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Abstract

We study the duration of topics in economics research by looking at
how much time passes between publication of textually similar papers.
Using the corpus of abstracts of economics papers, as available from
the RePEc dataset, we find that most papers match to papers from the
same year, indicating strong common trends in the economics litera-
ture. Nevertheless, matches as long as 14 years apart are statistically
significant, suggesting there are topics that last as long. Finally, the
average duration of a match has dropped from around 4 years during
1990–2005 to about 1 year starting in 2010.
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1 Introduction
Economics as a field is ever-evolving: new methods are adopted, new ques-
tions are explored, and pressing current issues get studied. In turn, the
language follows up. In this paper we attempt to quantify the speed of
these changes using methods of text analysis. We are interested in how
much time elapses between publishing a (working) paper and the appear-
ance of papers that are sufficiently similar to it, as well how this time has
changed over the years.

Our text analysis is based on abstracts of economics papers as found in
the RePEc database. After filtering, we arrive at 420,128 working papers

∗The authors thank Piek Vossen for discussion and valuable suggestions.
†Corresponding author, andrei@dubovik.eu.
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written in English during 1990–2020. Focusing on working rather than pub-
lished papers allows us to avoid the prevalent problem of the publication lag
influencing our results. We also re-run our analysis for papers published in
top-20 economics journals, according to Combes and Linnemer (2010) rank-
ing, and arrive to qualitatively similar results. We look at how frequently
various stems appear in the abstracts of each of these papers and compute
the term frequency–inverse document frequency (TF-IDF) vectors for those
papers. Then, using cosine similarity, we find for each paper the five1 most
similar papers published, whether in the current, consequent, or preceding
years.

We ask the question, how far apart in terms of publication years are those
neighbouring papers positioned? Our findings are as follows. Firstly, most of
similar papers are published within one year. This result is persistent across
all publication years and suggests that economists often independently work
on similar topics, whether prompted by major events in the global econ-
omy or methodological advances. Secondly, the average duration between
the publication of similar papers was around four years in 1990–2005, but
dropped down to just one year in 2010–2020. At the same point in time,
around 2007, a similar drop happened for papers published in top-20 jour-
nals, where the average duration dropped from four to two years. Thirdly,
some topics stay popular for up to fifteen years, in the sense that for the pe-
riod of up to fifteen years similar papers appear more frequently than what
would be consistent with the uniform distribution of similar papers over the
years.

Our paper makes a contribution to the literature on publishing in eco-
nomics. This literature has focused on various aspects of the problem, e.g.
the role of top-5 journals (Card and DellaVigna, 2013), the editorial impact
on top-5 publication decisions (Önder et al., 2018), the impact of author
demographics (Hamermesh, 2013) and geography (Fontana et al., 2019) on
publishing, the exploration of what journals are more important for a specific
field (Bellas and Kosnik, 2019). While our paper looks at the importance
of narrow research questions within each field, most of the literature tends
to focus on the evolution of large fields and styles (e.g., Card and DellaVi-
gna, 2013; Angrist et al., 2017, 2020). This difference in research question
determines the difference in methods: while the aforementioned papers rely
mainly on JEL-codes for field classification or use manual classification of
papers in terms of style, we rely on text analysis to find similar papers inde-
pendently of their JEL-codes. This allows us to pick field-style combinations
directly, say by the presence of terms “dataset” or “evidence” in empirical
papers, or terms “monetary” or “inflation” in macroeconomics papers. Fur-
thermore, our approach is not prone to the critique that JEL-codes might
be chosen strategically (Cherrier, 2017; Önder et al., 2018).

1Our analysis for 1 and 10 closest papers produces similar results.
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JEL-codes are suitable for the analysis of evolution of larger fields, but
are less fitting to assess how more narrow topics raise and drop in popular-
ity. For tackling the latter problem, Fontana et al. (2019) and Önder et al.
(2018) use a Latent Dirichlet Allocation (LDA) model, a part of the text
analysis toolbox, to attribute papers to topics. However, LDA is notoriously
unstable. For instance, referring to a typical presentation of LDA topics by
their top words, Agrawal et al. (2018) remark that “due to LDA instability,
the contents of such tables can only be described as mostly illusionary.” In-
stead we perform our analysis using TF-IDF weights and a cosine similarity
measure. That is an older and generally more noisy approach, but it comes
with the benefit of stability and, hence, reproducibility.

Our findings can be contrasted with those by Fontana et al. (2019),
who find that papers published in top-7 journals2 have the average citation
lag of 4.8–6.7 years, depending on the sample used for counting citations.
Arguably, if topics formation is solely driven through citations, we would
expect to find similar numbers using our methodology. The observation that
our numbers for the durations between matched papers are substantially
smaller, namely 2–4 years, suggests that common external factors also play
a noticeable role in topic formation.

In summary, this paper shows that specific insights can be obtained by
studying the temporal structure of the graph of textually similar papers,
without the need for explicit topic modelling. Of course, explicit topic mod-
elling can bring further insights but a typical procedure for topic modelling,
namely LDA, is subject to instabilities. Possibly, state-of-the-art techniques
such as the BERT model (Devlin et al., 2019), which are first pre-trained on
a large general-purpose corpus and then fine-tuned by the researcher using
the textual data of interest, could provide a more reliable construction of
topics.

2 Data
We use the RePEc dataset, which is an open and distributed dataset with
metadata on papers in economics.3 Among other information, the RePEc
dataset includes typical bibliographical information and abstracts for the
majority of discussion and published papers. The results in this paper are
based on the version of the dataset as downloaded on May 4, 2021. The data
was downloaded using purpose-written code which is available on github.4

The dataset covers papers written in various languages. Besides English,
some prominent languages include French, Russian, and German. While

2Traditional top-5 plus International Economic Review and Review of Economics and
Statistics.

3http://repec.org
4https://github.com/andrei-dubovik/repec
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there is allowance for data providers to indicate the language, this field is
rarely filled in. Therefore, we have used an automatic language identification
algorithm, namely Compact Language Detector 2.5 For our analysis we only
consider papers written in English.

Besides papers, the dataset also includes books, database records, and
some other miscellaneous records. We filter on discussion papers and pub-
lished papers. A substantial number of papers are non-economic papers or
fringe economic papers. For instance, there are many purely medical papers
in the dataset. We focus on economics papers and thus only select published
and discussion papers that have JEL codes or that are published papers in
the top 20 economic journals, following Combes and Linnemer (2010). Fi-
nally, we focus on years 1990–2020, and we exclude papers with missing
titles or abstracts.

After the aforementioned filters have been applied, and after deduplica-
tion which we discuss in Appendix A, we end up with a total of 420,129
papers. Notably, there has been a sharp growth in the number of papers
over the years—at least as found in the RePEc dataset—from 682 in 1990 to
29,875 in 2020 (with filters applied). We will have to account for this trend
when doing analysis.

3 Analysis & Results
Methods of text analysis can be broadly divided into deterministic and
stochastic methods. The former methods represent earlier approaches to
text analysis, with one prominent example being the term frequency–inverse
document frequency (TF-IDF, for short) weighting scheme combined with
the cosine similarity measure. See Gentzkow et al. (2019) for an overview
of the use of such deterministic methods in Economics literature.

Most of the contemporary computer science literature focuses on the
stochastic methods, ranging from the popular word2vec model (Mikolov
et al., 2013) to the state-of-the-art BERT model (Devlin et al., 2019). While
earlier methods use a bag-of-words approach where a document is described
by the frequencies of its constituent words, modern methods consider words
together with their contexts. Modern approaches typically perform better
on a broad range of natural language analysis tasks (see, e.g., Usherwood
and Smit, 2019).

The better performance of modern methods comes at a cost. Modern
stochastic methods are numerically complex. They typically feature be-
tween millions and thousands of millions parameters and highly non-linear
objective functions. As a consequence, convergence is difficult to achieve.
Instead, the recent computer science literature sidesteps this difficulty by
simply applying an optimization procedure for a fixed number of steps in

5https://github.com/CLD2Owners/cld2
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Table 1: Most Frequent Stems in Titles and Abstracts

Stem Freq., % Stem Freq., %

paper 47.1 studi 30.9
use 46.5 find 30.5
result 36.4 market 27.4
model 34.5 show 27.0
effect 33.0 data 26.8

the direction of some local optima. In practice, this means that training
those models with a different seed or slightly different data can produce
markedly different results. Such variability in results effectively prevents
the replicability of those results, an observation that some begin to empha-
size in the computer science literature, see Wendlandt et al. (2018).

In contrast, deterministic methods are numerically stable and transpar-
ent as the only possible source of variance in the results comes from the
outlined procedures. However, there is a considerable degree of freedom in
the setup of deterministic methods and changing some of the aspects might
produce different outcomes. After weighing the trade-offs, we have decided
to refrain from using inherently unstable stochastic text analysis methods
and instead employ a deterministic method, which we outline in detail be-
low.

First, we encode each paper using a bag-of-words representation. From
each paper we select its title and its abstract and concatenate them together,
effectively giving equal weights to the words in the title and in the abstract.
We then remove a limited number of stop-words (about 300 in total). Next,
we select strings of consecutive Latin characters of length of at least 2 and
treat these strings as words. In particular, all numbers that are encountered
in titles or abstracts as well as JEL codes that are erroneously included in
abstracts are excluded from the analysis. All words are then stemmed using
the Porter’s stemming algorithm (Porter, 1980). We remove any stems from
the analysis that occur in 100 or fewer papers. All the remaining stems from
all the papers are subsequently enumerated. Finally, we encode our data as
matrix A, with dimensions 420,128×7,022, where Ais gives the number of
occurrences of stem s in paper i.

A piece of trivia, namely a list with the most popular stems in the titles
and abstracts of economics papers, is shown in Table 1. Also, an online tool
for investigating single word trends as well as JEL code trends is available
on the website of one of the authors.6

Let n denote the total number of papers. We apply the TF-IDF weight-
6https://dubovik.eu/blog/repec
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ing scheme to matrix A to obtain a weighted matrix B:

Bis =
B̃is

‖B̃i‖2
, B̃is = Ais ln

(
n∑

j I(Ajs > 0)

)
. (1)

where I(Ajs > 0) gives 1 if word s occurs in paper j at least once and 0
otherwise.

The TF-IDF weighting schemes gives higher weights to words that occur
in fewer papers and are therefore likely to be more informative. As an
example, consider the abstract of this paper. Matrix A weights every word
by how often it occurs in the abstract, while excluding numbers, stop words,
and those words that occur in 100 papers or less. If we use darker ink for
the words with bigger weights in the matrix A, we obtain:7

We study the duration of topics in economics research by looking at how much
time passes between publication of textually similar papers. Using the corpus of
abstracts of economics papers, as available from the RePEc dataset, we find that
most papers match to papers from the same year, indicating strong common trends
in the economics literature. Nevertheless, matches as long as 14 years apart are
statistically significant, suggesting there are topics that last as long. Finally, the
average duration of a match has dropped from around 4 years during 1990–2005 to
about 1–2 years starting from 2010.

Notably, words like “economics” and “paper” receive high weights be-
cause we use them often in our abstract. However, these words are quite
common across all economic abstracts, therefore they receive lower weights
under the TF-IDF weighting scheme. Instead, the latter emphasizes gener-
ally infrequent words such as “duration,” “topic” or “corpus:”

We study the duration of topics in economics research by looking at how much
time passes between publication of textually similar papers. Using the corpus of
abstracts of economics papers, as available from the RePEc dataset, we find that
most papers match to papers from the same year, indicating strong common trends
in the economics literature. Nevertheless, matches as long as 14 years apart are
statistically significant, suggesting there are topics that last as long. Finally, the
average duration of a match has dropped from around 4 years during 1990–2005 to
about 1–2 years starting from 2010.

For any two papers i and j we use the inner product (the cosine similar-
ity) of the respective normalized TF-IDF vectors as a similarity measure,

mij = 〈Bi, Bj〉. (2)
7As outlined, the analysis is done on the stems of words, but in the examples full word

forms are preserved for readability.
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Given that ‖Bi‖ = 1, we have 0 ≤ mij ≤ 1. If mij is closer to 0, then few
words between papers i and j are the same or those words that are the same
have low weights, and so the papers are dissimilar. If mij is closer to 1, then
papers i and j share the same words, and those words have high weights,
and so the papers are similar.

A collection of papers with a distance function dij = 1 − mij can be
viewed as metric space. Alternatively, this collection of papers can be viewed
as a complete weighted graph, with weights given by the similarity measure
m. We adopt the latter view.

We reduce the complete graph by keeping only those edges that connect
the closest papers. In doing so we effectively identify similar papers. There
are two candidates for this procedure. Option A is that we define an absolute
cutoff and then keep all those edges which connect papers with a similarity
measure below the cutoff. Option B is that for each paper we select a given
number of the nearest papers according to the similarity measure and then
keep the respective edges. We refer to Option B as the relative cutoff.

For the comparison of the absolute and relative cutoffs, and for this
comparison only, we use JEL codes. While it is not necessary that topics
do not cross JEL code boundaries, it is to be expected that many topics
fall within their own JEL codes. Therefore, among similar papers there
should be many papers with the same JEL code (at least, if the procedure
that identifies similar papers works). Consequently, we can use the precision
coefficient—what share of similar papers share a JEL code—to compare the
performance of various methods that identify similar papers. Formally, let
eij = 1 if there is an edge between papers i and j, and let eij = 0 otherwise.
Also, let Jij = 1 if papers i and j have at least one JEL code in common,
and let Jij = 0 otherwise. We have

Precision =

∑
ij eijJij∑
ij eij

. (3)

Fig. 1 shows the precision coefficient for the absolute cutoff, the relative
cutoff, and for a random assignment of edges to papers (a benchmark sce-
nario). On the x-axis is the average number of similar papers per any given
paper, i.e. the average node degree. We observe that that both the absolute
cutoff and the relative cutoff result in a substantially better precision than
a random assignment. For instance, for an average node degree of 10 the
absolute cutoff has precision at 41%, the relative cutoff has it at 36%, and
the random assignment—at 2%.

Define coverage as the percentage of papers that have at least one similar
paper, i.e.

Coverage =

∑
i I(
∑

j eij > 0)

n
. (4)

While the absolute cutoff has a somewhat higher precision than the relative
cutoff, it comes at the cost of a lower coverage. With an absolute cutoff
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Figure 1: Comparison of Absolute and Relative Cutoffs
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Notes: Precision coefficient is computed on the basis of a confusion matrix, where JEL
codes serve as ground truth and TF-IDF matching with either relative or absolute cutoff
is used for prediction. Coverage shows what percentage of papers have at least one similar
paper when either relative or absolute cutoff is used. Average node degree is the average
number of similar papers for any given paper.

it might in principle happen that some papers have no neighbours with a
similarity measure below the cutoff. In fact, it happens quite often as Fig. 1,
right panel, demonstrates. For instance, for an average node degree of 10 the
relative cutoff results in a 100% coverage by definition, while the absolute
cutoff has it at only 51%. If we adopt a procedure with lower coverage,
we effectively have fewer observations when we do the upcoming analysis,
which decreases efficiency and potentially introduces a selection bias. For
this reason we adopt the relative cutoff instead of the absolute cutoff. As
we focus on small topics, we set the relative cutoff at the 5th closest paper.
As a robustness check, we also run the complete analysis when the cutoff is
set at 1 or 10 nearest neighbours.

Formally, we connect papers i and j if and only if paper j is among the
5 closest neighbours of paper i or paper i is among the 5 closest neighbours
of paper j. Let eij denote a weighted edge between papers i and j. Also,
let di(k) denote the kth order statistic of vector (dij)j , and analogously for
d(k)j . We set:

eij =

{
mij if

(
dij ≤ di(5)

)
∨
(
dij ≤ d(5)j

)
,

0 otherwise.
(5)

This defines a weighted graph Γ = (V, {ij|eij > 0}) with weights eij ,
where V is the set of all papers. The reduced graph Γ is smaller than the
complete graph: instead of ≈ 8.8·1010 edges in the complete graph we obtain
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≈ 1.9 · 106 edges in the reduced graph, a number that is easier to work with
from a technical perspective.

An example of a neighbourhood from graph Γ is shown in Fig. 2. Nodes
are papers and edges connect similar papers. The selected neighbourhood is
around (a) Angrist et al. (2017), “Economic Research Evolves: Fields and
Styles.” The distances in the figure were chosen to correlate in rank with dij ,
but a perfect embedding in R2 is not possible, so the rank correlation is less
than one. We find that many connected papers conduct citation analysis,
with several of those putting an emphasis on within-field and cross-field
outcomes. However, we find erroneous matches as well, e.g. (o) Davis and
Weinstein (2001) is a review of key empirical findings in international trade.
Still, as long as such mistakes are random and do not depend on publication
years, our findings regarding the temporal relations between papers will be
unbiased. The figure further illustrates that we draw an edge between two
papers if either of them is among the top 5 neighbours of another. For
instance, while (n) is not among the top 5 closest neighbours of (a), (a) is
among the top 5 closest neighbours of (n), and so we draw an edge.

If eij > 0 and ejk > 0 but eik = 0, we do not consider papers i and k as
connected. That is, if i is textually similar to j and j is textually similar to
k, we nevertheless do not connect papers i and k if they are not textually
similar to one another to start with. Alternatively, we can consider any
two papers connected if there is a simple path between the two papers of
at most a given length p. Formally, we can consider a weighted graph Γ(p)

with edges e
(p)
ik defined recursively as

e
(p)
ik = max

k, 1≤q≤p
min

(
e
(q)
ij , e

(p−q)
jk

)
, (6)

where e
(1)
ij = eij and e

(0)
ij = 1. In Appendix B we consider paths of length 2

and 3 and show that our findings are robust to this extended specification
of what papers are considered connected.

Throughout this paper the term “topic” is understood to be a connected
subgraph of graph Γ. All our results can be derived without an explicit
construction of topics. We therefore forgo doing so, as explicit topic con-
struction requires imposing relatively strict assumptions on the data gener-
ating process for the papers and topics, and the results could potentially be
sensitive to those assumptions. Also, given that the construction of Γ does
not depend on JEL codes, all the derived results are independent of JEL
codes as well.

Let us consider the temporal relations between similar papers. Let y(i)
denote the year in which paper i was first released or published, and let
εu denote a column vector with 1 at position u and zeroes elsewhere. We
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Figure 2: An Example of a Neighbourhood in Γ
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Notes: The figure shows top 10 nearest neighbours of Angrist et al. 2017—node (a)—as
well as those papers who have Angrist et al. 2017 among their top 5 nearest neighbours.
If there is an edge between two papers, it is shown as a gray line; if the edge is between
Angrist et al. 2017 and one of its top 5 nearest neighbours, it is shown in black. The
Euclidian distances in the figure rank-correlate with dij . The papers are as follows: (a)
Angrist et al. 2017, (b) Ketzler and Zimmermann 2013, (c) Adams et al. 2004, (d) Galiani
and Gálvez 2017, (e) Anauati et al. 2020, (f) Nedelchev 2017, (g) McCabe and Mueller-
Langer 2019, (h) Kim et al. 2011, (i) Meyer et al. 2018, (j) Finardi 2017, (k) Hamermesh
2018, (l) Angrist et al. 2020, (m) Angrist et al. 2020, (n) Ioan-Franc 2003, (o) Davis and
Weinstein 2001. Nodes (l) and (m) reference two different versions of the same paper,
because the authours are spelled substantially differently and so this case was not caught
by the deduplication procedure: one version uses ”Josh Angrist” and another uses ”Joshua
Angrist”.

construct a symmetric matrix

P =
∑
i,j

εy(i)ε
′
y(j) eij

/∑
i,j

eij . (7)

P has dimensions 31×31. If we pick two similar papers at random, say paper
i and paper j, then Puv gives the (weighted) probability that paper i is from
year u and paper j is from year v (or the other way around, that paper i is
from year v and paper j is from year u).

As has been mentioned earlier, most papers in the RePEc database come
from later years. Consequently, most probability mass in matrix P is also
concentrated in later years. We can negate this bias with an appropriately
chosen normalization. Namely, consider matrix Q = PJP ′, where J denotes
a matrix of ones. Quv gives the (weighted) probability that in an ordered
pair of randomly chosen papers the first paper would be from year u and
the second—from year v.
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We then normalize P with Q, element-wise. We also apply the log trans-
formation so as to increase the differential entropy of the resulting numbers.
This transformation improves contrast in Figures 3 and 5 and, potentially,
the power of the statistical tests. So, we compute

L = log(P )− log(Q). (8)

The resulting matrix L is shown in Fig. 3, left panel. Before discussing the
figure, we perform a placebo test to ensure that the results are not acciden-
tally obtained by construction (e.g., due to an oversight in the method or a
bug in the code).

Let σk denote a random permutation of the papers indexed by k. We
use this permutation to define function ỹk(i) that assigns paper i a random
year from the set of all the years of all the papers, in effect reshuffling the
years across papers:

ỹk(i) = σk

(
(y(1), . . . , y(n))

)
i
. (9)

We proceed to construct matrix L̃k in exactly the same way as we have
constructed L but replacing y(·) with ỹk(·). The resulting matrix, for some
draw k is shown in Fig. 3, right panel.

Besides serving as a placebo test for the code, the process of generating
L̃k can be viewed as a data generating process for L under the null hypothesis
that the topic on which any paper gets written is independent of the year
of that paper.

We observe that under the placebo test there are no patterns in the
figure, as expected. (The stronger noise in the upper left corner corresponds
to the few papers being available in those years.) However, in the actual
data we see a pronounced clustering along the diagonal. Each year papers
are written predominantly on the topic or topics popular in that particular
year. While this result would likely not come as surprising to a practicing
economist—it is easy to speculate on possible explanations—it is a novel
result to the best of our knowledge and, equally important, it need not have
been observed. We might have observed instead a figure where both the
diagonal and the off-diagonals are pronounced meaning that most topics
stay popular for several years. We see some of that possibility in the earlier
years—compare the upper left to the lower right corner—and we discuss it
in more detail later on.

We proceed with testing which topic durations are consistent with the
data. To do so, we keep the same null hypothesis H0 that topics are in-
dependent of years but we test it against different alternative hypotheses.
Namely, consider hypothesis Ht

a that there are some topics that stay popular
for exactly t years. We allow for t = 0 to refer to topics that are popular for
exactly 1 calendar year. (If papers are uniformly distributed within a year,

11



Figure 3: Topic Incidences (All Papers)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

then the average distance between them is 1/3 ≈ 0 years.) Under Ht
a, some

of the papers that are t years apart or less should match more frequently
than random, while that should not be the case for papers that are more
than t years apart. I.e., it should be the case that Luv > 0 for some u, v
such that |u − v| ≤ t and it should be that Luv ≤ 0 whenever |u − v| > t.
There are a number of ways to construct a test statistic that captures these
considerations. We simply test for the presence of some positive Luv on the
boundary where |u− v| = t. To that end we use the following test statistic,

xt =
T−t∑
u=1

max(Lu(u+t), 0). (10)

We compute the distribution of xt under H0 using bootstrapping. We
generate 1,000 random permutations σk and we compute x̃tk analogously
with xt but using L̃k instead of L. Then the 95th percentile of

{
x̃tk
}
k

is used
as a one-sided critical value. We do not correct for multiple comparisons,
because the alternative hypotheses are approximately nested: if there are
topics popular for t years, we are nearly as likely to see matches between
papers that are t−1 years apart as if there only were topics that are popular
for t− 1 years. The results are shown in Fig. 4, left panel, as a graph of xta
over t, together with the corresponding critical values.

We see that the test statistic is larger for shorter durations. However,
statistically we can reject the null that topics are independent of publication
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Figure 4: Topic Duration (All Papers)
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.

years in favour of an alternative hypothesis that there are some topics that
last as long as 14 years.

How did the average topic duration change over time? We cannot answer
this question exactly without an explicit clustering of graph Γ into topics.
That said, under the assumption that the expected edge duration for any
edge from a given topic is indicative of that topic’s duration, we can instead
look at how edge duration changed over time.

To stay consistent with the computation of xt, we will use the positive
elements of L as weights. For instance, if between year u and year τ there
were twice as many matches as would otherwise happen randomly, we assign
a weight of log(2) to the duration |u− τ |. And if there were fewer matches
than what would happen randomly, we assign a weight of 0. So, we compute
a weighted average edge duration as follows:

tτ =

∑T
u=1max(Luτ , 0) · |u− τ |∑T

u=1max(Luτ , 0)
. (11)

The results are shown in Fig. 4, right panel. Notably, the average edge
duration has dropped from somewhere around 3–5 years in 1990–2005 to
about 1 year beginning 2010. In absolute terms, edge duration need not
equal topic duration, but the relative drop in the average edge duration can
still suggest that the same drop has occurred for the average topic duration.

A gradual decrease in the topic duration would have been consistent

13



Figure 5: Topic Incidences (Top 20)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

with a gradual increase in the pace of the economics research. Contrary,
what we observe in Fig. 4, is a relatively rapid shift in the topic duration.
One possible explanation for such a shift is the drop in the search costs for
related working papers following the launch of Google Scholar at the end
of 2004. As easier discovery of related working papers likely leads to the
positioning of any given paper more in line with the most recent research,
we would indeed observe shorter topic duration. Having said this, absent
usage statistics of Google Scholar we cannot test this logic further and so
we leave it as a conjecture.

The results so far have been based on discussion papers, of which about
30,000 are written yearly as of late. For comparison, we repeat the whole
exercise but limit the corpus to the top tier research. For that purpose,
we use papers published in the top 20 journals according to Combes and
Linnemer (2010). While any journal ranking beyond the Top 5 is open
for debate, we have chosen to adopt a specific ranking so as to increase the
sample size to more journals than just five. Based on this selection we obtain
matrix L as given in Fig. 5, left panel. The average edge duration given in
Fig. 6, right panel.

We observe that the longest statistically significant topic duration is
now shorter, but that result is due to substantially fewer papers and the
consequent loss of efficiency of our estimators. The average edge duration
have dropped noticeably less than it has done for all papers in economics,
from about 3–4 year in 1990–2005 to about 2 years as of late. It must
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Figure 6: Topic Duration (Top 20)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.

be mentioned, however, that when analysing all papers, the majority of
papers are discussion papers, in which case y(·) gives the year when those
discussion papers were released. On the other hand, here we look exclusively
at published papers and y(·) gives the publication year, which can have a
higher spread due to the variance in publication lag. As such, a 2 year
average edge duration in Fig. 6 is not per se inconsistent with a 1 year edge
duration from Fig. 4. So, seemingly, the average edge duration as well as,
potentially, the average topic duration have declined overall, whether it’s
top-tier research papers or economic research at large.

As a robustness check, we repeat the whole analysis when the cutoff in
Eq. (5) is set at 1 or 10 nearest neighbours, see Appendix B. We obtain
qualitatively identical results.

4 Summary
In conclusion, we briefly recap the main points of our analysis. We have
started by collecting and cleaning the RePEc dataset with the metadata on
economics papers. The corresponding code has been made publicly avail-
able.8 There is also an online tool for visualizing how often a specific word
(or two words) have been mentioned over time in the RePEc papers.9 Ad-

8https://github.com/andrei-dubovik/repec
9https://dubovik.eu/blog/repec
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ditionally to cleaning the data, we have also identified duplicates, which
would typically be a discussion paper and its published version. When a
paper has multiple versions, we always use the earliest available one in our
analysis, and that insulates the analysis from the effects of the publication
lag. Building on the TF-IDF metric, we have constructed a measure of text
similarity for every pair of papers. The measure is based on papers’ titles
and abstracts and, importantly, we have explicitly removed any possible
mention of years or JEL codes from those texts.

Given our measure of text similarity, we tabulate how many similar
papers there are between different pairs of years. We find strong evidence
that most similar papers are published in the same year, which says there are
strong common trends in the economics literature. We additionally observe
that the average difference in publication years between two similar papers
has dropped from some 4 years during 1990–2005 to about 1 year starting
in 2010. We conjecture that a possible explanation is the launch of Google
Scholar at the end of 2004.

Specifically for our case, we have also developed a statistical test that
allows us to asses whether the observed frequency of similar papers published
a given number of years apart is statistically significant. We bootstrap the
null statistic for our test by perturbing the assignment of publication years
to papers. While the observed higher frequency of similar papers from the
same year is indeed statistically significant, we also find that matches as
long as 14 years apart are statistically significant as well. This latter result
suggests there are topics in the economics literature that last at least as
long.

Finally, we conduct a number of robustness checks: we check for a sub-
sample of papers that are published in the top 20 journals, we vary a cutoff
for our similarity measure so that fewer or more papers are found similar, we
extend our similarity measure to include papers that are indirectly similar
to one another through a chain of other papers. In all of these robustness
checks we find qualitatively very similar results.
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Appendix A: Deduplication
The RePEc dataset frequently contains multiple iterations of the same pa-
per. For instance, a paper could be released one or more time as a working
paper and then once as a published paper. To avoid double counting and
possible spurious results we employ a two-stage deduplication procedure. In
a nutshell, we identify duplicate papers based on authors’ names, titles, and
abstracts.

The first step consists of pairing papers that share the same authors.
Doing so is not trivial, because for many authors the spelling of their names
differs between papers. For example, initials may be abbreviated, middle-
names omitted, and the order of the name parts changed. Furthermore,
the names come from different languages and cultures making it impracti-
cal to distinguish surnames, given names, middle names, and prepositions.
Instead, we employ a method that can match different spellings of the same
name without relying on the semantic understanding of that name.

Consider an arbitrary name. First, we clean the name by removing
most non-Latin characters and harmonizing the spelling of hyphens and
apostrophes.10 Second, we split the author’s name into a set of lower case
words (tokens). Third, we generate a list of possible derived names for the
author. A derived name is a name that can be obtained by applying the
following two steps: (1) abbreviating up to all but one token to a single
letter, (2) omitting up to all but two tokens, one of which needs to be a
non-abbreviated token. By definition, the set of derived names includes the
name itself. If a name contains 8 or more tokens we limit the set of derived
tokens to the name itself.

For example, “Keynes, John Maynard” is first translated to a set of three
tokens: {john, keynes, maynard}. From these 3 tokens 14 derived names
are generated, e.g., {j, k, maynard}, {john, keynes, m}, {j, maynard}, etc.

Two authors match if one of them can be derived from the other. For-
mally, let ch(r) be the set of all derived names for author r. Let ma(r, s)
indicate if authors r and s match. We have

ma(r, s) =

{
1 if r ∈ ch(s) ∨ s ∈ ch(r),
0 otherwise.

(12)

Consider two papers, i and j. We say these papers match by author if
and only if (1) both papers have the same number of authors and (2) there is
a one-to-one match between the authors’ names. Formally, let mpij indicate
whether papers i and j match by author, let ai denote a tuple of the authors
of paper i so that aik is the k-th author, and let σ denote a permutation.

10As we only consider papers written in English we feel that limiting the names to Latin
characters (including diacritics) is appropriate.
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We have

mpij =

{
1 if |ai| = |aj | ∧ ∃σ : ma(σ(ai)k, ajk) = 1 ∀k,
0 otherwise.

(13)

Additionally to matching by author, we match papers by title and ab-
stract. Towards this end we construct cosine similarity measure mij between
papers i and j that is computed on the basis of a TF-IDF representation
of the word stems from titles and abstracts. We discuss this procedure in
detail in Section 3. We say that papers i and j match by title and abstract
if either their titles are exactly the same or mij > 0.75.

Finally, we combine both measures. We say that two papers match if
they match both by author and by title and abstract.

The threshold of 0.75 is based on a manual inspection of the results and
the results are robust towards varying it. Choosing a threshold that is too
large leads to too few matches and to the presence of duplicate papers in
the final dataset. Given that iterations of a paper are rarely released in
the same year, the presence of duplicates increases the persistence of topics
across years. In contrast, a threshold that is too low may lead to spurious
matches for some papers. That being said, combining author information
and content information mitigates the risk of spurious matches.

The procedure outlined so far gives us pairs of papers that have been
identified as duplicates. In general, papers can undergo multiple revisions
where the changes between each revision are small while the changes from
the first revision to the last could be large. To identify chains of revisions
it is useful to interpret the identified duplicate pairs as edges in an graph.
Based on this graph we consider each connected component a unique paper
such that if we identified i, j and j, k as matches we consider i, j, k as versions
of the same paper.
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Appendix B

Figure 7: Topic Incidences (All Papers, 1 Nearest Neighbour)

19
90

19
95

20
00

20
05

20
10

20
15

20
20

1990

1995

2000

2005

2010

2015

2020

Year of Paper j

Y
ea
r
o
f
P
a
p
er

i

(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 8: Topic Duration (All Papers, 1 Nearest Neighbour)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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Figure 9: Topic Incidences (All Papers, 10 Nearest Neighbours)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 10: Topic Duration (All Papers, 10 Nearest Neighbours)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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Figure 11: Topic Incidences (Top 20, 1 Nearest Neighbour)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 12: Topic Duration (Top 20, 1 Nearest Neighbour)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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Figure 13: Topic Incidences (Top 20, 10 Nearest Neighbours)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 14: Topic Duration (Top 20, 10 Nearest Neighbours)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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Figure 15: Topic Incidences (All Papers, Paths of Length 2)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 16: Topic Duration (All Papers, Paths of Length 2)

(a) Significance Tests
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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Figure 17: Topic Incidences (All Papers, Paths of Length 3)
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(a) Original Data
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(b) Bootstrapped Data

Notes: Each panel shows adjusted frequencies of edges between papers, tabulated by the
years of those papers. Panel (a) shows the actual frequencies, whereas Panel (b) shows
simulated frequencies when the years of papers are randomly perturbed.

Figure 18: Topic Duration (All Papers, Paths of Length 3)

(a) Significance Tests
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(b) Average Edge Duration
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Notes: the left panel shows a test statistic for an H0 that topics are independent of
publication year against an alternative Ht

a that some topics stay popular for exactly t
years, where t is shown on the horizontal axis. The grey area shows the confidence interval
where H0 cannot be rejected at 5%. The right panel gives the average weighted duration
between two neighbouring papers, where at least one of the papers has been published in
the given year.
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