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Abstract

We compare machine learning techniques to a large Bayesian VAR for
nowcasting and forecasting world merchandise trade. We focus on how
the predictive performance of the machine learning models changes
when they have access to a big dataset with 11,017 data series on key
economic indicators. The machine learning techniques used include
lasso, random forest and linear ensembles. We additionally compare
the accuracy of the forecasts during and outside the Great Financial
Crisis. We find no statistically significant differences in forecasting
accuracy whether with respect to the technique, the dataset used—
small or big—or the time period.

JEL: F17, C53, C55.
Keywords: world trade; forecasting; big data; machine learning; large
BVAR.

1 Introduction

Accurate predictions of trade flows are vital for making economic forecasts for
small open economies, since the latter depend heavily on trade and trade is
often an early indicator of economic changes to come. The CPB World Trade
Monitor (WTM) aggregates worldwide monthly data on merchandise trade
for a sample of 81 countries.1 Those 81 countries account for 99% of world
trade (Ebregt, 2016) and, since the WTM is one of the first to report on world

1The WTM also aggregates data on industrial production, which we leave aside in this
paper.
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trade, it is therefore widely used. Even though timely, the WTM data still
has a two-month lag so nowcasting and forecasting are necessary to bridge
the gap between the data and today. These forecasts are especially useful
in crises because simply projecting recent performance forward is unlikely to
be informative. However, it is especially these periods that traditional time
series techniques have the greatest difficulty in forecasting.

In recent decades more data became available and techniques were de-
veloped to extract useful information out of big datasets. In this paper we
compare the out-of-sample forecasting performance of two approaches to big
data: a state-of-the-art time series approach and commonly used machine
learning algorithms, which are trained purely on forecast accuracy. Our
results contribute to two issues: whether machine learning algorithms out-
perform traditional approaches in low dimensional data and whether there is
useful information in the massive number of time series now available. In our
application machine learning algorithms do not generally outperform tradi-
tional time series approaches and using a big dataset over a relatively small
number of time series does not improve forecast accuracy either.

Our state-of-the-art time series model is the large Bayesian VAR that the
CPB uses to forecast developments in world trade. Large BVARs have be-
come a workhorse model for forecasting with big datasets. For example, the
seminal article of Bańbura et al. (2010) showed that a large BVAR could suc-
cessfully extract useful information from 131 time series and produce more
accurate forecasts than models using fewer time series. Large BVARs also
display comparable forecast accuracy to other leading techniques for extract-
ing useful information from big datasets.2

These time series approaches are extensions of traditional approaches de-
veloped for situations where the forecaster has many observations in the time
dimension, but relatively few series at their disposal. In contrast, machine
learning methods thrive in high-dimensional settings where the signal-to-
noise ratio is potentially low, but they typically require a lot of data in
order to distinguish the signal from the noise (see Jean et al. 2016; Mul-
lainathan and Spiess 2017; Athey and Imbens 2019). Additionaly, their flex-
ibility allows them to handle nonlinearities in the data, which is beneficial
in times of macroeconomic uncertainty or financial stress (Goulet Coulombe
et al., 2022). However, whether machine learning methods are able to predict

2For more details on traditional methods of dealing with big data in macroeconomics,
see Bok et al. (2018). For trade specific examples, Guichard and Rusticelli (2011) compare
a large BVAR to a dynamic factor model to predict world trade with a similar dataset to
this paper and conclude that both state-of-the-art time series methods produce similarly
accurate forecasts. Cantú-Bazaldúa (2021) reports encouraging nowcast accuracy for trade
flows from a dynamic factor model.
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macro-economic series better than traditional methods when using limited
datasets remains an open question.

In this paper we start by estimating our machine learning algorithms on
identical data to our large BVAR, which uses 23 variables.3 This exercise
contributes to a growing literature that uses machine learning to predict real
macro-economic variables from low-dimensional data (Ahmed et al., 2010;
Jung et al., 2018; Richardson et al., 2018; Circlaeys et al., 2018; Chen et al.,
2019; Milunovich, 2020). Several of the aforementioned studies have sug-
gested that machine learning methods can be promising tools for forecasting
economic time-series, but that they do not necessarily yield statistically bet-
ter forecasts than the traditional econometric estimators.4 Richardson et al.
(2018) use machine learning techniques to nowcast New Zealand GDP and
conclude that a linear ensemble of methods performs best. Interestingly
for our application, they find that all of the machine learning techniques
outperform a BVAR. Jung et al. (2018) use a number of machine learning
techniques to forecast GDP for several countries. They find that these meth-
ods can outperform traditional statistical models, depending on the country
and time period. Circlaeys et al. (2018) apply a neural network to a big
dataset of bilateral trade flows. They conclude that a neural network is able
to predict bilateral trade flows very well in a cross-sectional setting, but the
gain from using neural nets becomes smaller once lagged dependent vari-
ables are included, which is a standard practice for traditional time series
methods. Finally, Milunovich (2020) considers predictions for Australia’s
real house prices using machine learning, deep learning and traditional time-
series models, and finds that a support vector regression together with simple
mean forecast combinations are the best predictors in general. Our paper
adds to the aforementioned literature by comparing the accuracy of large
BVAR forecasts of the world merchandise trade to those from lasso, random
forest and ensemble models over the period April 2006 to September 2019.

In addition to our comparisons using the 23 core variables, we present
evidence on whether a significantly bigger dataset with 11,017 variables im-
proves the accuracy of the machine learning algorithms. By doing both these
steps we can separate the effect of the techniques from the expansion in the
dataset size. Other authors have reported significant improvements in trade
nowcasts and forecasts with bigger datasets. For example, Stamer (2021)

3Even though large BVARs have been shown to produce more accurate forecasts with
much bigger datasets, unpublished research at CPB showed that increasing the number
of variables beyond these 23 variables produces similar forecast accuracy for world trade.
Hence the CPB large BVAR uses a medium sized dataset of 23 variables.

4Ahmed et al. (2010); Chen et al. (2019) consider the predictive performance of machine
learning methods without comparing them to more conventional methods.
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and Cerdeiro et al. (2020) report accurate nowcasts using container ship
movement data and machine learning techniques. For forecasting further
ahead, Kim (2020) reports better forecast performance for Korean exports
using deep learning techniques than using traditional vector autoregressions
and vector error-correction models. By contrast, our benchmark is a state-of-
the-art large BVAR rather than traditional vector autoregressions and vector
error-correction models. Moreover, since we use such a large dataset we pay
particular attention to forecast performance during the 2007–2008 financial
crisis, since it is possible that specific variables in the big dataset might be
particularly helpful in forecasting turning points.

Our main finding is that neither machine learning model outperforms
the BVAR over the whole sample. Moreover, adding bigger data does not
significantly improve accuracy compared to the results of the BVAR on the
pre-selected core data. Lastly, during the 2007–2008 financial crisis, the
BVAR remains the best performing model. Our results can be viewed as
a more cautious outlook on the usefulness of machine learning methods for
macro-economic forecasts. While selected studies achieve better results with
machine learning methods, such an improvement is not a given. Potentially,
a further fine-tuning of the methods used in this paper would have allowed
us to outperform the BVAR, but it would have also inadvertently introduced
a bias towards our specific data.

The remainder of this papers is as follows. Section 2 describes the com-
peting models. Section 3 describes the data. Section 4 reports the results.
In Section 5 we discuss why machine learning methods might be failing to
outperform the BVAR. Finally, Section 6 concludes.

2 Competing methods

We compare the forecast accuracy of four techniques before, during and after
the Great Recession of 2008–2009. This section briefly introduces each of
these techniques.

2.1 Large Bayesian Vector Autoregression

The large Bayesian Vector Autoregression (BVAR) follows the seminal work
of Bańbura et al. (2010) and Giannone et al. (2015). As the number of
parameters to be estimated in VAR can become very large, overfitting can
be a significant problem for forecast accuracy. Analogous to shrinkage applied
in ridge regression, the specification of the priors shrinks the parameters such
that overfitting is reduced and out-of-sample forecast accuracy improves.
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The large BVAR used in this paper follows de Wind (2015) and is esti-
mated with a combination prior,5 six lags and variables enter the large BVAR
in log-levels. A Kalman filter is used to fill in the ragged edge. For multi-
period forecasts, the BVAR forecasts are iterative: first a one-month-ahead
forecast is made, then the one-month-ahead forecast is used to make the
two-month-ahead forecast and so on. This contrasts to our machine learning
specifications where direct forecasts are made: we use a separate model for
each forecast horizon.

2.2 Model specifications for the machine learning meth-
ods

We adopt the same specification for all machine learning methods. Addition-
ally, to deal with the ragged edge, we align the data on publication date. In
particular, let yt denote the world trade index, in logs, from period t− 2 as
published at the end of period t. Let xt denote a vector of regressors that
are available at the end of period t and let ∆xt denote the absolute growth
of those regressors, also as available at the end of period t. The regressors
included in xt have varying publication lag, from zero to several months. We
always include yt among xt. We use the following specification:

Et(yt+h − yt) = fh
t (xt,∆xt,∆xt−1,∆xt−2), (1)

where fh
t (·) is estimated with a particular machine learning forecaster, namely

lasso or random forest, using the data available up to and including period
t. We estimate a separate model for each period t and time horizon h.

In the core data all the variables are log transformed. The big data has
over 11 thousand variables and we log-transform those series that are always
positive, and leave the other series as they are. As equation (1) shows, we
use an error-correction model specification. Namely, the dependent variable
is in differences and the regressors consist of levels together with lagged
differences. This specification was chosen during a short trial at the start
of the project and has not been revised since so as to avoid overfitting. We
adopt a direct forecasting methodology for machine learning models. That
is, we train a new model for each new forecast horizon.6

5The prior is a combination of three commonly used priors as in Sims and Zha (1998)
and Giannone et al. (2015). They are the Minnesota prior, the sum-of-coefficients prior
and the no cointegration prior.

6In principle, it is possible to adopt dynamic forecasting, but that raises a theoretical
question about how to properly do cross-validation with dynamic forecasts, which falls
outside of the scope of the present research.
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Lasso

We use the R package “glmnet” to estimate the lasso models, following Fried-
man et al. (2010). We leave the cross-validation parameters at their default
values with a 10-fold cross-validation for a lasso. Following Hastie et al.
(2008) we set the value of the regularisation parameter λ to one standard de-
viation above the value that minimises the cross-validated root-mean-square
error (RMSE).

Random Forest

We use the R package “randomForest” to estimate the random forest models,
following Breiman (2001). Once again, we leave the package parameters at
their default values. In particular, we estimate a random forest with 500
regression trees of final node size 5, where 10 randomly selected variables are
used at each split.

Ensemble

Previous research (see, for example, Hendry and Clements, 2004) has shown
that linear combinations of forecasts from different models can produce more
accurate forecasts than even the best individual model. For our ensemble we
simply average the predictions by the machine learning models and the large
BVAR, because more sophisticated methods to weight the predictions might
lead to overfitting (see, for example, Claeskens et al., 2016).

3 Data

The time series of world trade is shown in Fig. 1. In the period before the
Great Financial Recession, world trade typically grew at a steady rate with
the exception of the early 2000s when there was a limited contraction. The
decades of steady growth came to an abrupt end in the Great Financial
Recession when world trade contracted by 13%, before partially recovering
and then resuming growth at a slower rate than before the crisis. Arguably,
the figure highlights two structural breaks. Firstly, the financial crisis repre-
sented a period of higher volatility with large changes in world trade flows.
Secondly, the lower trend growth rate after the financial crisis is a type of
change well-known to cause difficulties for traditional time series methods
(Banbura and van Vlodrop, 2018).

For our out-of-sample forecasting competition we use two different datasets.
Both datasets are single vintage: a key contribution of our analysis is investi-
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Figure 1: World Trade Index (Log Scale)
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Notes: The period starting in April 2006 (dashed line) is the competition period, i.e. it is
the period in which the forecast errors are computed. The shaded area denotes the period
between August 2008 and August 2009, used as the crisis period elsewhere in this paper.

gating whether a big dataset would improve forecast accuracy, and gathering
real-time data vintages for 11,000 time series was deemed beyond the scope
of this research. Moreover, many of the series involved are survey or financial
data, which are not subject to revision. For an initial comparison between
the large BVAR and the machine learning algorithms, we use a dataset of
23 regressors, comprising various economic and survey indicators (i.e. the
core dataset). These regressors have been selected for the BVAR prior to the
current research, with the selection similar to that in Guichard and Rusticelli
(2011). The list of variables along with the respective data sources is shown
in Table 5 in the appendix.

We then extend the core dataset with almost 11,000 additional monthly
time series from Datastream. These series primarily consist of all key eco-
nomic indicators and commodities that were available on a monthly basis for
the period 1991–2019. A small additional number of series were also included
manually, based on our expert judgement. To give an idea of the potential
extra information in this big dataset, Table 1 reports the minimum number
of factors required to explain at least 90% of the total variance (when using
principal components decomposition). Whereas 4 factors are sufficient to
explain over 90% of the variation in the core dataset, 33 are needed for the
big dataset.
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Table 1: Core and Big datasets

Core Big

Start 1991-03 1991-03
End 2020-04 2019-10

Number of variables 23 11,017
Number of observations 350 344
Average delay (months) 1.7 1.5
No. factors with 90% total variance 4 33

3.1 Competition rules

We evaluate the performance of the models based on a rolling out-of-sample
RMSE where we use the data available up to and including period t to
compute the prediction for period t+ h. Formally,

RMSEh =

(∑T−h
t=t0−h

(
yt+h − Et(yt+h)

)2
T − t0 + 1

) 1
2

, (2)

where t0 and T denote the start and end of a particular competition period.
We compute Et(yt+h) as Et(yt+h) = yt + fh

t (·), where fh
t is re-estimated for

each separate period t and time horizon h using the data up to and including
period t. When estimating fh

t we use standard cross-validation, i.e. we do
not take the time-series nature of the regressors into account.

There are a number of ways to compute out-of-sample errors for time-
series forecasts, see, e.g. Bergmeier and Benitez (2012) for a discussion.7 We
have made our choice for a rolling RMSE so as to stay consistent with poten-
tial ex-post evaluations. That is, if we had implemented a specific machine
learning method for the monthly CPB forecasts from the very beginning,
then an ex-post evaluation of these forecasts would have been the same as
how we compute the forecast errors with our approach.

7For instance, only the data before a given period, or both the data before and the
data after a given period can be used to train a model. An error can be computed for
a single period at a time or for a group of consecutive periods. Additional observations
between a given period and the data used for training can be dropped, so as to help in
breaking time-series dependencies. Et cetera.
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Figure 2: Locally Averaged Rolling 2-month-ahead RMSE, Core Data
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Notes: RMSE is averaged over a centred 13 month window. The shaded area is a 95%
confidence interval around the BVAR RMSE.
aAverage ensemble using core data BVAR, lasso, and random forest.

4 Results

We use three evaluation windows: the full sample, the financial crisis and the
non-financial crisis part of our sample. Tables 2 to 4 contain the RMSEs of
the competing models in those periods. The RMSEs are reported normalised
to the RMSE of the large BVAR.

We use a two-sided Diebold and Mariano (1995) test to compare predic-
tions by the machine learning algorithms to those by the BVAR. We run
a separate test for each dataset (core or big) and for each forecast horizon,
which results in testing 24 hypotheses for each of the evaluation windows.
As we do not have a priori information that would suggest a hypothesis
that a particular machine learning method might do better or worse at a
specific forecasting horizon, we correct for multiple hypothesis testing using
the Holm-Bonferroni method (Holm, 1979).

As shown in Table 2, over the full competition window, we cannot reject
the hypothesis that the predictions by the machine learning methods are
equal to those of the large BVAR. Looking at the absolute values of the
RMSEs, Table 2 shows that the machine learning methods perform slightly
worse compared to the BVAR, except for the big data ensemble at the 1
month horizon.

Since the WTM is published with a 2 month lag, to highlight variation
over time at this horizon, we present a 2-month-ahead RMSEs calculated
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Table 2: Relative RMSE (Apr 2006–Sep 2019)

Horizon 1 2 3 6

Core data
BVAR 1.000 1.000 1.000 1.000

(0.0103) (0.0133) (0.0169) (0.0285)

Lasso 1.080 1.175 1.173 1.184
Random forest 1.059 1.210 1.298 1.246
Ensemblea 1.014 1.081 1.100 1.030

Big data
Lasso 1.028 1.229 1.246 1.075
Random forest 1.111 1.348 1.476 1.608
Ensembleb .991 1.105 1.152 1.111

Notes: Each number gives the RMSE of the respective method relative to the RMSE of
BVAR. The original BVAR RMSEs are given in round brackets. Bold numbers indicate
significance at 5% level according to the two-sided Diebold-Mariano test. None of the
indicated differences remains significant when corrected for multiple hypotheses testing
using the Holm-Bonferroni method.
aAverage ensemble using core data BVAR, lasso, and random forest.
bAverage ensemble using core data BVAR and big data lasso and random forest.

Figure 3: Locally Averaged Rolling 2-month-ahead RMSE, Big Data
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aAverage ensemble using core data BVAR and big data lasso and random forest.
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Table 3: Relative RMSE (Aug 2008–Aug 2009, i.e. crisis)

Horizon 1 2 3 6

Core data
BVAR 1.000 1.000 1.000 1.000

(0.0200) (0.0324) (0.0443) (0.0829)

Lasso 1.222 1.341 1.324 .887
Random forest 1.191 1.421 1.517 1.338
Ensemblea 1.112 1.220 1.242 1.022

Big data
Lasso 1.188 1.449 1.449 1.123
Random forest 1.395 1.647 1.764 1.563
Ensembleb 1.160 1.286 1.339 1.201

Notes: Each number gives the RMSE of the respective method relative to the RMSE of
BVAR. The original BVAR RMSEs are given in round brackets. Bold numbers indicate
significance at 5% level according to the two-sided Diebold-Mariano test. None of the
indicated differences remains significant when corrected for multiple hypotheses testing
using the Holm-Bonferroni method.
aAverage ensemble using core data BVAR, lasso, and random forest.
bAverage ensemble using core data BVAR and big data lasso and random forest.

over a rolling 13 month window for each model throughout our evaluation
period in Fig. 2 and 3. They show clearly that the relative performance of
the large BVAR is driven by its accuracy during the crisis. Whilst all models
performed worse during the crisis, the accuracy of the machine learning tech-
niques deteriorated significantly more than the BVAR. Table 3 shows that
it’s not just at the 2-month-ahead horizon that the BVAR performs relatively
well during the crisis. At 1-, 2- and 6-months-ahead the BVAR almost always
has the lowest RMSE. However, we stress that the difference in predictive
performance is only exceeds the 5% critical value three times (and only when
predicting six months ahead) using a two-sided Diebold-Mariano test. Im-
portantly, none of the results are statistically significant once we control for
multiple hypothesis testing using the Holm-Bonferroni correction.

In contrast, in both the pre-crisis and post-crisis periods the differences
are much smaller. As shown in Table 4, outside the crisis the machine learning
techniques often perform marginally better than BVAR. Based on a two-
sided Diebold-Mariano test the difference in prediction performance exceeds
the 5% critical value three times. Notably, it seems that especially the big
data ensemble provides predictions that are better than the BVAR. Once
again, however, these results should be interpreted carefully as none of the
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Table 4: Relative RMSE (Apr 2006–Jul 2008, Sep 2009–Sep 2019)

Horizon 1 2 3 6

Core data
BVAR 1.000 1.000 1.000 1.000

(0.0090) (0.0101) (0.0118) (0.0169)

Lasso 1.012 1.002 .955 1.644
Random forest .997 .981 .964 1.024
Ensemblea .968 .937 .895 1.046

Big data
Lasso .950 .989 .938 .967
Random forest .962 1.004 1.018 1.700
Ensembleb .908 .911 .870 .892

Notes: Each number gives the RMSE of the respective method relative to the RMSE of
BVAR. The original BVAR RMSEs are given in round brackets. Bold numbers indicate
significance at 5% level according to the two-sided Diebold-Mariano test. None of the
indicated differences remains significant when corrected for multiple hypotheses testing
using the Holm-Bonferroni method.
aAverage ensemble using core data BVAR, lasso, and random forest.
bAverage ensemble using core data BVAR and big data lasso and random forest.

differences are significant once we control for multiple hypothesis testing
using the Holm-Bonferroni correction.

4.1 Analysis of forecast errors

Figure 4 compares the machine learning errors to those from the large BVAR
outside of the crisis. The 45 degree line indicates when both models give the
same forecast. If the correlation represented by the scatter plot is shallower
than 45 degrees, the machine learning models produced more accurate fore-
casts than the BVAR. As Figure 4 shows, that is not visible to the naked
eye, which is not surprising given the similar RMSEs presented in Table 4.

Nonetheless, the figures do show that both the machine learning models
and the large BVAR produce their largest forecast errors in similar peri-
ods. In Figure 4, periods when world trade is increasing are represented
by circles, whilst crosses represent contractions. For all models, the largest
overpredictions occur when world trade is contracting and the largest under-
predictions occur when world trade is increasing. This could be caused by a
number of issues. For example, if the largest errors are due to unforecastable
shocks occurring after the forecasts are made, all models will make similar
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forecast errors in these periods. Alternatively, it is also plausible that the
machine learning algorithms might be failing to pick up signals that could
have markedly improved the forecasts because of the relatively short time
dimension of our data. As such, their forecasts are similar to the BVAR
because the BVAR already embodies the clearest signals in the data.

Finally, the scatter plots for the ensemble models lie visibly closer to
the 45 degree line than the underlying models. This implies the ensemble
forecasts are more similar to the BVAR forecasts than the lasso and random
forest forecasts are, which is not surprising since the BVAR is included in
the ensemble.
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Figure 4: Forecast Errors (Apr 2006–Jul 2008, Sep 2009–Sep 2019)
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5 Discussion

Our results suggest that we do not forecast world trade with more precision
if we replace the forecasts of the large BVAR on the core dataset with the
forecasts of machine learning methods on the big dataset. Possibly, this oc-
curs because the machine learning methods overfit: they do not have enough
observations to distinguish true signal from noise in the big data and there-
fore results are comparable to the results of the BVAR on the pre-selected
core data. An alternative explanation would be that the big dataset contains
many correlated variables that are important for forecasting world trade. In
this case lasso might not select all the relevant predictors and the individual
trees of the random forest would be “too similar.” In this case, both the
lasso and the random forest forecasts will have higher variance.

Let us consider multicollinearity first. If multicollinearity of the big
dataset is problematic for the machine learning methods, we would expect
that orthogonalising the regressors in the big dataset would improve the
world trade forecasts. However, a study by Buck et al. (2021),8 that uses the
same datasets as we do, concludes that reducing the dimensionality of the
big data with principal component analysis does not improve the forecasts by
lasso and random forests on the big data. Their findings suggest that using
big data does not improve world trade forecasts because the machine learning
methods overfit, not because the big dataset contains many variables that
are highly multicollinear.

Regarding overfitting, in a parallel study de Nerée tot Babberich et al.
(2021)9 also use the same dataset as we do and investigate whether lasso and
random forest would have picked up informative series from the big dataset in
case there were any. Their analysis relies on augmenting the big dataset with
simulated informative series. They find that in general both lasso and random
forest would have performed better on the big data if there was an informative
additional predictor there, with lasso outperforming random forest in this
regard. (Indeed, we see in Tables 3 and 4 that lasso outperforms random
forest across the board when it comes to the big dataset.) However, the
performance of both methods drops substantially if the simulated informative
series are correlated with the existing regressors. So, while we cannot rule
out that the big data contains additional information on the development

8The study by Buck et al. (2021) is an unpublished manuscript, which is available upon
request. Two of the authors of the present paper were involved in the study by Buck et al.
(2021) as supervisors.

9The study by de Nerée tot Babberich et al. (2021) is an unpublished manuscript,
which is available upon request. Two of the authors of the present paper were involved in
the study by de Nerée tot Babberich et al. (2021) as supervisors.
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of world trade, the aforementioned result suggests that at least no clear, i.e.
orthogonal, additional predictors exist in the big data as compared to the
core data.

6 Conclusions

We have compared the nowcasts for merchandise world trade by a large
Bayesian VAR using conventional data to the nowcasts by machine learning
techniques using the same or big data. The machine learning techniques
used include lasso, random forest and linear ensembles. We have used the
CPB World Trade Monitor as the measure for world merchandise trade. We
find that none of the machine learning models statistically outperforms the
large Bayesian VAR when these models are trained on conventional data.
Extending the set of explanatory variables from the 23 regressors included in
the BVAR to some 11,000 additional data series on key economic indicators
does not lead to a significant improvement in terms of forecasting accuracy
either.

In particular, during the Great Financial Recession the large BVAR typ-
ically produced more accurate forecasts, with the machine learning methods
having the RMSE anywhere between 2% and 76% higher than the BVAR
(the exception being the lasso using the core dataset, which produced lower
RMSE forecasts at the 6 month horizon). Outside of the crisis the machine
learning methods produced marginally lower RMSEs than the BVAR: ran-
dom forest was up to 4% better and lasso up to 6% better, depending on
the dataset and the horizon. A linear ensemble including the BVAR was
up to 13% better. However, these differences in forecast accuracy are not
statistically significant once we control for multiple hypothesis testing using
the Holm-Bonferroni correction.
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Appendices

A The core dataset

Table 5 lists the variables in the core dataset. More details regarding the big
dataset are available on request.
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Table 5: Variables in the core data set

Variable description Block of economy Data source

World trade (dependent variable) Goods trade volumes CPB-WTM
Imports (advanced economies) Goods trade volumes CPB-WTM
Imports (emerging economies) Goods trade volumes CPB-WTM
Exports (advanced economies) Goods trade volumes CPB-WTM
Exports (emerging economies) Goods trade volumes CPB-WTM
World trade price Goods trade prices CPB-WTM
Import price (world) Goods trade prices CPB-WTM
Import price (advanced economies) Goods trade prices CPB-WTM
Fuels (HWWI) Goods trade prices CPB-WTM
Primary commodities excl. fuels (HWWI) Goods trade prices CPB-WTM
Industrial production excl. construction (world) Industrial production CPB-WTM
Industrial production excl. construction (adv. economies) Industrial production CPB-WTM
Retail trade (OECD countries) Retail trade volumes OECD
Retail trade (euro area) Retail trade volumes OECD
Composite leading indicator (OECD countries) Composite leading indicators OECD
Composite leading indicator (China) Composite leading indicators OECD
Ifo business climate (Germany) Purchasing managers’ indices CESifo
ISM manufacturing (US) Purchasing managers’ indices FRED
Brent oil price Various Refinitiv Datastream
Baltic exchange dry index Various Refinitiv Datastream
MSCI world index Various Refinitiv Datastream
World steel production Various Refinitiv Datastream
World semiconductor billings Various Refinitiv Datastream
WSTS Tech pulse index Various FRBSF
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