chain with the associated matrix

of transition probabilities P . We restrict the process in two ways. First, as a bubble

should correspond with a prolonged period of exuberant growth, we require that it has

a minimum length L. We refer to the first L − 1 states as transitory bubble states.

Transitory bubble state Bl, 1 ≤ l < L, prevails, when the process has spent l months in

the bubble regime. This state can only be preceded by Bl−1 and followed by Bl+1. The

process can only switch to state B1 from the normal or crash regime. The last bubble

state is the non-transitory bubble state Bnt. From state BL−1, the process must switch

to this state. Contrary to the transitory bubble states, the process can remain in the

non-transitory bubble state infinitely. As a second restriction we impose that the process

can only leave the non-transitory bubble state Bnt by switching to the crash state. This

restriction puts the process in line with anecdotal and empirical evidence that bubbles end

with crashes.3 These restrictions imply a probability of zero for some transitions while

others are by construction equal to 1. In Table 1, we show which transition probabilities

are free parameters, and which ones have a fixed value.

[Table 1 about here.]

By including these restrictions, we intend to put enough structure on our model to

ensure that we indeed detect bubbles, and to preserve enough flexibility to infer from

return series how bubbles actually occur. The restrictions prevent that a single-period

large return is identified as a bubble. By explicitly imposing that bubbles are ended by

3For a discussion on the relation between bubbles and crashes, see McQueen and Thorley (1994).
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one or more crashes, a prolonged adjustment of fundamental value due to a market under-

reaction is not likely to be identified as a bubble. The persistence of bubbles after their

first L periods, or their average growth rate are free parameters to be estimated.

3.2 Estimation, Inference and Forecasts

The investor does not know in which regime the process is at any point in time. Instead, he

has to infer the current regime and form an expectation on future regimes and their risk-

return tradeoff. His information set Ψt at time t contains the time-series of returns and risk

factors from t0, the beginning of the sample period, to t. He applies a filtering procedure to

infer with which probabilities the different states currently prevail. This procedure uses the

following recursive relation to construct a times series of vectors of forecast probabilities

ϕτ |τ−1 and inference probabilities ϕτ |τ for each state s (see Hamilton, 1994, Ch. 22), where

τ ranges from t0 to t:

ϕτ |τ−1 = Pϕτ−1|τ−1 (3)

ϕτ |τ =
1

ϕ′
τ |τ−1g(uτ )

ϕτ |τ−1 ⊙ g(uτ ), (4)

where g() is the vector of the probability density functions of the different states, P is

the transition matrix, and ⊙ denotes the Hadamard product. The procedure starts with

inference probabilities for t0 − 1. The forecast probabilities give a forecast of the state

process for period τ , conditional on information up to period τ − 1. When the information

(i.e. the returns) of period τ becomes known, a Bayesian update is applied to arrive at the

inference probabilities. We estimate the distribution parameters, transition probabilities

and initial regime at t − 1 by recursively applying the Expectation Maximization (EM)

algorithm of Dempster et al. (1977) which yields maximum likelihood estimates (see also

Hamilton, 1993).

The investor applies the filtering procedure to determine the probabilities with which

the different states prevail at time t. He uses these inference probabilities to construct fore-

cast for future periods m. The m-period ahead forecast probabilities can be calculated as

ϕt+m|t = Pmϕt|t. Based on the forecast probabilities and the probability density functions,
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he constructs a prediction for the distribution of abnormal returns gt+m(u):

gt+m(u) = ϕ′
t+m|tg(u). (5)

Equation (5) shows that the m-period ahead forecast of the abnormal return distribu-

tion consists of the probabilities of the different states and their respective distributions.

Along the same lines, any raw moment of order n can be stated as a sum of state-specific

moment weighted by the states’ forecast probabilities:

Et

[
unt+m

]
=

∑
s∈S

ϕt+m|t(s) E[u
n
t+m|St+m = s]. (6)

4 The Investor’s Asset Allocation Decision

We choose a mean-variance utility function, which we extend to incorporate downside risk

following Harlow and Rao (1989) and Fishburn (1977). This functional form allows us to

focus on the “usual” fluctuations around the mean and keeps our results comparable to

theoretical papers that use mean variance utility functions. However, it also enables us

to take a more conservative perspective and focus on downside risk. Since crashes are the

most serious risk to a strategy of riding bubbles, it is particulary relevant for our research

question to pay special attention to downside risk. Only taking into account aversion to

variance risk might make a strategy of riding bubbles seem more attractive than it actually

is.

Formally, the investor’s utility function v is defined as:

v(rp) =

r
p − 1

2
γ1 (r

p − Et [r
p])2 − 1

2
γ2 (K − rp)ν for rp < K

rp − 1
2
γ1 (r

p − Et [r
p])2 for rp ≥ K

(7)

where rp is the portfolio’s returns, γ1 is the variance risk-aversion coefficient, γ2 is the

downside risk-aversion coefficient and K is a threshold value, which is proportional to the

crash threshold k. For returns below this threshold, the investor subtracts an additional

discount. In line with decreasing absolute risk aversion (see Arditti, 1967) and to ensure

that marginal utility is positive, we choose ν = 2.

The investor makes an investment decision at time t for the following M periods.

At every point in time t + m, 1 ≤ m ≤ M , he evaluates his investment decision. This
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approach allows us to take intermediate fluctuations in wealth, for example a sudden crash,

into account. He maximizes the sum of his expected utility over the complete investment

horizon M :

Et [U(·)] =
M∑

m=1

{
Et [r

p
t+m]−

1

2
γ1 Et [r

p
t+m − Et [r

p
t+m]]

2 − 1

2
γ2 Et

[(
(K − rpt+m)

+)2]}. (8)
The first term of this utility function captures the expected portfolio returns, while the

second and third term penalize for the risk of the portfolio. The second term is a standard

variance term, while the third term is a lower partial moment of order 2.

We assume that the investor has no initial wealth and present him with the choice

between an asset that can experience a bubble and an asset which never encounters a

bubble. The “non-bubbly” or “normal” asset is restricted to be in the normal regime

or the crash regime. The Markov chain that governs the regime process of this asset is

denoted by S̃t. The corresponding transition matrix P̃ is a reduced form of the transition

matrix P , excluding bubble states:

P̃ =

pÑÑ =
pNN

1− pNB

pC̃Ñ =
pCN

1− pCB

pÑC̃ =
pNC

1− pNB

pC̃C̃ =
pCC

1− pCB

 (9)

The “bubbly asset” follows a regime process S∗
t , governed by the transition matrix P ∗

shown in Table 2. The return process can be in the normal regime, the bubble regime

or the crash regime. To avoid that bubbles which might occur infinitely far in the future

affect the investor’s asset allocation decision a t, we assume that the asset only experiences

a bubble once. After this bubble deflates, the bubble asset becomes identical to the normal

asset and enters the regime process S̃t. Due to this assumption, we need to formally define

two different crash states. The difference between these crash states is that the process can

enter and leave the state from different regimes. The one crash state, CN, can occur after

the normal regime and after another crash of the same type. It can be followed by the

normal regime, the bubble regime or another crash regime CN. The other crash state, CB,

can be entered from the bubble regime or a crash of the same type. It can be followed by

the bubble regime, another crash CB or the asset transforms into the non-bubbly type and
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follows the chain S̃t. However, while we define these two crash states to be different, we

assume that they are empirically identical and will refer in the estimation to both states

as C.

[Table 2 about here.]

The investor can take a position w in the bubbly asset and the opposite position −w
in the non-bubbly asset. Since the assets only differ with respect to their idiosyncratic

return, we can write the m-period ahead portfolio return as:

rpt+m = wσt+m

(
u∗t+m(S

∗
t+m)− ũt+m(S̃t+m)

)
, (10)

where u∗t+m is the regime-dependent idiosyncratic return for the potentially bubbly asset,

and ũt+m its counterpart for the non-bubbly asset. After the bubbly asset has become

identical to the non-bubbly asset, the portfolio return will equal zero.

Equation (10) allows us to rewrite the cumulation in Equation (8) as a product of

the allocation w and the assets’ risk and return characteristics. The cumulative expected

abnormal return difference is:

ηt ≡
M∑

m=1

σ̂t+m Et

[
u∗t+m − ũt+m

]
. (11)

from which it follows that the expected cumulative portfolio return equals wηt. Similarly,

we define the cumulation of variances of abnormal return differences over time as:

υt ≡
M∑

m=1

σ̂2
t+mVart

[
u∗t+m − ũt+m

]
, (12)

and use it to rewrite the cumulative portfolio variance as w2υt. For the lower partial

moment, we need to distinguish whether the investor takes a long position in the bubbly

asset and a short position is the non-bubbly asset or vice versa. We assume that the

thresholdK is proportional to the portfolio volatility
√
w2σ2

t+m = |w|σt+m, and corresponds

with the cut-off value of the crash regime, i.e., K = |w|σt+mk. For a long position (i.e.,

w > 0), it follows that E
[(
(K − rp)+

)ν]
= wνσν E

[(
(k− u∗t+m + ũt+m)

+
)ν]

. For w < 0, we

find E
[(
(K− rp)+

)ν]
= (−w)νσν E

[(
(k− ũt+m+u∗t+m)

+
)ν]

. We can define the cumulation
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of the lower partial moments of the abnormal returns as:

ρt(k, w) ≡
M∑

m=1

σ2
t+m Et

[((
k − sgn(w)(u∗t+m − ũt+m)

)+)2
]
, (13)

which depends on w only with respect to its sign. The cumulation of the portfolio lower

partial moments takes the form w2ρt(k, w).

Substituting the expressions for the mean, variance and lower-partial moment into

Equation (8) and differentiating with respect to w leads to the optimal weight:

w∗ =
ηt

γ1υt + γ2ρt(k, ηt)
. (14)

As υt > 0 and ρt(k, w) > 0 by construction, the sign of w and thus whether the investor

takes a long or short position depends only on the expected return ηt. Therefore, we

substitute ηt for w in ρt(k, w). Equation (14) shows that the investor’s position increases if

he is less risk averse, the expected return differences ηt are higher or the asset’s abnormal

return differences have a smaller cumulative variance υt or downside risk ρt. If the weight

optimal w∗ is positive for a certain horizon, the investor holds a long position in the bubbly

asset and a short position in the normal asset. In this case, we conclude that riding bubbles

is consistent with the propositions of Abreu and Brunnermeier (2003) and De Long et al.

(1990b) the optimal strategy at this specific horizon. If w∗ is negative, we conclude that

shorting is optimal. If shorting the bubbly asset is optimal for a wide range of investment

horizons, our findings speak in favor of the efficient market hypothesis. Alternatively, if

we find that shorting is only an optimal long-run strategy, our evidence points towards the

limits-to-arbitrage literature. If w∗ is close to zero, we conclude that it is optimal for an

investor to refrain from trading against the bubble or actively investing in it as the risk

outweighs the potential returns. We call this strategy “sidelining”. Especially at shorter

horizons, this result would provide as well evidence in favor of the propositions of the

limits-to-arbitrage literature.

To implement his asset allocation, the investor needs to obtain risk and return forecast

for his investment horizon. Broadly speaking, these forecasts are based on the probabilities

assigned to the different regimes and their distributional characteristics as shown in Equa-

tion (6). The exact derivation of the mean, variance and lower partial moment forecast is

discussed in Appendix A.
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5 Empirical Analysis

5.1 Regime-Switching Model

To analyze how the investor’s horizon and his risk-aversion influence his investment strategy

upon the detection of a bubble, we estimate the model empirically. We base our analysis on

monthly returns of the 48 industries previously used by Fama and French (1997), which are

available on French’s website4. Our dataset starts in July 1963 when the CRSP database

is extended by stocks traded on the AMEX.

To estimate the model described in the theoretical section, we follow a two-step pro-

cedure. First, we estimate the fundamental part of the asset returns pertaining to time t

over the last T months:

ri,τ − rf,τ = αi,t + β′
i,tfτ + εi,τ , E[εi,τ ] = 0, E[ε2i,τ ] = σ2

i,t τ = t− T + 1, ..., t, (15)

where fτ is a vector of risk factors. We use three different sets of risk factors, the CAPM,

the 3-Factor Model and the 4-Factor Model. The market portfolio, the risk-free rate, and

the factor portfolios HML, SMB and MOM were taken from French’s website as well. We

choose T equal to 120 months.

In the second step, we estimate the parameters for the Markov regime switching model

introduced in Section 3. We use the estimates of the first step to construct standardized

abnormal returns for the next month:

ui,t+1 =
ri,t+1 − rf,t+1 − β̂′

i,tft+1

σ̂i,t
. (16)

Table 3, 4 and 5 show descriptive statistics of the estimation results of Equation (15) and

the abnormal returns in Equation (16) for the CAPM, the 3-Factor Model and the 4-Factor

Model, respectively. The coefficient of the market factor is close to one for all models.

Further, as indicated by the positive coefficient on SMB, it seems that our set of industry

returns is slightly tilted towards smaller firms. The aggregate value versus growth and

momentum exposure is close to zero. We find that the abnormal return volatility ranges

4The data can be downloaded from the Kenneth French Data Library at http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html. We have used the set of industry returns con-

structed with the new specifications.

17



from 3.68 for the 4-Factor Model to 4.04 for the CAPM. The pooled mean abnormal return

is slightly negative for all three asset pricing models. The standard deviation is significantly

larger than one. It ranges from 1.10 for the CAPM to 1.15 for the 4-Factor Model. In line

with previous findings, we also observe that returns are slightly negatively skewed.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

We estimate the regime switching model based on the standardized abnormal returns in

Equation (16). To determine the maximum likelihood estimates, we use the Expectation

Maximization algorithm developed by Dempster et al. (1977). We require that bubbles

last at least twelve months (i.e., L ≥ 12) to ensure that we pick up sizable deviations

from fundamental value and to avoid any overlap with industry momentum documented

by Moskowitz and Grinblatt (1999). The cut-off value for crashes is k = −1, implying that

investors consider drops of one standard deviation or more as possible crashes. We also

estimate the initial inference probabilities. As the investor has no information on how long

a bubble has already lasted, we restrict the initial inference probabilities for the bubble

states (i.e. BL, L = 1, . . . , 12) to be equal.

Table 6 shows the estimation results of the regime switching model. Panel A shows

the distribution parameters of the different regimes. In Panel B, these parameters are

transformed into means and volatilities. The transition probabilities are reported in Panel

C. The standardized abnormal returns are in the normal regime very close to zero. They

range from about -0.01 for the 3-Factor Model and the 4-Factor Model to 0.02 for the

CAPM. The volatilities cluster around one. The probability that the normal regime con-

tinues in the following month is between 98% and 99%. The transition probability from the

normal to the crash regime is between 1% and 2%. In line with the idea that bubbles are

rare events, the transition probability from the normal to the bubble regime is extremely

small. It ranges from 0.04% for the CAPM to 0.11% for the 4-Factor Model. The bubble

regime is characterized by large positive abnormal returns. The estimate for the expected

18



abnormal return in case of the CAPM is 2.67% per month. For the 3-and 4-Factor Model

the estimates are 2.46% and 2.63%, respectively. Although bubbles start rarely, they have

a tendency to continue. The probability of staying in the bubble regime lies between 81%

and 87%. The alternative is that the return process moves to the crash regime, which is

characterized by a high volatility and very negative expected abnormal returns of around

-8.5%. These results hint towards a trade-off as the bubble will with a probability of 13% to

19% end with a crash during the following month. If the return process stays in the bubble

regime, an investor can earn high abnormal returns by actively investing in the bubbly

asset. However, if the process switches to the crash regime in the following period, the

losses are even larger. From the crash regime, the return process moves most frequently

to the normal regime. However, we also observe that crashes last several months. The

probability that a crash is followed by another crash ranges from 18% for the 4-Factor

Model to 23% for the 3-Factor Model. We do not only observe that bubbles are followed

by crashes but also that crashes are in about 10% of the cases followed by bubbles. This

finding suggests that bubbles might be interrupted by crashes and continue thereafter, an

effect described by Abreu and Brunnermeier (2003) as “temporary strengthening”.

[Table 6 about here.]

In Table 7 the ergodic probabilities are shown. They present the probability that the

investor assigns to the different regimes if he has no historical information. In line with

our findings for the transition probabilities, the normal regime occurs most frequently. Its

probability varies from 93% for the CAPM to 95% for the 3-Factor Model. 1% to 2% of

the observations belong to the crash regime. We find that the non-transitory bubble state

(Bnt) has a probability of 1% to 2%. The probabilities of the transitory bubble states B1

to B12 are much smaller and only around 0.02% since these states cannot directly reoccur.

[Table 7 about here.]

Figure 1 shows the distribution of the different regimes over time. We see a pronounced

increase in the number of industries experiencing a bubble at the end of the century when

the internet bubble occurred. It seems that it was also a period of higher than average
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volatility as several industries experienced crashes during these years as well. Especially for

the CAPM and the 3-Factor Model, we find, in line with the bursting of the bubble, a sharp

increase in the number of industries experiencing a crash around early 2000. Consistent

with historical accounts, the number of crashes also increases substantially in Fall 1987,

when the famous “Black Monday” occurred. The high number of bubbles that we observe

at the beginning of the sample period is largely a statistical artifact: since we only have

a small number of observations, we cannot apply the 12 months rule during the first year

and our bubble identification is less strict. The distribution of bubbles across industries is

shown in Table 8. The main observation is that the different regimes are well distributed

across the different industries. It seems that no single industry in particular is driving our

findings.

[Figure 1 about here.]

[Table 8 about here.]

5.2 Risk and Return Forecasts

To determine his optimal weight, the investor evaluates the risk and return characteristics

of the bubbly and normal asset during his investment horizon. Since these characteristics

depend directly on the forecast probabilities of the different regimes, as pointed out in Ap-

pendix A and Equation (6), Figure 2 displays their development. The forecast probabilities

of the non-bubbly asset are based on the assumption that the investor is certain that the

asset experiences the normal regime at t = 0. These probabilities converge very quickly

to the ergodic probabilities associated with the regime process S̃. The ergodic probability

of the normal regime (Ñ) is 0.99 for the 4-Factor Model and 0.98 for the CAPM and the

3-Factor Model. The crash probabilities are 0.02 and 0.01.

The forecast probabilities associated with the bubbly asset show a much more lively and

interesting pattern. These probabilities are based on the assumption that the investor is

certain that the asset experiences a bubble at t = 0. In the short run, the investor expects

the bubble to continue. The probability that the return process stays in the bubble regime

for the following month, ranges from 0.87 for the CAPM to 0.81 for the 4-Factor Model.
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Two months later, the probability is still between 0.77 for the CAPM and 0.68 for the

4-Factor Model. The probability that the bubble continues declines rapidly over time.

After 5 to 7 months, the probability that a crash occurred and that the two assets have

converged is higher than the probability that the bubble continues. Especially during the

first couple of months, the probability that the process moves to the crash regime shows a

sharp increase. At t = 2 it is around 14% for the CAPM, 17% for the 3-Factor Model and

19% for the 4-Factor Model. Thereafter, it decreases again slightly and approaches zero

at around 3 years. However, it seems that at this point in time most bubbles have already

burst. The probability that the return process of the bubbly asset S∗ has converged to the

return process of the non-bubbly asset S̃ is more than 95% after three years.

[Figure 2 about here.]

Combining the forecast probabilities and the expected abnormal returns of the different

regimes we can derive abnormal return forecasts shown in Figure 3. In Subfigures 3(a),

3(c) and 3(e), we compare the monthly abnormal return expectations of the normal asset if

the investor is 100% certain that the return process is in the normal regime (dashed line) to

the abnormal returns of the bubbly asset given that the bubble regime prevails with 100%

certainty (dotted line). Similar to the average abnormal returns for the complete sample

(see Tables 3 to 5) the predicted abnormal returns following the normal regime are slightly

negative. In line with our findings for the forecast probabilities, they deviate only slightly

from their long-term average for the first few months. The return forecasts following the

bubble regime show a more lively pattern. In the first month following the bubble regime,

we observe for all three asset pricing models very positive expected abnormal returns.

Thereafter, they decline quickly. The expected return difference, which can be interpreted

as the result of a strategy which is long in the bubbly asset and short in the non-bubbly

asset (see Equation (17)) is during the first month 0.22% for the 4-Factor Model, 0.48% for

the 3-Factor Model and 1.03% for the CAPM. Thereafter, the difference declines sharply

for all three asset pricing models due to the strong increase in crash probability showed

in Figure 2. This decline is most pronounced for the 4-Factor Model, where the returns

even temporarily become negative. The reason for the relatively stronger decline is twofold.

First, crashes are slightly more severe and second, the probability that the bubble continues
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is sightly lower than for the other models. For both, the 3-Factor Model and the 4-Factor

Model, returns recover after a few months. Just like the decline, the recovery is particularly

strong for the 4-Factor Model. After one year, the monthly abnormal returns to the long-

short strategy are 0.40% for the CAPM, 0.25% for the 3-Factor Model and 0.27% for the

4-Factor Model.

Since the optimal weight for different horizons depends on the cumulative returns to

the long-short strategy (see Equation (11)), Subfigures 3(b), 3(d) and 3(f) show how the

monthly abnormal returns add up over time. Except for the 4-Factor Model in month

4, the cumulative abnormal returns are consistently positive. They increase during the

first couple of years and reach thereafter an almost constant level as most bubbles have

burst and the bubbly asset has with a high probability converged to the normal asset.

The positive cumulative return forecasts for most of the sample imply that the investor

will generally assign a positive weight to the bubbly asset and a negative weight to the

non-bubbly asset. How extreme his position will be depends on the variance and lower

partial moment forecasts as well as his risk aversion.

[Figure 3 about here.]

The investor’s abnormal return volatility forecasts are shown in Figure 4. Subfig-

ures 4(a), 4(c) and 4(e) show the monthly forecasts of the long-short strategy. Although

the relation between the volatility forecast of the long-short portfolio and the two separate

assets is not straightforward, these forecasts can give some first insights. Just like above,

we assume for the normal asset that the investor is certain that it is in the normal regime

Ñ at t = 0. Its volatility is relatively constant over time and close to 4% for all three asset

pricing models. The forecasts for the bubbly asset are based on the assumption that it

was in the non-transitory bubble regime Bnt. At very short horizons, the volatility is very

high due to the high crash risk documented in Figure 2. As the horizon increases, crash

risk decreases again. Overall, we can infer that the very high volatility of the long-short

position at short horizons is mainly driven by the high volatility of the bubbly asset. At

the one-month horizon, the standard deviation of the long-short position is between 7.5%

and 8% for the different factor models. Just like the volatility of the bubbly asset, it de-

creases thereafter. After one year, the volatility equals 4.28% for the CAPM, 3.65% for
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the 3-Factor Model and 3.41% for the 4-Factor Model. After 5 years, the monthly volatil-

ity for the long-short position has become negligible due to the high probability that the

assets have converged. It is about 0.5% for the CAPM and 0.30% for the other models.

Subfigures 4(b), 4(d) and 4(f) show how the monthly volatility forecasts translate into

the cumulative variance forecasts defined in Equation(12), which directly determine the

investor’s optimal weight. The cumulative variance increases steeply during the first few

months but looses speed thereafter. Over time, as the probability that the two assets are

identical approaches one, the monthly increase approaches zero. Comparing the evolution

of the return to the volatility forecasts suggests that the additional risk during bubbles

provides a clear counterweight to the additional returns that an investor can earn. As

the risk seems to be mainly due to crashes, we will investigate in turn the lower partial

moments (LPM).

[Figure 4 about here.]

For the LPMs we need to distinguish whether the investor holds a short position in

the bubbly asset and a long position in the non-bubbly asset or vice versa. As shown in

Equation (14), the sign of the weight is determined by the difference in expected abnormal

returns between the two assets. As the difference in abnormal returns between the bubbly

and normal asset is positive for most of our sample period, the LPMs shown in Figure 5

are usually the appropriate risk measure.5 Subfigures 5(a), 5(c), and 5(e) document that

the evolution of the monthly LPM forecast is similar to the volatility forecast. It seems to

be slightly more extreme which can be explained by the fact that it focuses on crash risk.

At very short horizons, the LPM is rather high. For the CAPM and the 3-Factor Model, it

is during the second month even slightly higher than during the first month. This increase

can be explained by the increase in crash probability documented in Figure 2. Thereafter,

it decreases consistently over time. While it ranged from 12.80 for the CAPM to 17.93 for

the 4-Factor Model during the second month, it is virtually equal to zero after 5 years.

Subfigures 5(b), 5(d) and 5(f) show how the monthly forecasts translate into cumulative

5As the LPMs of the short position or the long position do by definition not relate to the partial

moments of the zero investment portfolio, we deviate from our approach for the other moments and do

not discuss them.
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forecasts over the investor’s horizon as defined in Equation (13). We observe first a steep

increase which flattens over time.

[Figure 5 about here.]

Figure 6 shows the LPM of an investment portfolio that is long in the normal asset and

short in the bubbly asset. As the cumulative abnormal return forecast is only negative

during the second month for the 4-Factor Model, we can infer that this LPM is only the

appropriate risk measure for this specific case. The LPMs of this strategy are generally

somewhat smaller in magnitude, which can be explained by the absence of crash risk. Just

like the variance and the other LPMs, they are higher at the beginning and decline as the

investor’s horizon increases. Thus, it seems that not only riding bubbles is a risky strategy

but also shorting the bubbly asset. While riding the bubble, an investor faces the risk of

a crash. When shorting, he may face large negative returns in case the bubble continues.

[Figure 6 about here.]

5.3 Investment Horizon and Optimal Portfolio Weight

The investor determines his optimal weight based on the risk and return forecasts and

his aversion to downside or variance risk. As the current empirical literature does not

provide any risk aversion parameters for the utility function proposed in Equation (7),

we calibrate it to the market. The underlying idea is that an investor with an average

risk-aversion would hold the market portfolio. We discuss the details of the estimation of

the risk aversion coefficient in Appendix B.

Figure 7 shows the optimal weight for a mean-variance and a downside risk averse

investor. As in Equation (14), the weights are defined in terms of a long position in the

bubbly asset and a short position in the normal asset. A negative weight at a certain horizon

therefore implies that the investors shorts the bubbly asset and takes a long position in the

non-bubbly asset at this investment horizon. A positive weight means that it is optimal

to ride the bubble. If the weight is close to zero, we conclude that it is optimal to sideline

at this horizon. In line with our approach in the previous section, we compare the bubbly
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asset given that the investor is certain that the asset experienced a bubble at t = 0 to the

non-bubbly asset, assuming that it was with certainty in the normal regime.

[Figure 7 about here.]

Although the variance-risk averse investor takes more extreme positions, we observe a

similar development for both investors over time. During the first month, both the variance-

as well as the downside-risk averse investor assign a relatively large positive weight to the

bubbly industry and consequently a negative one to the normal asset. For the CAPM, the

downside risk averse investor’s optimal weight in the bubbly asset is 0.57 and the variance

risk investor’s optimal weight is 0.80. For the 3-Factor and 4-Factor Model, the weights are

lower but still positive and economically large. The variance-risk averse investor’s optimal

weight is 0.38 for the 3-Factor Model and 0.16 for the 4-Factor Model. The optimal weights

of the downside risk averse investor are 0.23 and 0.09 respectively. Following the first

months, the weight allocated to the bubbly asset declines rapidly, reflecting the increased

crash probability and consequently worse risk-return tradeoff documented above. The

decline is particularly pronounced for the 4-Factor Model, where the weight becomes even

slightly negative during the fourth month. For the other factor models, we also observe a

steep decline, but the weight stays positive. The lowest point for the CAPM is during the

5th and 6th month, where the optimal weight for the variance risk averse investor is 0.60

and the optimal weight of the downside risk averse investor is 0.40. The lowest weight of

the 3-Factor Model invested in the bubbly asset is 0.14 and 0.08 at the 5 month horizon

for a variance-risk and downside-risk averse investor respectively. During the following

months, the optimal weight allocated to the bubbly asset continuously increases again

until it reaches a steady state level. For the 4-Factor Model, the weight allocated to the

bubbly asset at the 3-year horizon is even higher than the weight allocated during the

first month. It is 0.31 for the variance-risk averse investor and 0.18 for the downside-risk

averse investor. The optimal weights at the 3-year horizon are higher for the other two

models. The variance-risk averse investor’s optimal weight allocated to the bubbly asset

is 0.75 for the CAPM and 0.37 for the 3-Factor Model. The weight of the downside-risk

averse investor is, as usual, somewhat lower at 0.53 for the CAPM and 0.22 for the 3-Factor

Model.
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Our evidence suggests that riding bubbles is a profitable strategy, particularly at a very

short horizon of one month and rather long horizons of at least a year or longer. While

the first result is in line with the finding of Guenster et al. (2008) and the theoretical

models of Abreu and Brunnermeier (2003) and De Long et al. (1990b) the second result

is at first sight quiet surprising. Traditionally, bubbles are thought of as zero-sum games

and one expects crashes to wipe out all gains previously accrued. Therefore, the difference

in weights should approach zero for a horizon that is sufficiently long to ensure a high

probability that the bubble burst. Our finding of a positive and economically large weight

allocated to the bubbly asset in the long-run points towards a close connection between

bubbles and the real economy.

Anecdotal evidence suggests that bubbles are often coupled with technological innova-

tions and “New Economy” thinking as described in Shiller (2000). As bubbles go in line

with technological enhancements, it could be that the run-up in stock prices simultaneously

originates from two sources. The one source is a continuous adjustment in fundamental

value and the other source is the irrational price increase. If these two development occur

at the same time, our methodology might not be able to disentangle them. However, this

explanation does not endanger our conclusion that riding bubbles is the optimal strategy.

Another explanation for these findings goes one step further and proposes a positive

causal effect of bubbles on the real economy. For example, Jerzmanowski and Nabar (2008)

suggest that the internet bubble had a positive effect on aggregate GDP growth. The idea

underlying their analysis is that financing constraints for R&D spending lead usually to a

suboptimal level of innovation. Bubbles can ease these financing constraints as investors

have higher return expectations and consequently they are willing to invest more. The

increase in R&D spending brings the economy closer to an optimal innovation level, which

has a positive effect on net welfare. While the model of Jerzmanowski and Nabar (2008)

analyzes the effect of bubbles on welfare at the aggregate level, the model Hirshleifer et al.

(2006) which we discuss in Section 2.1 analyzes feedback at the firm level. Although rather

different factors play a role in the model of Hirshleifer et al. (2006) and Jerzmanowski and

Nabar (2008), they both arrive at the conclusion that bubbles can have a positive effect

on the real economy. This proposition can provide an explanation of our finding that the

weight allocated to the bubbly asset is positive, even in the long run.
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6 Conclusion

In this paper we analyze how the investor’s horizon affects his optimal portfolio allocation

during bubbles. We assume that he can only make a zero-cost investment and offer him

two assets, one that experiences a bubble and one that can never enter the bubble regime.

When confronted with this choice, an investor with a mean-variance utility function as well

as an investor who is averse to downside risk actively invests in the bubbly asset for most

of the investment horizons. Especially in the very short run as well as in the long run,

the bubbly asset offers a substantially better risk-return trade-off than the non-bubbly

asset. At intermediate horizons of 2 to 7 months, the risk-return trade-off deteriorates

temporarily due to a very high crash risk.

Our results indicate that riding bubbles seems to be the optimal strategy, even in

the long run, for investors who have no superior timing abilities. This finding stands in

stark contrast to the predictions of the efficient market hypothesis, which states that it is

optimal to short the bubbly asset at any horizon. It also contradicts the limits-to-arbitrage

literature. Based on this stream of literature, we would expect that shorting the bubbly

asset is risky and potentially unprofitable for short-term oriented investors. However, it

should at least be the optimal strategy for investors who have a longer horizons. These

investor should ultimately be able to profit of the bubble bursting. And even the theoretical

models that propose riding bubbles as the optimal short-term strategy, predict that the

investor takes a short position as the bubble progresses and the risk of a crash increases.

Our results are consistent with models that suggest a causal relation between bubbles

and the asset’s fundamental value. As the bubble leads to an increase in fundamental

value, subsequent crashes should not wipe out all of the gains. Instead, the part of the

price increase which is due to the bubble’s impact on fundamental value should remain.

Consequently, in line with our findings, riding bubbles can even be a good strategy in the

long term.
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A Derivation of Regime-Specific Moment Forecasts

The investor has to make a decision at point t. He has constructed inference probabilities

telling him with what probability the different regimes apply to the bubbly asset, ϕ∗
t|t(s), s ∈

S∗. For the non-bubbly asset he has calculated ϕ̃t|t(s), s ∈ S̃. His allocation decision

depends on the risk and return characteristics of the difference between the idiosyncratic

part of the assets, i.e. u∗t+m − ũt+m over the complete horizon m = 1, 2, . . . ,M . If the

assets have converged (i.e., S∗
t+m = S̃), the two assets are identical and both the risk and

return characteristics are equal to zero.

Based on Equation (6), we derive the expectation, the variance and the lower partial

moment. The expected value of u for period t+m follows directly:

Et

[
u∗t+m − ũt+m

]
=

∑
s∈S∗

ϕ∗
t+m|t(s)ψ(s)−

∑
s∈S̃

ϕ̃t+m|t(s)ψ(s)

=
∑

s∈{S∗\S̃}

ϕ∗
t+m|t(s)ψ(s)−

(
1− ϕ∗

t+m|t(S̃)
)∑

s∈S̃

ϕ̃t+m|t(s)ψ(s),
(17)

where the predictions for the means of the different regimes are denoted by ψ(s). In the

second equation, we use the fact that the two assets have equal expectation if S∗
t+m = S̃.

The forecast probabilities are constructed from the time t inference probabilities and the

transition matrices, ϕ∗
t+m|t = (P ∗)mϕ∗

t|t and ϕ̃t+m|t = (P̃ )mϕ̃t|t. The regime-specific means

follow directly in case of the normal and bubble regime. For the crash regime, we use the

fact that ut follows a lognormal distribution:

ψ(s) ≡ E[ut|St = s] =


µN if St = N

µB if St = B

k − eµC+
1
2
ω2
C ifSt = C

(18)

The variance, Vart
[
u∗t+m − ũt+m

]
, can be calculated as Et

[(
u∗t+m − ũt+m

)2]− Et

[
u∗t+m − ũt+m

]2
.

We can compute the first part using Equation (6), and the second part is given in Equa-

tion (17). Summarizing the raw second moments of the different regimes in ζ(s) we can
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express the portfolio’s raw second moment as:

Et

[(
u∗t+m − ũt+m

)2]
=Et

[
(u∗t+m)

2 − 2u∗t+mũt+m + ũ2t+m

]
=

∑
s∈{S∗\S̃}

ϕ∗
t+m|t(s)ζ(s)

− 2
∑

s∈{S∗\S̃}

ϕ∗
t+m|t(s)ψ(s)

∑
s∈S̃

ϕ̃t+m|t(s)ψ(s)

+
(
1− ϕ∗

t+m|t(S̃)
)∑

s∈S̃

ϕ̃t+m|t(s)ζ(s)

(19)

The regime-specific second moments are consequently also a combination of the squared

regime-specific first moments, given in Equation (18), and the regime-specific raw second

moments, which can be stated as:

ζs ≡ E[u2t |St = s] =


µ2
N + ω2 if St = N

µ2
B + ω2 if St = B

k2 − 2keµC+
1
2
ω2
C + e2(µC+ω2

C) if St = C

(20)

Finally, we derive the partial moments. Partial moments are raw moments by construction

and consequently, we can directly apply Equation (6). To compute the partial moments,

we need take into account whether the investor takes a long or a short position in the

bubbly versus the normal asset shown in Equation (13). We find:

E[((k − sgn(w)(u∗t+m − ũt+m)
+)2] =∑

s∗∈{S∗\S̃}

∑
s̃∈S̃

ϕ∗
t+m|t(s

∗)ϕ̃t+m|t(s̃)×

E

[((
k − sgn(w)(u∗t+m − ũt+m)

)+)2

|S∗
t+m = s∗, S̃t+m = s̃

]
, (21)

which depends on the convolution of u∗t+m and ũt+m under the different regimes. To

compute regime-specific partial moments, we need to distinguish between a short and long

position in the risky asset to evaluate the expectations. Only in case both u∗t+m and ũt+m

follow normal distributions, their convolution will also follow a normal distribution and we

can calculate the lower partial moment in closed form. If one of them follows a log-normal

distribution that is no longer the case, and we use numerical integration.
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Consider a random variableX ∼ N(µ, σ2) which has pdf gX(·). Further, gN(·) represents
the standard normal pdf and GN(·) the related cdf. For w > 0, the lower partial moment

is computed as:∫ k

−∞
(k − x)2gX(x) dx =

∫ k−µ
σ

−∞
(k − µ− σz)2gN(z) dz

=
(
(k − µ)2 + σ2

)
GN

(
k − µ

σ

)
+ σ(k − µ)gN

(
k − µ

σ

)
(22)

and for w < 0, we find:∫ ∞

−k

(k + x)2gX(x) dx =

∫ ∞

− (k+µ)
σ

(k + µ+ σz)2gN(z) dz

=
(
(k + µ)2 + σ2

)(
1−GN

(
−k + µ

σ

))
+ σ(k + µ)gN

(
−k + µ

σ

)
. (23)

B Estimation of Risk Aversion Coefficients

The utility function in Equation (8) shows two risk aversion coefficients, γ1 for variance

and γ2 for the second order lower partial moment. While the typical value for the risk

aversion coefficient on variance are well-known and range between 1 and 5, for more exotic

risk measures such as lower partial moments it is unclear what typical values should be.

Instead of simply picking some numbers, we calibrate the parameter values to the market.

We pick the values in such a way that the investor would want to exactly hold the market

portfolio, so combinations of γ1 and γ2 should solve

1 = wm =
E[rmt ]

γ1Var[rmt ] + γ2LPM2[rmt ]
, (24)

where rm is the one-period market return. This expression is similar to the optimal portfolio

in Equation (14).

We estimate the moments in Equation (24) by a Markov regime switching model, in

particular to pay attention to downside risk. This regime switching model has a state

variable Sm
t which can be in a normal regime and a crash regime, making it comparable

to the regime switching model we use for the non-bubbly asset in Section 4. The model is
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parameterized as follows

rmt = σm
t u

m
t , u

m
t ∼

N(µmN, ω
2
mN) if Sm

t = Nm

k − eZ
m
, Zm ∼ N(µmC, ω

2
mC) if Sm

t = Cm
(25)

Pm =

 pmNN pmNC

pmCN = 1− pmNN pmCC = 1− pmNC

 (26)

We do not include bubble components in this model, as the limited number of observations

will complicate the identification of the bubble states.

We use the CRSP All Shares Index from July 1963 until December 2006 to estimate

the parameters. We first estimate σt as the volatility over the prior T = 120 months, and

construct umt = rmt /σ
m
t . This resulting series of umt is used to estimate the regime switching

model by applying the EM-algorithm. The resulting estimates are given in Table 9. For

the normal regime we find an average return of 1.07% per month and a volatility of 4.01%.

When an average crash occurs the market goes down with 11.49% and volatility increases

to 5.15%. The normal regime is quite persistent with a probability of 0.967 to continue.

However, when the market encounters a crash, the probability that another crash follows

is also high at 0.283. We found similar patterns for the industry results.

[Table 9 about here.]

To calculate the values for γ1 and γ2 we combine the regime-specific predictions with

the ergodic probabilities. As such the horizon and the information set of the investor do

not matter. The ergodic probability for the normal regime equals 0.957, which leaves 0.043

for the crash regime. Consequently, the unconditionally predicted return equals 0.52%

per month, the volatility equals 4.8% per month, and the root of the second order lower

partial moment equal 1.92%. Substituting these numbers into Equation (24) means that

the following linear combination of γ1 and γ2 makes sure that an investor holds the market

γ2 = 14.19− 6.27γ1. (27)

An investor who only cares about downside risk will have γ2 = 14.19, while a mean-variance

investor will have γ1 = 2.26.
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Table 1: Structure of the Transition Matrix

N C B1 B2 · · · Bj Bj+1 · · · BL−1 Bnt

N pNN pCN 0 0 · · · 0 0 · · · 0 0
C pNC pCC 0 0 · · · 0 0 · · · 0 pBC

B1 pNB pCB 0 0 · · · 0 0 · · · 0 0
B2 0 0 1 0 · · · 0 0 · · · 0 0
...

...
...

...
. . . . . .

...
...

. . .
...

...

Bj 0 0 0 0
. . . 0 0 · · · 0 0

Bj+1 0 0 0 0 · · · 1 0 · · · 0 0
...

...
...

...
...

. . .
...

. . . . . .
...

...

BL−1 0 0 0 0 · · · 0 0
. . . 0 0

Bnt 0 0 0 0 · · · 0 0 · · · 1 pBB

This table shows the structure of the matrix of transition probabilities for the different regimes. N indicates
the normal regime, C indicates the crash regime and B indicates a copy of the bubble regime. We restrict
the bubble regime to last at least L periods. Therefore, we include L copies of the bubble regime: the
transitory bubble states B1, B2, . . . ,BL−1, and the non-transitory bubble state Bnt. We require that the
process St can enter state Bj , j = 2, . . . , L only from state Bj−1.
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Table 2: Structure of the Transition Matrix P ∗

N CN B1 B2 · · · Bj Bj+1 · · · BL−1 Bnt CB S̃
N pNN pCN 0 0 · · · 0 0 · · · 0 0 0 0
C pNC pCC 0 0 · · · 0 0 · · · 0 0 0 0
B1 pNB pCB 0 0 · · · 0 0 · · · 0 0 pCB 0
B2 0 0 1 0 · · · 0 0 · · · 0 0 0 0
...

...
...

...
. . . . . .

...
...

. . .
...

...
...

...

Bj 0 0 0 0
. . . 0 0 · · · 0 0 0 0

Bj+1 0 0 0 0 · · · 1 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

. . . . . .
...

...
...

...

BL−1 0 0 0 0 · · · 0 0
. . . 0 0 0 0

Bnt 0 0 0 0 · · · 0 0 · · · 1 pBB 0 0
CB 0 0 0 0 · · · 0 0 · · · 0 pBC pCC 0

S̃ 0 0 0 0 · · · 0 0 · · · 0 0 pCN 1

This table shows the structure of the matrix of transition probabilities for the Markov chain S∗
t , which is

associated with a bubbly asset. N indicates the normal regime, C indicates a copy of the crash regime, B
indicates a copy of the bubble regime and S̃ indicates the chain of the non-bubbly asset. The transitory
and non-transitory bubble states are defined as explained in Table 1. The crash state CN can only be
entered from the normal regime. The crash state CB can only be entered from the non-transitory bubble
regime. From the crash state CB the chain can be left to the non-bubbly chain S̃.
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Table 3: Descriptive Statistics of CAPM Regression and Abnormal Returns

Estimates of Equation 15 Abnormal Returns (Equation 16)
Industry ᾱ β̄ σ̄ mean stdev. skew. kurt. min. max.
Agric −0.004 0.94 4.63 0.012 1.01 0.08 4.97 −3.43 4.84
Food 0.336 0.74 3.07 0.109 1.16∗ 0.24 5.82 −4.76 5.36
Soda 0.114 0.88 4.88 −0.036 1.24∗ −0.22 5.73 −5.85 4.88
Beer 0.286 0.86 3.88 0.025 1.13∗ −0.41 4.38 −4.28 3.27
Smoke 0.425 0.69 4.92 0.093 1.15∗ −0.41 4.52 −5.53 3.63
Toys −0.302 1.19 4.80 −0.073 1.05 −0.65 5.54 −5.92 3.25
Fun 0.181 1.29 4.61 0.021 1.02 −0.24 3.82 −3.72 2.94
Books 0.105 1.05 3.07 0.039 1.04 −0.52 6.26 −5.65 3.04
Hshld −0.005 0.88 2.77 −0.064 1.15∗ −0.68 8.02 −6.52 4.53
Clths −0.096 1.16 4.33 −0.012 1.12∗ −0.28 4.84 −4.46 3.99
Health −0.323 1.29 6.83 −0.040 0.99 −0.80 6.65 −5.19 2.76
MedEq 0.097 0.94 3.48 −0.006 1.02 −0.19 3.94 −4.22 3.66
Drugs 0.239 0.85 3.53 0.019 1.14∗ −0.42 5.57 −5.33 5.07
Chems −0.049 1.00 2.84 −0.030 1.14∗ 0.13 4.94 −4.07 5.55
Rubbr 0.000 1.07 3.40 −0.011 1.10∗ −0.38 5.29 −4.29 4.82
Txtls −0.130 1.00 4.15 −0.034 1.12∗ −0.38 5.09 −4.63 4.18
BldMt −0.006 1.12 2.74 −0.005 1.11∗ −0.33 4.44 −4.81 2.89
Cnstr −0.243 1.30 4.11 −0.028 1.09∗ 0.14 3.47 −3.63 3.33
Steel −0.419 1.17 4.21 −0.061 1.12∗ 0.58 5.36 −3.20 6.02
FabPr −0.448 1.08 4.77 −0.100 1.07∗ −0.10 4.37 −4.28 4.29
Mach −0.185 1.17 2.74 −0.065 1.13∗ 0.04 3.49 −3.33 3.83
ElcEq 0.121 1.17 3.13 0.027 1.05 −0.23 3.66 −4.27 3.05
Autos −0.164 1.00 4.15 −0.053 1.14∗ −0.32 5.58 −5.99 4.10
Aero 0.063 1.16 4.35 0.035 1.09∗ −0.60 5.95 −5.66 3.59
Guns 0.234 0.90 4.99 0.038 1.13∗ −1.30 11.44 −8.25 3.75
Gold −0.198 0.71 9.84 −0.022 1.10∗ 0.42 5.19 −3.42 6.03
Ships −0.208 1.05 4.95 −0.039 1.10∗ 0.00 4.25 −4.14 4.18
Mines −0.187 0.99 4.75 −0.011 1.12∗ −0.13 3.35 −3.95 3.19
Coal −0.114 1.08 7.01 −0.025 1.17∗ 0.29 4.54 −4.64 5.03
Oil 0.203 0.77 3.87 0.069 1.12∗ 0.28 3.55 −2.99 3.74
Util 0.173 0.51 3.10 0.074 1.11∗ −0.01 3.74 −3.68 4.14
Telcm 0.131 0.73 3.08 0.045 1.08∗ 0.02 3.53 −3.69 3.47
PerSv −0.375 1.19 4.13 −0.057 1.02 −0.48 4.81 −4.45 3.05
BusSv 0.000 1.34 2.96 0.031 1.06 0.17 3.87 −2.95 3.71
Comps −0.278 1.17 4.26 −0.086 1.10∗ −0.11 3.85 −4.28 3.49
Chips −0.173 1.40 3.67 −0.029 1.16∗ −0.13 4.15 −4.22 4.46
LabEq −0.213 1.35 4.04 −0.065 1.09∗ 0.21 5.05 −3.69 4.85
Paper 0.113 0.96 3.28 0.009 1.07 0.55 5.22 −3.47 5.37
Boxes −0.020 0.92 3.63 −0.006 1.15∗ −0.60 4.25 −4.89 3.06
Trans −0.094 1.09 3.26 −0.023 1.05 0.08 4.11 −3.49 4.06
Whshl −0.027 1.11 2.59 −0.068 1.11∗ −0.31 6.91 −6.37 5.16
Rtail 0.058 1.06 3.22 −0.013 1.12∗ −0.19 3.57 −3.71 3.70
Meals 0.054 1.16 3.89 −0.028 1.06 −0.32 5.31 −4.80 3.79
Banks 0.176 1.03 3.32 0.037 1.05 −0.52 5.91 −4.85 4.22
Insur 0.207 0.91 3.46 0.053 1.05 −0.51 7.54 −6.24 4.88
RlEst −0.525 1.12 4.59 −0.137∗ 1.06 −0.60 5.27 −4.63 3.40
Fin 0.162 1.09 2.29 0.090 1.13∗ −0.32 4.56 −4.53 4.33
Other −0.592 1.22 4.36 −0.092 1.07 −0.19 5.77 −5.29 4.31

Pooled −0.040 1.04 4.04 −0.010 1.10∗ −0.20 5.07 −8.25 6.03

The first three columns of this table report the averages of the coefficients of the rolling regressions of the
market model in Equation 15 for every industry. For each regression, we construct an abnormal return for
the month following the estimation window as in Equation 16. The remaining columns show the descriptive
statistics of these abnormal returns. To correct for time-varying volatility, we standardize the abnormal
return by a division by the residual volatility of the regression model displayed in column 3. An asterisk
denotes a significant difference from zero for the mean and a significant divergence from one in case of
volatility, both at the 5% significance level.
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Table 4: Descriptive Statistics of 3-Factor Model Regressions and Abnormal Returns

Estimates of Equation 15 Abnormal Returns (Equation 16)

Industry ᾱ βm βSMB βHML σ̄ mean stdev. skew. kurt. min. max.
Agric −0.132 0.85 0.62 0.07 4.29 −0.004 1.03 0.48 5.87 −3.28 5.48
Food 0.238 0.80 −0.17 0.08 2.90 0.066 1.19∗ 0.25 5.54 −4.73 5.29
Soda 0.038 1.01 −0.09 0.19 4.73 −0.039 1.25∗ 0.12 5.72 −5.24 5.32
Beer 0.176 0.88 −0.04 0.04 3.73 0.004 1.18∗ −0.39 4.16 −4.10 3.50
Smoke 0.367 0.78 −0.24 0.06 4.79 0.060 1.17∗ −0.54 5.08 −6.13 3.63
Toys −0.327 1.06 0.55 −0.10 4.44 −0.100 1.07∗ −0.48 5.19 −6.00 3.02
Fun 0.162 1.17 0.54 −0.07 4.33 −0.007 1.05 −0.11 3.65 −3.91 3.19
Books 0.010 1.01 0.26 0.06 2.90 0.025 1.07∗ −0.45 6.24 −6.20 3.50
Hshld 0.064 0.91 −0.15 −0.12 2.66 −0.040 1.23∗ −1.44 17.06 −10.44 5.12
Clths −0.273 1.08 0.59 0.18 3.69 −0.096 1.23∗ −0.23 5.94 −5.65 5.00
Health −0.348 1.03 0.94 −0.29 5.95 −0.072 1.07∗ −1.25 10.04 −7.23 3.25
MedEq 0.342 0.83 0.02 −0.51 3.15 0.043 1.11∗ −0.27 4.40 −4.85 3.62
Drugs 0.482 0.80 −0.37 −0.49 3.12 0.096 1.20∗ −0.38 4.42 −5.32 3.95
Chems −0.171 1.10 −0.02 0.27 2.67 −0.081 1.13∗ 0.17 4.58 −4.13 5.23
Rubbr −0.186 0.98 0.67 0.17 2.74 −0.081 1.19∗ −0.11 4.10 −4.19 4.37
Txtls −0.425 1.01 0.76 0.49 3.36 −0.149∗ 1.15∗ 0.02 4.09 −3.99 4.26
BldMt −0.192 1.13 0.30 0.23 2.38 −0.084 1.13∗ −0.17 3.98 −4.72 3.39
Cnstr −0.346 1.26 0.51 0.14 3.75 −0.081 1.11∗ 0.07 3.32 −3.61 2.72
Steel −0.631 1.20 0.42 0.44 3.88 −0.128∗ 1.15∗ 0.54 4.82 −3.78 5.67
FabPr −0.508 1.03 0.63 0.08 4.35 −0.128∗ 1.09∗ −0.07 4.10 −3.75 4.32
Mach −0.210 1.15 0.35 0.11 2.55 −0.094 1.15∗ 0.09 3.96 −3.57 4.64
ElcEq 0.152 1.12 0.05 −0.14 3.03 0.052 1.07 −0.25 3.30 −3.97 2.86
Autos −0.480 1.15 0.21 0.64 3.75 −0.155∗ 1.16∗ −0.09 4.47 −4.93 3.65
Aero −0.082 1.14 0.35 0.16 4.02 −0.019 1.10∗ −0.45 5.86 −6.11 3.63
Guns 0.015 0.94 0.26 0.36 4.75 −0.023 1.15∗ −1.05 11.10 −8.37 4.91
Gold −0.348 0.70 0.60 0.28 9.75 −0.041 1.10∗ 0.54 5.96 −3.79 6.38
Ships −0.264 1.09 0.31 0.22 4.70 −0.063 1.12∗ 0.25 3.92 −3.66 4.11
Mines −0.327 1.02 0.51 0.34 4.46 −0.059 1.12∗ −0.19 3.30 −4.06 3.08
Coal −0.234 1.09 0.28 0.19 6.98 −0.043 1.18∗ 0.40 5.08 −4.73 5.19
Oil 0.118 0.93 −0.28 0.28 3.63 0.047 1.15∗ 0.23 3.50 −3.08 3.84
Util −0.075 0.70 −0.24 0.47 2.68 −0.022 1.11∗ 0.04 3.87 −3.90 3.98
Telcm 0.038 0.80 −0.24 0.18 2.95 0.032 1.11∗ −0.02 3.68 −3.68 3.67
PerSv −0.455 1.09 0.55 −0.02 3.70 −0.101 1.08∗ −0.68 6.14 −5.60 3.17
BusSv 0.153 1.09 0.44 −0.45 2.20 0.121∗ 1.12∗ 0.10 4.44 −3.77 4.76
Comps 0.010 0.99 0.08 −0.54 3.94 −0.019 1.09∗ −0.21 3.56 −4.14 3.03
Chips −0.012 1.20 0.39 −0.34 3.25 0.008 1.20∗ −0.19 3.92 −4.28 4.03
LabEq −0.018 1.14 0.47 −0.43 3.60 −0.027 1.11∗ 0.10 4.55 −4.15 4.37
Paper −0.011 1.05 0.01 0.28 3.18 −0.047 1.08∗ 0.42 4.80 −3.33 5.04
Boxes −0.011 0.99 −0.11 0.03 3.53 −0.006 1.17∗ −0.67 4.52 −5.43 2.93
Trans −0.244 1.10 0.29 0.25 3.01 −0.065 1.07∗ −0.09 4.01 −4.35 3.66
Whshl −0.099 1.06 0.40 0.07 2.30 −0.130∗ 1.15∗ −0.33 6.31 −5.57 5.08
Rtail 0.033 1.02 0.20 −0.02 3.12 −0.017 1.17∗ −0.14 3.93 −4.24 4.01
Meals −0.024 1.09 0.42 −0.03 3.49 −0.045 1.12∗ −0.25 4.65 −5.01 4.13
Banks −0.034 1.19 0.01 0.47 2.92 −0.007 1.03 0.14 4.20 −3.64 4.15
Insur 0.052 1.00 −0.02 0.26 3.17 0.027 1.03 −0.05 4.11 −3.54 3.30
RlEst −0.898 1.06 0.99 0.51 3.49 −0.286∗ 1.08∗ −0.09 5.82 −4.98 5.45
Fin 0.000 1.18 0.07 0.34 2.05 0.022 1.13∗ −0.12 4.24 −4.49 3.85
Other −0.655 1.10 0.44 −0.05 4.05 −0.094 1.22∗ 0.28 6.55 −5.53 5.64

Pooled −0.116 1.02 0.26 0.09 3.71 −0.039∗ 1.13∗ −0.14 5.26 −10.44 6.38

The first five columns of this table report the averages of the coefficients of the rolling regressions of the
Fama and French (1993) Model in Equation 15 for every industry. For each regression, we construct an
abnormal return for the month after the estimation window as in Equation 16. The remaining columns show
the descriptive statistics of these abnormal returns. To correct for time-varying volatility, we standardize
the abnormal return by a division by the residual volatility of the regression model displayed in column 3.
An asterisk denotes a significant difference from zero for the mean and a significant divergence from one
in case of volatility, both at the 5% significance level.
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Table 5: Descriptive Statistics of 4-Factor Model Regressions and Abnormal Returns

Estimates of Equation 15 Abnormal Returns (Equation 16)

Industry ᾱ βm βSMB βHML βUMD σ̄ mean stdev. skew. kurt. min. max.
Agric −0.223 0.85 0.64 0.09 0.11 4.28 −0.029 1.03 0.51 5.89 −3.24 5.55
Food 0.274 0.79 −0.17 0.07 −0.02 2.84 0.099 1.21∗ 0.31 4.80 −3.60 5.20
Soda 0.111 1.00 −0.09 0.17 −0.05 4.68 −0.019 1.28∗ 0.12 5.53 −5.28 5.39
Beer 0.108 0.87 −0.02 0.06 0.10 3.69 −0.014 1.20∗ −0.38 4.09 −4.20 3.75
Smoke 0.459 0.78 −0.24 0.04 −0.09 4.77 0.081 1.19∗ −0.47 4.74 −6.03 3.60
Toys −0.195 1.04 0.54 −0.13 −0.13 4.37 −0.062 1.08∗ −0.38 4.57 −5.43 3.42
Fun 0.154 1.16 0.55 −0.06 0.04 4.29 −0.014 1.06 −0.08 3.69 −3.92 3.16
Books 0.049 1.02 0.25 0.05 −0.04 2.89 0.046 1.10∗ −0.31 5.86 −6.18 3.68
Hshld 0.095 0.91 −0.15 −0.13 −0.02 2.64 −0.030 1.27∗ −1.42 17.60 −10.90 5.27
Clths −0.076 1.07 0.55 0.13 −0.21 3.59 −0.036 1.24∗ −0.03 4.88 −5.07 5.18
Health −0.431 1.05 0.96 −0.27 0.12 5.92 −0.084 1.10∗ −1.05 8.50 −6.35 3.54
MedEq 0.345 0.84 0.02 −0.51 0.00 3.14 0.044 1.13∗ −0.30 4.54 −4.68 3.78
Drugs 0.467 0.81 −0.36 −0.49 0.03 3.10 0.086 1.23∗ −0.44 4.48 −5.34 4.07
Chems −0.060 1.10 −0.03 0.24 −0.12 2.63 −0.035 1.17∗ −0.08 4.66 −4.55 4.47
Rubbr −0.167 0.98 0.68 0.17 0.00 2.73 −0.071 1.22∗ −0.20 4.24 −4.32 3.99
Txtls −0.320 1.00 0.77 0.46 −0.10 3.31 −0.124∗ 1.14∗ 0.12 3.97 −4.16 4.18
BldMt −0.138 1.13 0.29 0.22 −0.06 2.37 −0.052 1.14∗ −0.14 4.04 −4.60 3.45
Cnstr −0.311 1.26 0.51 0.13 −0.05 3.74 −0.066 1.11∗ 0.10 3.20 −3.54 2.81
Steel −0.530 1.20 0.43 0.40 −0.12 3.84 −0.106 1.16∗ 0.54 4.47 −3.34 5.12
FabPr −0.459 1.02 0.65 0.05 −0.05 4.24 −0.130∗ 1.09∗ −0.01 3.79 −4.31 3.61
Mach −0.101 1.15 0.35 0.07 −0.12 2.49 −0.058 1.16∗ 0.08 3.91 −4.04 4.36
ElcEq 0.160 1.13 0.06 −0.14 −0.01 3.02 0.057 1.09∗ −0.39 3.69 −4.65 2.71
Autos −0.273 1.13 0.18 0.59 −0.23 3.66 −0.094 1.16∗ −0.21 4.60 −5.28 3.45
Aero −0.034 1.13 0.34 0.15 −0.05 4.01 −0.001 1.12∗ −0.47 5.95 −5.81 3.72
Guns 0.044 0.94 0.26 0.34 −0.03 4.75 −0.013 1.16∗ −0.95 10.71 −8.36 5.05
Gold −0.493 0.72 0.65 0.30 0.16 9.71 −0.066 1.11∗ 0.48 5.89 −4.07 6.34
Ships −0.278 1.09 0.32 0.22 0.01 4.67 −0.069 1.13∗ 0.05 4.64 −5.20 4.08
Mines −0.224 1.03 0.52 0.30 −0.13 4.41 −0.040 1.13∗ −0.22 3.38 −4.19 3.04
Coal −0.339 1.11 0.29 0.21 0.10 6.97 −0.052 1.18∗ 0.37 5.06 −4.83 5.14
Oil 0.048 0.92 −0.27 0.30 0.07 3.58 0.021 1.17∗ 0.11 3.35 −3.09 3.82
Util −0.084 0.69 −0.25 0.47 0.01 2.65 −0.024 1.13∗ 0.12 3.94 −3.92 4.01
Telcm 0.082 0.79 −0.23 0.16 −0.04 2.92 0.047 1.13∗ −0.01 3.77 −3.89 3.96
PerSv −0.402 1.09 0.54 −0.04 −0.05 3.69 −0.081 1.08∗ −0.64 5.91 −5.24 3.22
BusSv 0.164 1.08 0.44 −0.45 −0.01 2.19 0.117∗ 1.14∗ 0.07 4.95 −4.79 4.99
Comps 0.121 0.99 0.07 −0.57 −0.14 3.84 0.004 1.11∗ −0.11 3.28 −3.73 3.47
Chips 0.076 1.18 0.39 −0.36 −0.10 3.21 0.039 1.21∗ −0.18 3.89 −4.35 4.11
LabEq 0.031 1.14 0.47 −0.44 −0.05 3.58 −0.010 1.13∗ 0.24 4.65 −4.03 4.64
Paper 0.066 1.06 0.01 0.26 −0.09 3.16 −0.015 1.12∗ 0.13 5.61 −5.69 4.26
Boxes 0.065 0.98 −0.10 0.01 −0.07 3.50 0.011 1.19∗ −0.58 4.75 −5.70 4.12
Trans −0.181 1.10 0.29 0.23 −0.07 2.99 −0.040 1.08∗ −0.03 3.94 −4.41 3.64
Whshl −0.069 1.07 0.39 0.06 −0.03 2.29 −0.108 1.17∗ −0.27 6.01 −5.49 5.20
Rtail 0.194 1.02 0.17 −0.06 −0.17 3.03 0.048 1.19∗ −0.10 3.72 −4.63 3.43
Meals 0.078 1.09 0.42 −0.06 −0.10 3.46 −0.020 1.13∗ −0.17 4.34 −4.95 4.09
Banks 0.102 1.19 0.00 0.43 −0.15 2.87 0.043 1.04 0.10 3.67 −3.31 3.80
Insur 0.114 1.01 −0.04 0.24 −0.08 3.15 0.053 1.04 −0.03 4.10 −4.17 3.70
RlEst −0.859 1.05 0.99 0.50 −0.04 3.49 −0.276∗ 1.08∗ −0.07 5.71 −4.97 5.46
Fin 0.037 1.19 0.06 0.33 −0.05 2.04 0.052 1.15∗ −0.12 4.18 −4.56 3.92
Other −0.664 1.09 0.44 −0.05 0.02 4.05 −0.098 1.23∗ 0.23 6.34 −5.51 5.58

Pooled −0.072 1.02 0.26 0.08 −0.04 3.68 −0.023∗ 1.15∗ −0.13 5.20 −10.90 6.34

The first six columns of this table report the averages of the coefficients of the rolling regressions of the
Carhart (1997) Model in Equation 15 for every industry. For each regression, we construct an abnormal
return for the month after the estimation window as in Equation 16. The remaining columns show the
descriptive statistics of these abnormal returns. To correct for time-varying volatility, we standardize the
abnormal return by a division by the residual volatility of the regression model displayed in column 3. An
asterisk denotes a significant difference from zero for the mean and a significant divergence from one in
case of volatility, both at the 5% significance level.
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Table 6: Estimation results for the regime-switching models

a: Estimates for the distribution parameters

CAPM 3F 4F

µN 0.018 −0.014 −0.009
ω 0.995 1.043 1.058
µC 0.420 0.520 0.588
ωC 0.588 0.552 0.530
µB 0.662 0.662 0.716

b: Means and volatilities for the different regimes

CAPM 3F 4F

typical vol. (% p.m.) 4.04 3.71 3.68
mean N (% p.m.) 0.072 −0.050 −0.033
vol N (% p.m.) 4.02 3.87 3.89
mean C (% p.m.) −8.31 −8.27 −8.62
vol C (% p.m.) 4.70 4.34 4.34
mean B (% p.m.) 2.67 2.46 2.63
vol B (% p.m.) 4.02 3.87 3.89

c: Estimates for the transition probabilities

CAPM 3F 4F

pNN 0.982 0.987 0.987
pNC 0.017 0.013 0.012
pNB 0.0004 0.0005 0.0012
pCN 0.706 0.684 0.721
pCC 0.202 0.226 0.178
pCB 0.091 0.089 0.101
pBC 0.126 0.161 0.185
pBB 0.874 0.839 0.815

This table reports the estimates of the regime switching model and their implications based on the pooled
set of standardized abnormal returns. For each industry we first estimate an asset pricing model with
a moving window of 120 months as in Equation (15). We use the estimates to construct a series of
standardized abnormal returns as in Equation (16). In the second step we use these to estimate a regime
switching model for each industry under the assumption that the standardized abnormal returns are
industry independent, but have the same parameters. Panel A shows the estimates for the distributions
under the different regimes, i.e. normal distributions for the normal and bubble regimes, and a log-normal
distribution below k = −1 for the crash regime, as specified in Equation (2). The volatility of the normal
and bubble regimes are restricted to be equal. Panel B shows the implied means and volatilities for the
different regimes for the typical industry multiplied by the idiosyncratic volatility. Panel C reports the
estimates for the free transition probabilities in Table 1. We consider the CAPM, the 3-Factor Model of
Fama and French (1993) and the 4-Factor Model of Carhart (1997) as asset pricing model.
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Table 7: Ergodic Probabilities of Different Regimes

Regime CAPM 3-Factor Model 4-Factor Model
N 0.93 0.95 0.94
C 0.02 0.02 0.02
B1 2.52 E-3 2.09 E-3 2.78 E-3

B2 2.52 E-3 2.09 E-3 2.78 E-3

B3 2.52 E-3 2.09 E-3 2.78 E-3

B4 2.52 E-3 2.09 E-3 2.78 E-3

B5 2.52 E-3 2.09 E-3 2.78 E-3

B6 2.52 E-3 2.09 E-3 2.78 E-3

B7 2.52 E-3 2.09 E-3 2.78 E-3

B8 2.52 E-3 2.09 E-3 2.78 E-3

B9 2.52 E-3 2.09 E-3 2.78 E-3

B10 2.52 E-3 2.09 E-3 2.78 E-3

B11 2.52 E-3 2.09 E-3 2.78 E-3

Bnt 0.02 0.01 0.02

This table presents the ergodic probabilities of the different regimes. “N” indicates the normal regime,
“C” indicates the crash regime and the bubble regime is represented by “B1” to “Bnt”. B1 to B11 are the
transitory bubble regimes. Bnt is the non-transitory bubble regime. The probabilities shown in column 1
correspond with the abnormal returns based on the CAPM, column 2 and column 3 correspond with the
Fama and French (1993)-Model and Carhart (1997)-Model.

40



Table 8: Identification of regimes per industry

CAPM 3F-Model 4F-Model
industry normal crash bubble normal crash bubble normal crash bubble
Agric 390.4 6.2 6.4 388.2 3.8 10.9 390.2 3.1 9.7
Food 297.9 14.1 91.0 340.4 12.4 50.2 310.6 13.3 79.1
Soda 368.8 12.4 21.7 373.9 12.3 16.8 373.9 12.3 16.7
Beer 356.2 10.7 36.1 381.7 8.6 12.7 368.0 8.6 26.4
Smoke 380.7 8.8 13.5 396.4 5.1 1.5 396.5 4.3 2.2
Toys 385.8 8.5 8.7 390.5 6.8 5.7 389.7 6.4 6.9
Fun 358.7 6.7 37.7 365.0 4.4 33.6 355.8 4.6 42.7
Books 386.7 10.3 6.0 389.2 8.0 5.8 384.1 8.8 10.1
Hshld 360.9 14.6 27.5 367.9 14.9 20.2 369.3 11.6 22.1
Clths 375.9 7.6 19.5 377.9 6.6 18.6 370.2 7.6 25.2
Health 364.1 11.8 27.1 367.3 9.6 26.1 363.4 10.0 29.7
MedEq 368.8 10.4 23.8 372.3 7.7 23.1 359.2 8.9 35.0
Drugs 362.1 13.8 27.2 381.4 8.4 13.3 377.2 6.2 19.5
Chems 375.6 10.4 17.0 392.7 7.2 3.2 394.4 5.6 3.0
Rubbr 362.4 6.9 33.7 386.2 5.2 11.6 384.6 4.9 13.5
Txtls 355.0 9.3 38.8 351.1 7.9 44.0 347.1 7.2 48.7
BldMt 355.9 12.1 35.0 365.8 9.8 27.4 361.5 8.0 33.5
Cnstr 387.1 5.9 10.0 386.6 4.8 11.7 389.5 4.2 9.3
Steel 381.1 11.6 10.3 390.0 9.4 3.6 386.7 8.3 8.0
FabPr 366.0 8.0 28.9 391.9 5.9 5.2 387.2 5.8 10.0
Mach 353.8 11.0 38.2 358.7 9.4 35.0 360.9 6.8 35.3
ElcEq 353.9 10.3 38.7 377.5 7.5 18.0 376.5 7.1 19.5
Autos 330.9 12.8 59.2 333.4 10.5 59.1 338.0 9.2 55.8
Aero 363.4 7.3 32.3 369.3 5.8 27.9 366.8 6.8 29.4
Guns 373.6 8.9 20.4 392.3 4.8 5.9 396.3 5.6 1.1
Gold 367.1 9.0 26.9 378.5 6.2 18.3 367.0 6.9 29.1
Ships 378.4 5.6 19.0 372.7 6.2 24.1 372.6 6.0 24.4
Mines 368.5 9.0 25.5 390.1 6.7 6.2 368.4 5.2 29.4
Coal 326.0 11.1 65.8 312.4 10.2 80.3 322.8 9.1 71.0
Oil 359.5 11.0 32.5 365.3 8.2 29.5 370.0 7.4 25.6
Util 361.5 15.3 26.2 366.1 12.4 24.4 369.1 9.3 24.6
Telcm 380.1 8.3 14.6 379.1 6.9 17.0 384.8 4.7 13.5
PerSv 372.2 12.8 18.0 377.0 11.3 14.7 378.0 10.1 14.9
BusSv 362.6 11.3 29.1 363.2 9.8 30.0 349.2 9.2 44.6
Comps 384.3 8.0 10.7 390.3 6.9 5.9 393.5 5.2 4.3
Chips 378.2 9.7 15.1 392.5 5.3 5.2 390.5 4.4 8.1
LabEq 389.9 9.2 3.9 384.8 5.1 13.1 384.2 3.8 15.0
Paper 392.0 10.4 0.6 393.8 8.6 0.5 395.1 7.4 0.6
Boxes 340.8 14.0 48.3 358.9 9.2 34.9 356.6 8.2 38.1
Trans 384.8 9.5 8.7 366.3 8.6 28.1 362.6 10.2 30.2
Whshl 368.5 7.5 27.0 378.7 6.6 17.7 394.6 6.6 1.9
Rtail 389.7 9.1 4.2 387.0 8.7 7.3 392.5 6.3 4.2
Meals 367.9 8.9 26.2 394.7 6.1 2.2 388.2 6.1 8.7
Banks 367.8 7.8 27.3 374.2 5.0 23.8 383.6 4.4 15.0
Insur 363.3 13.2 26.5 372.0 9.5 21.4 357.8 9.8 35.4
RlEst 369.0 10.9 23.1 370.0 10.3 22.6 362.3 10.2 30.5
Fin 365.5 8.7 28.8 380.6 11.3 11.0 381.9 10.9 10.2
Other 376.8 7.0 19.2 377.1 5.7 20.2 365.5 4.4 33.1

Pooled 91.1% 2.5% 6.4% 93.1% 2.0% 4.9% 92.5% 1.8% 5.7%

This table shows the identification of the different regimes per industry. For each industry we report the
sum of the smoothed inference probabilities over time for the normal regime and the crash regime. For the
bubble regime we gather the smoothed inference probabilities for the transitory bubble states B1, . . . ,B11

and the non-transitory bubble state Bnt, and sum these also over time. For the pooled set of industries we
do the same calculations, and report the results as a proportion of the total number of observations. We
show the identification for each risk factor model: the CAPM, the 3-Factor Model of Fama and French
(1993) and the 4-Factor Model of Carhart (1997).
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Table 9: Parameter Estimates for a Regime Switching Model for the Market

(a) distribution parameters

Regime Normal Crash

µ 0.234 0.197
σ 0.879 0.664

mean (in %) 1.07 −11.49
volatility (in %) 4.01 5.15
LPM2 0.023 3.57

(b) transition matrix

N C

N 0.967 0.717
C 0.033 0.283

This table reports the parameter estimates for a regime switching model for the market portfolio. The
market is proxied by the CRSP All Shares Index from July 1963 until December 2006. The model specifi-
cation is given by Equations (25)-(26). The series um

t is constructed by dividing each excess market return
rmt by the volatility calculated over the prior 120 months. The cut-off value for the crash regime has value
k = −1. For each regime we report the resulting mean, volatility and second order lower partial moment
below -1 for the market, based on the average market volatility of 4.56% per month.
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Figure 1: Identification of regimes over time
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(a) CAPM
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(b) 3-Factor Model
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(c) 4-Factor Model

This figure shows the identification of the different regimes over time. A dashed line corresponds with the
normal regime, a dotted line with the crash regime and a solid line with the bubble regime. To calculate
the values for the normal regime we sum the smoothed inference probabilities at each point in time over
the 48 industries. We follow the same procedure for the crash regime. For the bubble regime we also take
the smoothed inference probabilities for the transitory bubble states B1, . . .B11 and the non-transitory
bubble state Bnt together. We show the identification for each risk factor models: (a): the CAPM, (b) the
3-Factor Model of Fama and French (1993) and (c) the 4-Factor Model of Carhart (1997).
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Figure 2: Forecasts of Regime Probabilities
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(a) non-bubbly asset, CAPM

0 5 10 15 20 25 30 35 40 45 50 55 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) bubbly asset, CAPM
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(c) non-bubbly asset, 3-Factor Model
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(d) bubbly asset, 3-Factor Model
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(e) non-bubbly asset, 4-Factor Model
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(f) bubbly asset, 4-Factor Model

This figure shows the forecasts of the probabilities with which a regime prevails for different horizons.
Subfigures (a), (c) and (e) show the forecast probabilities of the crash (dashed) and normal regime (dotted)
for the non-bubbly asset, assuming that the return process was at t = 0 in the normal regime (ϕt|t(S̃t =

Ñ) = 1). In subfigures (b), (d) and (f), we plot the probabilities for regimes of the bubbly asset, which are
the bubble regime (solid), the crash regime (dashed) and the regime S̃ (dotted). We assume that the return
process was at t = 0 in the non-transitory bubble regime (ϕt|t(S

∗
t = Bnt) = 1). The forecast probabilities

for the bubble regime are the sum of probabilities for the transitory and non-transitory bubble states.
The subfigures correspond with the different risk factor models: the CAPM, the 3-Factor Model of Fama
and French (1993) and the 4-Factor Model of Carhart (1997). The transition probabilities that govern the
forecast probabilities can be found in Table 6. 44



Figure 3: Abnormal Returns Forecasts
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(a) CAPM, returns per month
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(b) CAPM, cumulative returns
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(c) 3-Factor Model, returns per month
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(d) 3-Factor Model, cumulative returns
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(e) 4-Factor Model, returns per month
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(f) 4-Factor Model, cumulative returns

This figure shows the abnormal return forecasts (in %) as a function of the forecast horizon (in months).
They forecasts are based on estimates for the regime switching models in Table 6 and multiplied by their
idiosyncratic return volatility. The subfigures correspond with the different risk factor models: (a,b): the
CAPM, (c,d) the 3-Factor model of Fama and French (1993) and (e,f) the 4-Factor model of Carhart
(1997). The dotted line shows the expected abnormal returns for the bubbly asset, when the investor is
100% certain that the typical industry is in the non-transitory bubble regime when he makes the forecast
at time t (i.e., ϕt|t(S

∗
t = Bnt) = 1). The dashed line indicates the expected returns for the non-bubbly

asset, which is in the normal regime with probability 1 at time t (i.e., ϕt|t(S̃t = Ñ) = 1). The solid line
gives the expected returns for a position of one unit long in the bubbly asset and one unit short in the
non-bubbly asset. The subfigures on the left show the predictions per month. The subfigures on the right
show the forecast of the cumulative return for the long-short position for each month.
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Figure 4: Forecast of Abnormal Return Volatility
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(b) CAPM, cumulative variance
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(c) 3-Factor Model, volatility per month
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(d) 3-Factor Model, cumulative variance
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(e) 4-Factor Model, volatility per month
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(f) 4-Factor Model, cumulative variance

This figure shows the forecasts of the volatility of abnormal returns as a function of the forecast horizon (in
months). The forecasts are based on estimates for the regime switching models in Table 6 and multiplied
by their idiosyncratic return volatility. The subfigures correspond with the different risk factor models:
(a,b): the CAPM, (c,d) the 3-Factor Model of Fama and French (1993) and (e,f) the 4-Factor Model of
Carhart (1997). The dotted lines show the forecasted volatility of the bubbly asset, when the investor is
100% certain that the typical industry is in the non-transitory bubble regime when he makes the forecast
at time t (i.e., ϕt|t(S

∗
t = Bnt) = 1). The dashed line indicates the volatility for the non-bubbly asset,

which is in the normal regime with probability 1 at time t (i.e., ϕt|t(S̃t = Ñ) = 1). The solid line gives the
volatility forecast for a position of one unit long in the bubbly asset and one unit short in the non-bubbly
asset. The subfigures on the left show the predictions per month. The subfigures on the right show the
forecast of the cumulative variance for the long-short position for each month.
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Figure 5: LPM Forecast for Positive Weight in Bubbly Asset and Negative Weight
in Normal Asset
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(a) CAPM, LPM per month
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(b) CAPM, cumulative LPM

0 5 10 15 20 25 30 35 40 45 50 55 60

2.5

5.0

7.5

10.0

12.5

15.0

(c) 3-Factor Model, LPM per month
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(e) 4-Factor Model, LPM per month
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(f) 4-Factor Model, cumulative LPM

This figure shows the forecasts of the second order lower partial moment below k = −σ of the abnormal
returns (in %) as a function of the forecast horizon (in months) for a positive weight in Equation (14).
The forecasts are based on estimates for the regime switching models in Table 6 and multiplied by their
idiosyncratic volatility σ. They are for a portfolio that is one unit long in the bubbly asset and one unit
short in the normal asset. We assume that the abnormal returns of the normal asset were in the normal
regime at t = 0 (i.e., ϕt|t(S̃t = Ñ) = 1) and that the returns of the bubbly asset were in the non-transitory
bubble state (i.e., ϕt|t(S

∗
t = Bnt) = 1). The subfigures correspond with the different risk factor models:

(a,b): the CAPM, (c,d) the 3-Factor model of Fama and French (1993) and (e,f) the 4-Factor model of
Carhart (1997). The subfigures on the left show the predictions per month. The subfigures on the right
show the forecast of the cumulative lower partial moments for the long-short position for each month.
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Figure 6: LPM Forecast for Positive Weight in Normal Asset and Negative Weight
in Bubbly Asset
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(a) CAPM, UPM per month
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(b) CAPM, cumulative UPM
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(c) 3-Factor Model, UPM per month
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(d) 3-Factor Model, cumulative UPM
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(e) 4-Factor Model, UPM per month
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(f) 4-Factor Model, cumulative UPM

This figure shows the forecasts of the second order lower partial moment below k = −σ of the abnormal
returns (in %) as a function of the forecast horizon (in months) for a negative weight in Equation (14).
The forecasts are based on estimates for the regime switching models in Table 6 and multiplied by their
idiosyncratic volatility σ. They are for a portfolio that is one unit short in the bubbly asset and one unit
long in the normal asset. We assume that the abnormal returns of the normal asset were in the normal
regime at t = 0 (i.e., ϕt|t(S̃t = Ñ) = 1) and that the returns of the bubbly asset were in the non-transitory
bubble state (i.e., ϕt|t(S

∗
t = Bnt) = 1). The subfigures correspond with the different risk factor models:

(a,b): the CAPM, (c,d) the 3-Factor model of Fama and French (1993) and (e,f) the 4-Factor model of
Carhart (1997). The subfigures on the left show the predictions per month. The subfigures on the right
show the forecast of the cumulative lower partial moments for the long-short position for each month.
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Figure 7: Optimal long-short positions
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This figure shows the optimal weight invested in the bubbly asset and the non-bubbly asset as a function
of the investment horizon (in months) as a fraction of wealth. The optimal portfolios are calculated as
given in Equation (14). The solid line corresponds with an investor who is averse to variance risk, and the
dashed line with an investor who is averse to downside risk. The risk aversion coefficients γ1 and γ2 are
calibrated to the market (see Appendix B).
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