

Exact Nonlinear and Non-Gaussian Kalman Smoother

for State Space Models with Implicit Functions and

Equality Constraints*

Joris de Wind†

September 2017

Abstract

In this paper, I present a novel implementation of the exact nonlinear and non-Gaussian

Kalman smoother that can also deal with implicit functions in the measurement and/or

state equations as well as equality constraints. My approach has the additional advantage

that it can be fully automated, on the basis of which I have developed a toolbox that can

handle a wide class of discrete-time state space models. The toolbox is documented in an

accompanying paper, while the technical details are presented in the current one.

1 Introduction

The Kalman filter and smoother are tools that are widely used in many applications ranging

from engineering to econometrics, with common engineering applications such as guidance,

navigation and control, and common econometrics applications in time series analysis such as

trend-cycle decompositions and conditional forecasting. If a system is linear and Gaussian,

the Kalman filter will deliver the best possible estimate of the current state of the system,

while the Kalman smoother will update the past estimates in an optimal way. However, we

are often also interested in systems that are nonlinear and/or non-Gaussian, for which we

need a generalization of the Kalman filter and smoother.

In this paper, I present a new way to generalize the Kalman smoother to allow for general

nonlinearities and non-Gaussian disturbances, implicit functions in the measurement and/or

*I am very grateful to Michal Andrle, Junior Maih, and Rob van Harrevelt for their comments and
suggestions. Views expressed in this paper are my own and do not necessarily reflect those of the CPB.

†CPB Netherlands Bureau for Economic Policy Analysis, email: jorisdewind@gmail.com

1

state equations, and equations without disturbances (e.g. equality constraints or identities).

My approach is related to the iterated Kalman smoother of Bell (1994) as well as Durbin

and Koopman (1992), who basically employ the Kalman filter and smoother iteratively to

solve a large-scale optimization problem for finding the mode of the state of the system. In

particular, the iterative Kalman smoother exploits the fact that in the linear case the large-

scale optimization problem is solved analytically by the Kalman filter and smoother. In

the current paper, however, I exploit the equivalence between the large-scale optimization

problem and the structure of dynamic models with forward-looking variables, which can

be solved efficiently by the so-called stacked-time algorithm.1 Moreover, relative to the

aforementioned papers, I have also improved upon the setup of the optimization problem,

wherefore my setup allows for a much wider class of state space models and my approach is

also easier to implement.

As a matter of fact, my approach has the additional advantage that it can be fully auto-

mated, which enabled me to develop a toolbox that can handle a wide class of discrete-time

state space models. The toolbox is documented in an accompanying paper (De Wind, 2017),

while the technical details are presented in the next section.2 The current paper also con-

tains a separate section with two examples, one of which is a conditional forecasting exercise

that is related to the ‘observation procedure’ of Sandee, Don, and van den Berg (1984).

2 Large-scale optimization problem for finding the mode

of the state of the system

This section starts with a subsection about the linear case to set out some notational conven-

tions and to build intuition. The results naturally generalize to the nonlinear case, which is

presented in a separate subsection. This section concludes with a subsection with implemen-

tation details for the general nonlinear and non-Gaussian case. The implementation details

are important in order to deal with implicit functions and equality constraints (i.e. equations

without disturbances). It will become lucid from subsection 2.3 that the implementation

details are also very important to minimize the programming burden.

2.1 Linear case

The goal is to find the mode of the state vector of a state space system, where the parameters

of the system are known. Following the notation of Durbin and Koopman (2001), consider

1The stacked-time algorithm is explained in e.g. Juillard (1996) and Hollinger (1996). I provide a brief
description of the stacked-time algorithm in the appendix.

2The toolbox is freely available at www.github.com/jorisdewind but requires a Matlab licence (though
the toolbox is likely to work under Octave as well).

2

the linear Gaussian state space model3

𝑦𝑡 = 𝑍𝛼𝑡 + 𝜀𝑡 𝜀𝑡 ∼ 𝑁 (0, 𝐻)

𝛼𝑡+1 = 𝑇𝛼𝑡 + 𝜂𝑡+1 𝜂𝑡+1 ∼ 𝑁 (0, 𝑄) 𝑡 = 1, . . . , 𝑛 (1)

𝛼1 ∼ 𝑁 (𝑎1, 𝑃1)

where 𝑦𝑡 is a 𝑝 × 1 vector with observables and 𝛼𝑡 is a 𝑚 × 1 state vector. For notational

convenience and without loss of generality, the system matrices 𝑍, 𝐻, 𝑇 , and 𝑄 are con-

sidered to be time-invariant.4 The first equation is called the observation or measurement

equation and the second one is called the state equation. The state vector 𝛼𝑡 captures the

underlying dynamics of the state space system, but it is not directly observed.

The purpose of the Kalman filter and smoother is to estimate the state vector 𝛼𝑡 based

on the vector with observables 𝑦𝑡. The Kalman filter and smoother differ from each other

in the amount of conditioning information that is used for the estimation. That is, the

Kalman filter estimates the state vector 𝛼𝑡 based on the available information up to time

𝑡 exclusive (𝑦𝑡−1), whereas the Kalman smoother estimates the state vector 𝛼𝑡 based on

all the available information in the sample period (𝑦𝑛). The Kalman smoother basically

updates the past predictions of the Kalman filter when new (future) information becomes

available.

The Kalman filter delivers 𝑎𝑡+1 = E [𝛼𝑡+1|𝑦𝑡] and 𝑃𝑡+1 = V𝑎𝑟 [𝛼𝑡+1|𝑦𝑡]. The Kalman

filter recursions are given by

𝜐𝑡 = 𝑦𝑡 − 𝑍𝑎𝑡 𝐹𝑡 = 𝑍𝑃𝑡𝑍
′ + 𝐻

𝐾𝑡 = 𝑇𝑃𝑡𝑍
′𝐹−1

𝑡 𝐿𝑡 = 𝑇 −𝐾𝑡𝑍 𝑡 = 1, . . . , 𝑛 (2)

𝑎𝑡+1 = 𝑇𝑎𝑡 + 𝐾𝑡𝜐𝑡 𝑃𝑡+1 = 𝑇𝑃𝑡𝐿
′
𝑡 + 𝑄

The Kalman smoother delivers �̂�𝑡+1 = E [𝛼𝑡+1|𝑦𝑛] and 𝑉𝑡+1 = V𝑎𝑟 [𝛼𝑡+1|𝑦𝑛]. The

Kalman smoother recursions are given by

𝑟𝑡−1 = 𝑍 ′𝐹−1
𝑡 𝜐𝑡 + 𝐿′

𝑡𝑟𝑡 𝑁𝑡−1 = 𝑍 ′𝐹−1
𝑡 𝑍 + 𝐿′

𝑡𝑁𝑡𝐿𝑡

�̂�𝑡 = 𝑎𝑡 + 𝑃𝑡𝑟𝑡−1 𝑉𝑡 = 𝑃𝑡 − 𝑃𝑡𝑁𝑡−1𝑃𝑡 𝑡 = 𝑛, . . . , 1 (3)

where it should be noted that the Kalman smoother recursions run backwards, starting from

𝑟𝑛 = 0 and 𝑉𝑛 = 0. Moreover, the Kalman smoother can only be run after the Kalman

filter.

3Note that the timing convention of the vector with state disturbances 𝜂𝑡 is shifted relative to Durbin
and Koopman (2001).

4Moreover, also the selection matrix 𝑅 of Durbin and Koopman (2001) is considered to be time-invariant
and set to the identity matrix, but this can easily be generalized.

3

The Kalman filter and smoother recursions can be derived in many ways, see e.g. Durbin

and Koopman (2001). A particularly appealing approach can be found in Bell (1994), whose

approach generalizes very well to the nonlinear case. The key equation is the decomposition

of the log-likelihood function

log𝐿 (𝑦𝑛|Ψ) = log𝐿 (𝑦𝑛, 𝛼𝑛|Ψ) − log𝐿 (𝛼𝑛|𝑦𝑛,Ψ) (4)

where the first term on the right-hand side is the complete data log-likelihood function and

the second term on the right-hand side is the conditional density of the state vector. The

parameters of the various system matrices are stacked in the vector Ψ.

It can be observed directly from decomposition (4) that the difference between the con-

ditional density of the state vector and the complete data log-likelihood function does not

depend on 𝛼𝑛, which implies that the partial derivatives with respect to 𝛼𝑛 are equal to

each other. Therefore, finding the mode of the state vector �̂�𝑛 is equivalent to maximizing

the complete data log-likelihood function, that is

𝜕 log𝐿 (𝛼𝑛|𝑦𝑛,Ψ)

𝜕𝛼𝑛

⃒⃒⃒⃒
𝛼𝑛=�̂�𝑛

=
𝜕 log𝐿 (𝑦𝑛, 𝛼𝑛|Ψ)

𝜕𝛼𝑛

⃒⃒⃒⃒
𝛼𝑛=�̂�𝑛

= 0 (5)

This property can be exploited since the partial derivatives of the complete data log-

likelihood function (as opposed to the conditional density of the state vector) are very easy

to calculate. In particular, the complete data log-likelihood function can be written as

log𝐿 (𝑦𝑛, 𝛼𝑛|Ψ) = constant − 1

2
(𝛼1 − 𝑎1)

′
𝑃−1
1 (𝛼1 − 𝑎1)

−1

2

𝑛∑︁
𝑡=1

(︃
(𝑦𝑡 − 𝑍𝛼𝑡)

′
𝐻−1 (𝑦𝑡 − 𝑍𝛼𝑡) +

(𝛼𝑡+1 − 𝑇𝛼𝑡)
′
𝑄−1 (𝛼𝑡+1 − 𝑇𝛼𝑡)

)︃
(6)

and the first-order conditions with respect to 𝛼𝑛 are given by5

𝑍 ′𝐻−1 (𝑦1 − 𝑍�̂�1) − 𝑃−1
1 (�̂�1 − 𝑎1) + 𝑇 ′𝑄−1 (�̂�2 − 𝑇 �̂�1) = 0

𝑍 ′𝐻−1 (𝑦𝑡 − 𝑍�̂�𝑡) −𝑄−1 (�̂�𝑡 − 𝑇 �̂�𝑡−1) + 𝑇 ′𝑄−1 (�̂�𝑡+1 − 𝑇 �̂�𝑡) = 0 𝑡 = 2, . . . , 𝑛 (7)

�̂�𝑛+1 − 𝑇 �̂�𝑛 = 0

Bell (1994) has given a proof that the above first-order conditions can be solved analyt-

ically by the Kalman filter and smoother recursions (and, of course, it is easy to verify this

numerically). In this paper, however, I propose to use the so-called stacked-time algorithm

to solve the above first-order conditions, the benefits of which will become apparent from

the nonlinear case. The stacked-time algorithm is often used to simulate dynamic models

5To be precise, also 𝛼𝑛+1 is an instrument variable over which the complete data log-likelihood function
is maximized.

4

with forward-looking variables (under the assumption of perfect foresight).6

The above first-order conditions constitute a second-order difference equation in �̂�𝑡. In

order to employ the stacked-time algorithm it is more convenient to rewrite the first-order

conditions slightly so as to obtain explicit initial and terminal conditions.

∙ First, the terminal condition can be expressed explicitly in terms of the underlying

state disturbance.

∙ Second, rather than starting the recursions from the unknown �̂�1 it is more convenient

to initialize the system with a given �̂�0. By appropriately adjusting the state equation

for the first period (see below), it is possible to simply set �̂�0 = 𝑎0 = 𝑎1.

Altogether, the system of equations can be rewritten as

�̂�0 = 𝑎0

𝑍 ′𝐻−1𝜀𝑡 −𝑄−1
𝑡 𝜂𝑡 + 𝑇 ′

𝑡+1𝑄
−1
𝑡+1𝜂𝑡+1 = 0 𝑡 = 1, . . . , 𝑛 (8)

𝜂𝑛+1 = 0

𝑦𝑡 − 𝑍�̂�𝑡 = 𝜀𝑡

�̂�𝑡 − 𝑇𝑡�̂�𝑡−1 = 𝜂𝑡

where 𝑄𝑡 = 𝑄 and 𝑇𝑡 = 𝑇 except for 𝑡 = 1 in which case 𝑄𝑡 = 𝑃1 and 𝑇𝑡 = 𝐼.7 The above

system of equations can now simply be solved by the stacked-time algorithm.8 Of course,

it is easy to verify numerically that the Kalman smoother yields the same �̂�𝑛.

2.2 Nonlinear case

The key advantage of the approach outlined in the previous subsection is that it does not rely

on the linearity or Gaussianity of the state space model. No matter the type of nonlinearity

or the distribution of the disturbances, the idea is to equate the partial derivatives of the

complete data log-likelihood function to zero and solve the resulting difference equation with

the stacked-time algorithm.9 Although this approach is completely general, I focus in this

section on the nonlinear case with additive Gaussian disturbances.

6See the appendix for a brief introduction to the stacked-time algorithm. A basic understanding of
the stacked-time algorithm might help to gain a better intuition for the exact nonlinear and non-Gaussian
Kalman smoother developed in this paper.

7Note that the time subscripts can be omitted from the 𝑄𝑡+1 and 𝑇𝑡+1 in front of the 𝜂𝑡+1 term.
8The stacked-time algorithm is implemented in software packages such as Dynare and Troll, see

www.dynare.org and www.hendyplan.com/troll-software, respectively. Dynare is a freely available open
source Matlab toolbox, while Troll is a commercial software package.

9This approach yields the state mode of the system, which in the nonlinear and/or non-Gaussian case is
not equal to the state mean. In the remainder of this paper, �̂�𝑛 is used to denote the state mode as opposed
to the state mean. In the linear case, this distinction was non-existent.

5

Consider the nonlinear Gaussian state space model

𝑦𝑡 = 𝑍 (𝛼𝑡) + 𝜀𝑡 𝜀𝑡 ∼ 𝑁 (0, 𝐻)

𝛼𝑡+1 = 𝑇 (𝛼𝑡) + 𝜂𝑡+1 𝜂𝑡+1 ∼ 𝑁 (0, 𝑄) 𝑡 = 1, . . . , 𝑛 (9)

𝛼1 ∼ 𝑁 (𝑎1, 𝑃1)

where 𝑍 (·) and 𝑇 (·) are now vector-valued functions instead of matrices, i.e. R𝑚 → R𝑝 and

R𝑚 → R𝑚, respectively.

In this case, the complete data log-likelihood function can be written as

log𝐿 (𝑦𝑛, 𝛼𝑛|Ψ) = constant − 1

2
(𝛼1 − 𝑎1)

′
𝑃−1
1 (𝛼1 − 𝑎1)

−1

2

𝑛∑︁
𝑡=1

(︃
(𝑦𝑡 − 𝑍 (𝛼𝑡))

′
𝐻−1 (𝑦𝑡 − 𝑍 (𝛼𝑡)) +

(𝛼𝑡+1 − 𝑇 (𝛼𝑡))
′
𝑄−1 (𝛼𝑡+1 − 𝑇 (𝛼𝑡))

)︃
(10)

and the first-order conditions with respect to 𝛼𝑛 are given by10

𝐽 ′
𝑍 (�̂�1)𝐻−1 (𝑦1 − 𝑍 (�̂�1)) − 𝑃−1

1 (�̂�1 − 𝑎1) + 𝐽 ′
𝑇 (�̂�1)𝑄−1 (�̂�2 − 𝑇 (�̂�1)) = 0

𝐽 ′
𝑍 (�̂�𝑡)𝐻

−1 (𝑦𝑡 − 𝑍 (�̂�𝑡)) −𝑄−1 (�̂�𝑡 − 𝑇 (�̂�𝑡−1)) + 𝐽 ′
𝑇 (�̂�𝑡)𝑄

−1 (�̂�𝑡+1 − 𝑇 (�̂�𝑡)) = 0 (11)

𝑡 = 2, . . . , 𝑛

�̂�𝑛+1 − 𝑇 (�̂�𝑛) = 0

where 𝐽𝑍 (�̂�𝑡) is the 𝑝 × 𝑚 Jacobian matrix of 𝑍 (·) evaluated at 𝛼𝑡 = �̂�𝑡 and 𝐽𝑇 (�̂�𝑡) is the

𝑚 × 𝑚 Jacobian matrix of 𝑇 (·) evaluated at 𝛼𝑡 = �̂�𝑡.

While Durbin and Koopman (1992) and Bell (1994) solve the above first-order conditions

iteratively by linearization and applying the standard Kalman filter and smoother recursions

at each iteration, my approach avoids the linearization step altogether and solves the system

with the stacked-time algorithm.11

Like in the previous subsection, in order to employ the stacked-time algorithm it is more

convenient to rewrite the above first-order conditions as a second-order difference equation

with explicit initial and terminal conditions. In particular, the system of equations can be

10Again, to be precise, also 𝛼𝑛+1 is an instrument variable over which the complete data log-likelihood
function is maximized.

11I would like to emphasize that this is not the only advantage of my approach. As will become clear
from the next subsection, in contrast to the approach of Durbin and Koopman (1992) and Bell (1994), my
approach generalizes very nicely to state space models with implicit functions and equality constraints.

6

rewritten as

�̂�0 = 𝑎0

𝐽 ′
𝑍 (�̂�𝑡)𝐻

−1𝜀𝑡 −𝑄−1
𝑡 𝜂𝑡 + 𝐽 ′

𝑇 (�̂�𝑡)𝑄
−1𝜂𝑡+1 = 0 𝑡 = 1, . . . , 𝑛 (12)

𝜂𝑛+1 = 0

𝑦𝑡 − 𝑍 (�̂�𝑡) = 𝜀𝑡

�̂�𝑡 − 𝑇𝑡 (�̂�𝑡−1) = 𝜂𝑡

with the same conventions as in the linear case, i.e. 𝑄𝑡 = 𝑄 and 𝑇𝑡 = 𝑇 (·) except for 𝑡 = 1 in

which case 𝑄𝑡 = 𝑃1 and 𝑇𝑡 = 𝐼, and furthermore �̂�0 = 𝑎0 = 𝑎1. Several examples are given

in section 3, but important implementation details are first given in the next subsection.

2.3 Implementation details for the general case

Although the above implementation seems quite natural, it can still be improved upon.

In particular, the above implementation does not naturally extend to the case with im-

plicit equations and also not to the case with equations without disturbances (e.g. equality

constraints or identities). Therefore, in this subsection, I present a more general imple-

mentation, which in fact starts with a constrained optimization problem rather than an

unconstrained one. In particular, the idea is to maximize the likelihood of the disturbances

subject to the constraints implied by the model.

Consider the nonlinear and non-Gaussian state space model

𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡) = 0 𝜀𝑡 ∼ 𝑝𝜀 (𝜀𝑡)

𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡) = 0 𝜂𝑡 ∼ 𝑝𝜂 (𝜂𝑡) 𝑡 = 1, . . . , 𝑛 (13)

𝛼0 is given

where the initial condition is already given explicitly. However, if one wishes to account

for uncertainty about the initial state of the system, this can easily be incorporated in the

above representation by appropriately adjusting the distribution of the state disturbance in

the first period.

The idea is to maximize the likelihood of the disturbances subject to the constraints

implied by the model, which can be formalized by the following Lagrangian

ℒ (𝜀𝑛, 𝜂𝑛, 𝛼𝑛,Λ𝑛
𝑍 ,Λ

𝑛
𝑇) =

𝑛∑︁
𝑡=1

(︃
log (𝑝𝜀 (𝜀𝑡)) + log (𝑝𝜂 (𝜂𝑡)) +

Λ′
𝑍,𝑡𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡) + Λ′

𝑇,𝑡𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡)

)︃
(14)

where Λ𝑍,𝑡 and Λ𝑇,𝑡 are vectors with Lagrangian multipliers for the measurement and state

equations, respectively. The first-order conditions with respect to Θ𝑛 = {𝜀𝑛, 𝜂𝑛, 𝛼𝑛,Λ𝑛
𝑍 ,Λ

𝑛
𝑇 }

7

are given by

�̂�0 = 𝛼0

𝜕 log (𝑝𝜀 (𝜀𝑡))

𝜕𝜀𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

+ Λ̂′
𝑍,𝑡

𝜕𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡)

𝜕𝜀𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

= 0

𝜕 log (𝑝𝜂 (𝜂𝑡))

𝜕𝜂𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

+ Λ̂′
𝑇,𝑡

𝜕𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡)

𝜕𝜂𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

= 0

Λ̂′
𝑍,𝑡

𝜕𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡)

𝜕𝛼𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

+ Λ̂′
𝑇,𝑡

𝜕𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡)

𝜕𝛼𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

(15)

+ Λ̂′
𝑇,𝑡+1

𝜕𝑇 (𝛼𝑡+1, 𝛼𝑡, 𝜂𝑡+1)

𝜕𝛼𝑡

⃒⃒⃒⃒
Θ𝑛=Θ̂𝑛

= 0 𝑡 = 1, . . . , 𝑛

Λ̂𝑇,𝑛+1 = 0

𝑍 (𝑦𝑡, �̂�𝑡, 𝜀𝑡) = 0

𝑇 (�̂�𝑡, �̂�𝑡−1, 𝜂𝑡) = 0

The above system of equations can now simply be solved by the stacked-time algorithm,

which yields the mode of the state vector �̂�𝑛, i.e. the main output of the exact nonlinear

and non-Gaussian Kalman smoother.

Based on this approach, I have developed a toolbox where the user only has to specify

the specification of the state space model and the rest is taken care of automatically by the

toolbox. In particular, the toolbox automatically sets up the optimization problem, takes

analytical derivatives, and solves the resulting system of equations by the stacked-time

algorithm. The toolbox is documented in an accompanying paper, see De Wind (2017).12

The key insight behind the toolbox is that the optimization problem is set up as a con-

strained one, which avoids substitutions that would otherwise be more difficult to generalize

(or even impossible in case of implicit functions), and moreover equality constraints would

require a Lagrangian approach anyway.13

12The toolbox is freely available at www.github.com/jorisdewind but requires a Matlab licence (though
the toolbox is likely to work under Octave as well). The toolbox is developed on top of Dynare, which itself
is an open source Matlab toolbox, see www.dynare.org.

13The treatment of nonlinear state space models in Durbin and Koopman (2001) does not take full
account of equality constraints. For one thing, they do not allow for equality constraints in the measurement
equations, since they assume that the covariance matrix 𝐻 is non-singular and they take the inverse of this
matrix. Yet, they do allow for equality constraints in the state equations via the selection matrix 𝑅, which
consists of a subset of the columns of the identity matrix, but their treatment seems to be incorrect. As
a matter of fact, Durbin and Koopman (2001) rewrite their state equations to get an explicit expression
for the vector with state disturbances, which is then substituted out from the complete data log-likelihood
function. Herewith, they also throw away the equality constraints, which they do not subsequently account
for in their optimization problem (i.e. they should have set up a Lagrangian).

8

3 Examples

This section contains two examples. The first example is just for demonstration purposes,

while the second example is a conditional forecasting exercise with a nonlinear macroeco-

nomic model. The latter example is interesting on its own for practitioners at e.g. central

banks and international institutions.

3.1 Nonlinear state space model

Consider the following nonlinear Gaussian state space model

𝑦𝑡 = cos
(︀
𝑥2
𝑡 + 𝜀𝑡

)︀
exp (𝑧𝑡) 𝜀𝑡 ∼ 𝑁

(︀
0, ℎ2

𝑦

)︀
𝑥𝑡 = (1 − 𝜌𝑥)𝜇𝑥 + 𝜌𝑥𝑥𝑡−1 + 𝜂𝑥𝑡 𝜂𝑥𝑡 ∼ 𝑁

(︀
0, 𝑞2𝑥

)︀
𝑧𝑡 = (1 − 𝜌𝑧)𝜇𝑧 + 𝜌𝑧𝑧𝑡−1 + 𝜂𝑧𝑡 𝜂𝑧𝑡 ∼ 𝑁

(︀
0, 𝑞2𝑧

)︀
𝑡 = 1, . . . , 𝑛 (16)

𝑥0 and 𝑧0 are given

The goal is to estimate the state variables given the data (and for given parameter

values). The exact nonlinear Kalman smoother solves this estimation problem in an optimal

manner. In order to follow the procedure outlined in subsection 2.3, define 𝛼𝑡 = (𝑥𝑡, 𝑧𝑡)
′

and 𝜂𝑡 = (𝜂𝑥𝑡 , 𝜂
𝑧
𝑡)′. Then, the functions 𝑍 (·) and 𝑇 (·) can be written as

𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡) = 𝑦𝑡 − cos
(︀
𝑥2
𝑡 + 𝜀𝑡

)︀
exp (𝑧𝑡)

𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡) =

(︃
𝑥𝑡 − (1 − 𝜌𝑥)𝜇𝑥 − 𝜌𝑥𝑥𝑡−1 − 𝜂𝑥𝑡

𝑧𝑡 − (1 − 𝜌𝑧)𝜇𝑧 − 𝜌𝑧𝑧𝑡−1 − 𝜂𝑧𝑡

)︃
(17)

so that the needed derivatives are given by

𝜕𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡)

𝜕𝛼𝑡
=
(︁

2𝑥𝑡 sin
(︀
𝑥2
𝑡 + 𝜀𝑡

)︀
exp (𝑧𝑡) − cos

(︀
𝑥2
𝑡 + 𝜀𝑡

)︀
exp (𝑧𝑡)

)︁
𝜕𝑍 (𝑦𝑡, 𝛼𝑡, 𝜀𝑡)

𝜕𝜀𝑡
= sin

(︀
𝑥2
𝑡 + 𝜀𝑡

)︀
exp (𝑧𝑡)

𝜕𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡)

𝜕𝛼𝑡
= 𝐼2 (18)

𝜕𝑇 (𝛼𝑡+1, 𝛼𝑡, 𝜂𝑡+1)

𝜕𝛼𝑡
= −

(︃
𝜌𝑥 0

0 𝜌𝑧

)︃
𝜕𝑇 (𝛼𝑡, 𝛼𝑡−1, 𝜂𝑡)

𝜕𝜂𝑡
= −𝐼2

Moreover, the disturbances are in this example independently normally distributed, with

9

the following log probability density functions

log (𝑝𝜀 (𝜀𝑡)) = constant − 1

2

(︂
𝜀𝑡
ℎ𝑦

)︂2

log (𝑝𝜂 (𝜂𝑡)) = constant − 1

2

(︂
𝜂𝑥𝑡
𝑞𝑥

)︂2

− 1

2

(︂
𝜂𝑧𝑡
𝑞𝑧

)︂2

(19)

so that the needed derivatives are given by

𝜕 log (𝑝𝜀 (𝜀𝑡))

𝜕𝜀𝑡
= −

(︂
𝜀𝑡
ℎ2
𝑦

)︂
𝜕 log (𝑝𝜂 (𝜂𝑡))

𝜕𝜂𝑡
= −

(︁
𝜂𝑥
𝑡

𝑞2𝑥

𝜂𝑧
𝑡

𝑞2𝑧

)︁
(20)

We have now all the ingredients to apply the procedure outlined in subsection 2.3.

In particular, I have manually calculated all the derivatives that are part of the system of

equations (15), so that we can now simply employ the stacked-time algorithm. Nevertheless,

I would like to emphasize that it is also possible to make use of my toolbox, described in

De Wind (2017), to run the exact nonlinear Kalman smoother automatically (which among

other things avoids the need to manually take derivatives).

Numerical example with measurement error. I have generated artificial data with

the following parameter configuration: 𝜌𝑥 = 0.95, 𝜇𝑥 = 1, 𝜌𝑧 = −0.75, 𝜇𝑧 = −1, ℎ𝑦 = 0.25,

𝑞𝑥 = 0.1, and 𝑞𝑧 = 0.05. The number of periods is set to 200 and the state vector is

initialized at its unconditional mean, that is 𝑥0 = 𝜇𝑥 and 𝑧0 = 𝜇𝑧.

The observable data and latent state variables are plotted in figure 1 together with the

smoothed state variables. It is clear from the figure that the state variable 𝑥𝑡 is very well

identified and estimated very well over the whole sample period, while the state variable

𝑧𝑡 is considerably more difficult to track. Of course, that is due to the model (with three

disturbances and only one measurement per time period) since the exact nonlinear Kalman

smoother delivers the best possible estimate of the state variables given the data.

Numerical example without measurement error. I have also applied the exact non-

linear Kalman smoother to the same artificial data but then absent of measurement error,

i.e. ℎ𝑦 = 0. One of the advantages of my implementation of the exact nonlinear Kalman

smoother is that it naturally extends to the case without measurement error. In this par-

ticular example, simply drop the first-order condition with respect to 𝜀𝑛 from the system of

equations (15), which is the only adjustment that is needed.

The observable data and latent state variables are plotted in figure 2 together with the

smoothed state variables. The latent state variables are exactly the same as in the previous

example, while the observable data are a little bit smoother. Now the state variable 𝑥𝑡 is

10

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

Nonlinear smoothing problem: smoothed versus latent state variables

t

data

true latent x

true latent z

smoothed latent x

smoothed latent z

Figure 1: Numerical example with measurement error

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

Nonlinear smoothing problem: smoothed versus latent state variables

t

data

true latent x

true latent z

smoothed latent x

smoothed latent z

Figure 2: Numerical example without measurement error

11

captured almost perfectly, while the state variable 𝑧𝑡 is sometimes still difficult to track.

Again, that is due to the model since the exact nonlinear Kalman smoother delivers the

best possible estimate of the state variables given the data.

3.2 Conditional forecasting

Consider the following dynamic version of the IS-LM model

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡

𝑌 𝑑
𝑡 = 𝑌𝑡 − 𝑇𝑡

𝑇𝑡 = 𝑡0 + 𝑡1𝑌𝑡 + 𝜀𝑇𝑡

𝐶𝑡 = 𝑐0 + 𝑐1𝑌
𝑑
𝑡−1 + 𝑐2𝑌

𝑑
𝑡 + 𝑐3E𝑡

[︀
𝑌 𝑑
𝑡+1

]︀
+ 𝑐4𝑅𝑡 + 𝑐5𝑅

2
𝑡 + 𝜀𝐶𝑡 (21)

𝐼𝑡 = 𝑖0 + 𝑖1𝑌𝑡−1 + 𝑖2𝑌𝑡 + 𝑖3E𝑡 [𝑌𝑡+1] + 𝑖4𝑅𝑡 + 𝑖5𝑅
2
𝑡 + 𝜀𝐼𝑡

𝑀𝑑
𝑡 = 𝑚0 + 𝑚1𝑌𝑡 + 𝑚2𝑅𝑡 + 𝑚3𝑅

2
𝑡 + 𝜀𝑀𝐷

𝑡

𝑀𝑑
𝑡 = 𝑀𝑠

𝑡

The first equation is the aggregate resource constraint which equates domestic output 𝑌𝑡 to

the sum of consumption 𝐶𝑡, investment 𝐼𝑡, and government spending 𝐺𝑡. The second equa-

tion defines disposable income 𝑌 𝑑
𝑡 as the difference between income 𝑌𝑡 and taxes 𝑇𝑡. The

third equation determines the level of taxes as a function of income, implying that taxes

are determined endogenously as opposed to government spending which is an exogenous

variable. The fourth equation determines consumption as a function of lagged, current,

and expected future disposable income as well as the interest rate 𝑅𝑡. The fifth equation

determines investment as a function of lagged, current, and expected future output and

also the interest rate. The sixth equation determines money demand 𝑀𝑑
𝑡 which depends on

output and the interest rate. The seventh equation determines the money market equilib-

rium, where money supply 𝑀𝑠
𝑡 is determined exogenously. Finally, the 𝜀𝑋𝑡 variables are the

residuals of the behavioral equations.

It is straightforward to run a deterministic simulation (assuming perfect foresight) for

the purpose of making a forecast for given trajectories of the exogenous variables, i.e. just

invoke the stacked-time algorithm.14 However, we are often also interested in making a

forecast conditional on trajectories for one or more of the endogenous variables (or we might

have a ragged-edge dataset). The exact nonlinear and non-Gaussian Kalman smoother

can be employed for making such conditional forecasts and it turns out that the novel

implementation introduced in this paper suits perfectly in this setting. In fact, for solving a

forward-looking model we need to use the stacked-time algorithm and the same is true for

14Of course, there also exist alternative approaches for solving models with forward-looking variables that
do not rely on the assumption of perfect foresight.

12

the conditional forecasting approach proposed in this paper, but it turns out that for the

joint problem we only need to run the stacked-time algorithm once. As a matter of fact,

relative to the problem of solving a forward-looking model we just need to augment the

system with some extra difference equations in order to make a conditional forecast. This

will be elaborated on in the remainder of this section.15

Suppose we want to make a forecast conditional on the assumption that the government

budget closes for the next eight periods, that is 𝑇𝑡 = 𝐺𝑡 for 𝑡 = 1, . . . , 8. Of course, the tax

equation in the above IS-LM model will yield non-zero residuals but since taxes also appear

in the other model equations it is very likely that the other residuals will be non-zero too.

The idea behind the exact nonlinear Kalman smoother is to maximize the likelihood of the

residuals subject to the constraints implied by the model, which delivers the most likely

conditional forecast.

Assuming independently normally distributed residuals with variance 𝑞2𝑋 for residual 𝜀𝑋𝑡

we get the following first-order conditions with respect to the residuals16

𝜀𝑇𝑡
𝑞2𝑇

= 𝜆𝑇
𝑡

𝜀𝐶𝑡
𝑞2𝐶

= 𝜆𝐶
𝑡

𝜀𝐼𝑡
𝑞2𝐼

= 𝜆𝐼
𝑡

𝜀𝑀𝐷
𝑡

𝑞2𝑀𝐷

= 𝜆𝑀𝐷
𝑡 (22)

where the Lagrangian multipliers are labeled by the left-hand sides of the associated model

equations, which are considered to be the constraints of the optimization problem, apart

from the last equation which is labeled by the interest rate. Note that the above first-order

conditions have a particularly nice form in this example because of the additive Gaussian

residuals.

We also need to calculate the first-order conditions with respect to the model variables

15The conditional forecasting approach described in this section is related to the ‘observation procedure’
of Sandee, Don, and van den Berg (1984), and can be considered as a generalization of their approach.
In fact, they start off from a similar constrained optimization problem, yet employ a conjugate gradient
algorithm that cannot be generalized to the case with non-Gaussian disturbances. Moreover, they do not
deal with models with forward-looking variables, although the setup of their optimization problem could in
principle handle such models. Of course, such an extension would require an alternative numerical solution
technique such as the stacked-time algorithm.

16The underlying optimization problem is similar to expression (14), although for this example it is not
necessary to distinguish between measurement and state equations.

13

(apart from the exogenous and conditioning variables), which are given by17

𝜕𝑌𝑡 : −𝜆𝑌
𝑡 + 𝜆𝑌 𝐷

𝑡 + 𝑡1𝜆
𝑇
𝑡 + 𝑖1𝜆

𝐼
𝑡+1 + 𝑖2𝜆

𝐼
𝑡 + 𝑖3𝜆

𝐼
𝑡−1 + 𝑚1𝜆

𝑀𝐷
𝑡 = 0

𝜕𝑌 𝑑
𝑡 : −𝜆𝑌 𝐷

𝑡 + 𝑐1𝜆
𝐶
𝑡+1 + 𝑐2𝜆

𝐶
𝑡 + 𝑐3𝜆

𝐶
𝑡−1 = 0

𝜕𝐶𝑡 : 𝜆𝑌
𝑡 − 𝜆𝐶

𝑡 = 0

𝜕𝐼𝑡 : 𝜆𝑌
𝑡 − 𝜆𝐼

𝑡 = 0 (23)

𝜕𝑀𝑑
𝑡 : −𝜆𝑀𝐷

𝑡 − 𝜆𝑅
𝑡 = 0

𝜕𝑅𝑡 : (𝑐4 + 2𝑐5𝑅𝑡)𝜆
𝐶
𝑡 + (𝑖4 + 2𝑖5𝑅𝑡)𝜆

𝐼
𝑡 + (𝑚2 + 2𝑚3𝑅𝑡)𝜆

𝑀𝐷
𝑡 = 0

Altogether, the IS-LM model equations (21), the first-order conditions with respect to

the residuals (22), and the first-order conditions with respect to the endogenous model

variables (23) should be put together as a system of equations, which can then be solved

by the stacked-time algorithm. Of course, the system of equations is not complete without

initial and terminal conditions. The initial conditions are simply the most recent data points

for the backward-looking variables and zeros for the Lagrangian multipliers.

However, the terminal conditions are a bit more involved.18 Typically, we want to

provide terminal conditions such that the forward-looking variables are back in the steady

state after a very large number of simulation periods, but this is in conflict with the timing

of the Lagrangian multipliers that should be zero beyond the conditioning period (in this

example from period nine onwards).19 Of course, it is not directly possible to provide

terminal conditions for different variables in different time periods, but we can solve this

issue by introducing a dummy variable as elaborated on below.20

In particular, we can augment the system with another equation introducing a dummy

variable 𝐷𝑡 that sets taxes equal to the conditioning values 𝑇 𝑐𝑜𝑛𝑑
𝑡 in the conditioning pe-

riod, while treating taxes endogenously beyond the conditioning period. In case taxes are

endogenous, the conditions in (23) should be augmented with the first-order condition with

respect to taxes, which is given by −𝜆𝑌 𝐷
𝑡 − 𝜆𝑇

𝑡 = 0.21 Hence, the system of equations is

17It should be noted that it is also possible to make use of my toolbox which avoids the need to manually
take derivatives, but for the current example the derivations are straightforward anyway.

18At this point, it is strongly recommended to read the appendix to obtain a basic understanding of the
stacked-time algorithm as well as the terminal conditions.

19The larger the number of simulation periods the more accurate is the assumption that the model is
back in its steady state in the terminal period. It depends on the model (in particular its eigenvalues) how
many simulation periods are sufficient to solve the model accurately. In the current example only eighteen
simulation periods are sufficient, although often we need a much larger number of simulation periods.

20This dummy variable approach is incorporated in my toolbox in an automatic fashion.
21Of course, in case of an unconditional forecast, we would only have needed the equations in (21) and,

in fact, the equations in (22) and (23) would have been redundant, but nevertheless would have implied that
all future residuals and Lagrangian multipliers are zero (which is exactly what we want for an unconditional
forecast).

14

completed by

𝐷𝑡

(︀
𝑇𝑡 − 𝑇 𝑐𝑜𝑛𝑑

𝑡

)︀
+ (1 −𝐷𝑡)

(︀
−𝜆𝑌 𝐷

𝑡 − 𝜆𝑇
𝑡

)︀
= 0 (24)

and the terminal conditions are simply the steady-state values for the forward-looking vari-

ables and zeros for the Lagrangian multipliers.

As an illustration, figure 3 plots the unconditional forecast for output together with the

conditional forecasts conditioning on 𝑇𝑡 = 𝐺𝑡 for two, four, and eight conditioning periods,

respectively. For the chosen parameterization, taxes are higher in the conditioning path

than what the model endogenously implies, so that the conditional forecasts for output are

lower the longer the conditioning period.22

0 2 4 6 8 10 12 14 16 18 20
950

1000

1050

1100

1150

1200

1250
Conditional forecasts for output with different conditioning periods

t

unconditional forecast

conditional forecast, two periods

conditional forecast, four periods

conditional forecast, eight periods

Figure 3: Example conditional forecasting with a nonlinear macroeconomic
model

4 Concluding remarks

I have introduced a novel implementation of the exact nonlinear and non-Gaussian Kalman

smoother, which can handle very general state space models including ones with implicit

22Note that it does not make sense to condition taxes over the full simulation period because in that case
the assumption that the economy goes back to the steady state does not make sense.

15

functions in the measurement and/or state equations as well as equality constraints. My

approach has the additional advantage that it can be fully automated, which enabled me to

develop a Matlab toolbox that can handle a wide class of discrete-time state space models.

The toolbox is documented in an accompanying paper, see De Wind (2017).

I have demonstrated my approach on a simple nonlinear state space model as well as

for conditional forecasting with a nonlinear macroeconomic model. The latter example has

turned out to be particularly nice, because for solving forward-looking models we already

need to use the stacked-time algorithm which can be combined efficiently with the stacked-

time algorithm that is needed for the conditional forecasting approach proposed in this

paper.23

The conditional forecasting example is interesting on its own for practitioners at e.g.

central banks and international institutions. As a matter of fact, this example is related to

an old yet still very relevant paper by Sandee, Don, and van den Berg (1984), who already

wrote that the Kalman filter would be a natural alternative for their ‘observation procedure,’

but rejected the possibility because of computational costs.24 My conditional forecasting

approach can be considered as a non-Gaussian generalization of their approach, with the

key distinction that my approach can deal with models with forward-looking variables and

is absent of approximation errors.

This paper might result in many future applications since my novel implementation

makes the exact nonlinear and non-Gaussian Kalman smoother much easier to use (whether

or not using my toolbox). Moreover, the methodology that I propose in this paper is very

general and it is, for example, not hard to extend the methodology to account for mixed

frequencies and missing observations (i.e. by using a similar dummy variable trick as in the

conditional forecasting example).

Finally, my approach just yields point estimates, i.e. the mode of the state of the system,

but it is also possible to calculate the Hessian of the complete data log-likelihood function,

which could potentially be used as an input for a simulation algorithm. Furthermore, a next

step would be to work out the details for diffuse initialization.

References

Bell, B. M. (1994): “The Iterated Kalman Smoother as a Gauss-Newton Method,” SIAM

Journal on Optimization, 4, pp. 626–636.

23Of course, there also exist alternative approaches for solving models with forward-looking variables. It
would be interesting to develop an approach that combines my exact nonlinear and non-Gaussian Kalman
smoother with an alternative way to solve for the forward-looking variables that does not require assuming
perfect foresight.

24At the CPB Netherlands Bureau for Economic Policy Analysis a simplified version of the ‘observation
procedure’ of Sandee, Don, and van den Berg (1984) is being used for virtually all forecasting exercises.

16

de Wind, J. (2017): “SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian

Kalman Smoother,” CPB Discussion Paper No. 360.

Durbin, J. and S. J. Koopman (1992): “Filtering, smoothing and estimation for time

series models when the observations come from exponential family distributions,” unpub-

lished manuscript.

——— (2001): Time Series Analysis by State Space Methods, Oxford University Press.

Hollinger, P. (1996): “The Stacked-Time Simulator in TROLL: A Robust Algorithm for

Solving Forward-Looking Models,” unpublished manuscript.

Juillard, M. (1996): “DYNARE: a program for the resolution and simulation of dynamic

models with forward variables through the use of a relaxation algorithm,” CEPREMAP

Working Papers, 9602, CEPREMAP.

Sandee, J., F. J. H. Don, and P. J. C. M. van den Berg (1984): “Adjustment of

projections to recent observations,” European Economic Review, 26, pp. 153–166.

17

A Stacked-time algorithm

A basic understanding of the stacked-time algorithm might help to gain a better intuition

for the exact nonlinear and non-Gaussian Kalman smoother developed in this paper, and

in particular the discussion about the terminal conditions in the conditional forecasting

example.

The purpose of the stacked-time algorithm is to solve nonlinear dynamic models under

the assumption of perfect foresight. The basic idea behind the algorithm is to solve a model

with 𝑛 dynamic equations in 𝑛 endogenous variables simultaneously for 𝑇 time periods,

yielding a stacked-time system of 𝑛𝑇 equations in 𝑛𝑇 unknowns. This approach is compu-

tationally feasible since the stacked-time system is very sparse, which can exploited by the

algorithm.25

Consider the following generic form for a dynamic model with one lag and lead26

𝑓 (𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1) = 0 (25)

where the vector with lags 𝑦𝑡−1 (i.e. the predetermined state variables) is given and the

vector with leads 𝑦𝑡+1 (i.e. the expectations) is unknown. The idea behind the stacked-time

algorithm is to solve for the leads under the assumption of perfect foresight and using the

above model equation one period forward, giving the joint system of equations

𝑓 (𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1) = 0

𝑓 (𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2) = 0 (26)

where, in fact, we have just shifted the problem of solving for the leads since now we need

an extra condition for 𝑦𝑡+2 instead of 𝑦𝑡+1. The stacked-time algorithm iterates on the idea

of forwarding the model equation (25) for a large number of time periods 𝑇 , which yields

the following stacked-time system of 𝑛𝑇 equations in 𝑛𝑇 unknowns

𝑓 (𝑦0, 𝑦1, 𝑦2) = 0

𝑓 (𝑦1, 𝑦2, 𝑦3) = 0

. . . (27)

𝑓 (𝑦𝑇−1, 𝑦𝑇 , 𝑦𝑇+1) = 0

25Every block of 𝑛 equations corresponds to a particular time period and hence depends only on model
variables around that time period, resulting in a band-block-diagonal Jacobian matrix of partial derivatives
that includes many zeros and hence is called sparse.

26Models with multiple lags and leads can be rewritten as models with just one lag and lead by introducing
auxiliary variables (like rewriting an AR(p) as VAR(1)). Furthermore, note that in general not all variables
enter the model with a lag or a lead, so that models are in general more sparse than the generic form given
in expression (25).

18

which can be written alternatively with the 𝑓 (·) functions stacked in 𝐹 (·), giving us

𝐹 (𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑇 , 𝑦𝑇+1) = 0 (28)

Of course, we still have the problem that we need an extra (terminal) condition for the leads

in the last period, that is 𝑦𝑇+1. If the number of time periods 𝑇 is large enough we are

typically willing to assume that the model goes back to its steady state or balanced growth

path in the terminal period. Even though the terminal conditions are often chosen according

to the steady state or balanced growth path, it is possible to make any assumption about

the terminal period.

In principle, we can use a standard Newton method to solve the above stacked-time

system of 𝑛𝑇 equations in 𝑛𝑇 unknowns, but for computational efficiency we need to ex-

ploit the sparsity of the band-block-diagonal Jacobian matrix of partial derivatives of the

𝐹 (·) function, as mentioned in footnote 25. The stacked-time algorithm is implemented in

software packages such as Dynare and Troll.27 The standard Dynare implementation makes

use of the sparse-matrix capabilities that are standard in Matlab.28

Finally, even though the stacked-time algorithm is often applied to solve dynamic mod-

els, it is a general-purpose algorithm that can be used to solve general systems of difference

equations. Indeed, in the current paper the stacked-time algorithm is applied to solve the

difference equations that arise from the first-order conditions of the large-scale constrained

optimization problem that is equivalent to the nonlinear and non-Gaussian Kalman smooth-

ing problem.

27See www.dynare.org and www.hendyplan.com/troll-software, respectively. Dynare is a freely available
open source Matlab toolbox, while Troll is a commercial software package.

28There are also more advanced versions of the stacked-time algorithm, available in both Dynare and
Troll, but that is beyond the scope of this appendix and not necessary for the understanding of the current
paper.

19

	Abstract
	1 Introduction
	2 Large-scale optimization problem for finding the modeof the state of the system
	2.1 Linear case
	2.2 Nonlinear case
	2.3 Implementation details for the general case

	3 Examples
	3.1 Nonlinear state space model
	3.2 Conditional forecasting

	4 Concluding remarks
	References
	A Stacked-time algorithm

