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Abstract

Recently developed heterogeneity-robust two-way fixed effects (TWFE) estima-
tors do not quantify the full heterogeneity in treatment effects in a difference-
in-differences research design. We therefore present a computationally feasible
algorithm to estimate heterogeneous treatment effects in the presence of many
fixed effects using causal forests. Our modification identifies treatment effects
by partialling out fixed effects using group averages. Simulation results sug-
gest that our algorithm provides consistent estimates of the Conditional Average
Treatment effect for the Treated in a (staggered) difference-in-differences research
design. Finally, we use our method to document heterogeneity in the treatment
effect of alternative work arrangements (payrolling) on hourly wages. We find
evidence that wages fell by 3.7 percent in the first year of payrolling for a specific
subgroup of workers only. Both conclusions did not appear in a conventional
heterogeneity analysis using manual subgroups. The R-code of our algorithm is
publicly available online.
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1 Introduction

. Our modification indicates that the hourly wages of a particular subgroup of workers
decreased by 3.7 percent in the first year of payrolling. We found a greater degree of
diversity than when we manually examined the subgroup.

Difference-in-differences is a widely used research design (Currie et al., 2020), with
fifteen percent of all papers published in the American Economic Review in 2022 utiliz-
ing it. Additionally, between 2015 and 2019, 26 out of the 100 most popular articles in
that journal employed regressions with period and group fixed effects (De Chaisemartin
and d’Haultfoeuille, 2023). However, the economics community has recently come to
understand that estimation results with time and group fixed effects may be mislead-
ing when treatment effects differ between groups or over time. As a result, the past
few years have seen the development of heterogeneity-robust estimators of the average
treatment effect (see the review by De Chaisemartin and d’Haultfoeuille (2023) and
references therein).

However, these estimators generally do not quantify the full heterogeneity in treat-
ment effects, since they depend on the researcher’s manual formation of subgroups.
This approach carries two potential risks. First, the undetected heterogeneity problem
might occur when researchers only consider their 'usual suspects’ or groups that are
easy to target by policymakers. Other groups, that might have treatment effects that
differ substantially from the average, might simply not be considered. Second, there is
the false discovery problem. Researchers might mistakenly present false discoveries as
genuine effects, when they test many different interactions (or sample splits) without
taking multiple hypothesis testing into account.’

We mitigate these problems by developing a feasible algorithm to estimate a causal
forest with high-dimensional fixed effects, which we call the causal forest with fixed
effects. The flexibility of the causal forest estimator (Athey et al., 2019; Wager and
Athey, 2018; Athey and Imbens, 2016) reduces the missed discovery problem, because
the algorithm uses a potentially high-dimensional set of characteristics to form sub-
groups for which the treatment effects differ from the average. At the same time, the
false discovery problem is mitigated because the estimator is ‘honest’ (Athey et al.,
2019; Athey and Imbens, 2016).? Despite the causal forest algorithm being only a few
years old, it has become a popular tool to study treatment effect heterogeneity rapidly.?

However, causal forests cannot be applied directly to a standard difference-in-
differences research design, because the treatment effect is not identified conditional
on the inclusion of indicators for treatment group status and treatment period in its

1See Cook et al. (2004) and Assmann et al. (2000) for an explanation. The comic by Munroe (2022)
nicely illustrates the risk imposed by multiple hypothesis testing. Benjamini and Hochberg (1995) and
Holm (1979) provide possible corrections.

2Honesty refers to the fact that the algorithm uses split samples to estimate treatment effects out
of sample. This approach to prevent overfitting is similar in spirit to (two-fold) cross-validation. In
section 3 we explain honesty in further detail.

3Causal forests are used to study heterogeneous responses in several fields, such as medical studies
(Verstraete et al., 2023; Jawadekar et al., 2023; Bodory et al., 2022; Raghavan et al., 2022; Hermansson
and Svensson, 2021), public economics (Shah et al., 2023; Hoffman and Mast, 2019), labor economics
(Zheng and Yin, 2023; Davis and Heller, 2020), banking (Brock and De Haas, 2023; Gulen et al., 2020),
business economics (Luo et al., 2019) and environmental economics (Murakami et al., 2022; Knittel
and Stolper, 2021; Miller, 2020) including the impact of natural disasters (Shiba et al., 2021).



current implementation by Tibshirani et al. (2022).4

Our modification controls for various fixed effects using averages of the outcome
and treatment indicator over the drivers of these fixed effects, such as individuals,
time and/or event-time (Somaini and Wolak, 2016).> This allows the use of causal
forests in a difference-in-differences research design without affecting the statistical
properties of causal forests described in Athey et al. (2019); Wager and Athey (2018).
Our approach yields consistent estimates of the CATT and the ATT that are identified
when the common-trend and no-anticipation assumptions hold at the subgroup level.
In this paper we first consider the performance of the causal forest with fixed effects
using simulated data for a single-event and for a staggered difference-in-differences
research design. Second, we use our method to estimate the heterogeneous impact
of alternative work arrangements (payrolling) on worker wages using Dutch employer-
employee matched registration data, as in Goos et al. (2022).

Our paper provides two important conclusions. First, our simulation results show
that a causal forest with fixed effects provides consistent estimates of heterogeneity
in treatment effects. This is concluded when single event and staggered difference-in-
differences research designs are simulated. Also, we show that a manually recentered
causal forest provides inconsistent estimates, which highlights that our modification of
the causal forest algorithm is necessary.

Second, we study the effect on payrolling on short term hourly wages. In particular,
we compare a heterogeneity analysis based on manually formed subgroups against such
an analysis based on a causal forest with fixed effects. Both methods yield similar
estimates of the average treatment effect, €-0.2 per hour (1.8 percent) for a causal
forest with fixed effects and €-0.17 per hour (1.6 percent) for an OLS-regression. Yet,
the pattern of heterogeneity detected is very different. When manual subgroups are
formed, many worker characteristics lead to a significant treatment effect. For instance,
the treatment effect for women is significant at €-0.27 per hour (2.5 percent), which
suggests that hourly wages decrease after payrolling for about half of the population.
Yet, when we group workers into deciles based on their Conditional Average Treatment
Effect of the Treated (CATT) provided by our algorithm, we find that the CATT is
only significant for the first two deciles and equal to about €-0.4 per hour (3.7 percent).
In line with the manual subgroup analysis, we find that workers in this group are more
often female, young, enrolled in education or workers with a first generation migration
background.

Our paper is related to three fast developing fields within the econometrics literature.
First, this paper is related to the recent econometrics literature on identification and bias
of (staggered) difference-in-differences when individual and time fixed effects are present
(De Chaisemartin and d’Haultfoeuille, 2023; Roth et al., 2023; Dube et al., 2023; Baker
et al., 2022; Goodman-Bacon, 2021; De Chaisemartin and d’Haultfoeuille, 2020). These

4The use of difference-in-differences as a research design is well explained in Angrist and Pischke
(2010) and Angrist and Pischke (2009). The assumptions underlying and the behavior of difference-
in-differences estimators are studied in many papers, including their performance when there are few
treatment groups (Donald and Lang, 2007), when there is autocorrelation (Bertrand et al., 2004),
semi-parametric or Double-Machine-Learning estimation of difference-in-differences research (Abadie,
2005; Chang, 2020; Knaus, 2022), non-linear difference-in-differences (Athey and Imbens, 2006) or the
relation between synthetic control and DD (Doudchenko and Imbens, 2016; Arkhangelsky et al., 2021).

5The approach is extensively discussed in section 4.



papers detail why inclusion of time and group fixed effects might bias the estimation of
the average treatment effect and discuss solutions to this problem. In particular, a naive
twoway fixed effects difference-in-differences specification with binary treatment would
make the forbidden comparison of (newly) treated observations against already treated
observations in a staggered research design. In contrast, we extent the causal forest
algorithm with twoway and threeway fixed effects. We demonstrate that this allows
for estimation of heterogeneity in treatment effects in a difference-in-differences setting
when treatment is binary and the estimation sample is restricted to exclude so-called
‘forbidden comparisons’ of treated against already-treated individuals. Importantly, our
method provides an estimate of the average treatment effect that is robust to variation in
treatment effects between groups and over time. Finally, we emphasize the advantages
of using causal forests to predict treatment effects compared to the standard two-way
fixed effects specification. The recursive partitioning of causal forests guarantees that
treatment effects are estimated for treated and control units that are very similar in
confounding characteristics.

Second, our paper is related to papers that use machine learning to estimate het-
erogeneity in treatment effects. Several machine learning methods have been used to
estimate treatment effect heterogeneity, including Bayesian Additive Regression Trees
(BART, see Chipman et al. (2010); Green and Kern (2012); Hill (2011) and Hill and Su
(2013)), regression trees (Su et al., 2009; Zeileis et al., 2008), regression forests (Foster
et al., 2011), Support Vector Machines (Imai and Ratkovic, 2013) and LASSO (Tian
et al., 2014). Other papers estimate treatment effect heterogeneity using tree-based
algorithms when treatment assignment is not randomly assigned (Bargagli-Stoffi et al.,
2022; Bargagli Stoffi and Gnecco, 2020; Wang et al., 2017; Johnson et al., 2022; Hartford
et al., 2016). Hatamyar et al. (2023) use the R-learner, a machine learning technique, to
estimate treatment effect heterogeneity in a staggered difference-in-differences design.
We focus on causal forests, because this estimator is designed to maximize treatment
effect heterogeneity and econometric theory proves the method is consistent, also when
irrelevant variables are used to look for treatment effect heterogeneity (Wager and
Athey, 2018).

Third, our paper is related to studies that extent the application of causal forests
to panel data and difference-in-differences. Panel data enables estimation conditional
on individual fixed effects (Jens et al., 2021) or the estimation of effects that vary over
time (Bodory et al., 2022; Miller, 2020). Knittel and Stolper (2021) and Gavrilova
et al. (2023) use the regular causal forests algorithm in a difference-in-differences re-
search design. Because the data used by Knittel and Stolper (2021) comes from three
RCT treatment interventions, they do not have to account for individual fixed effects.
Therefore they do not encounter the identification issue that the treatment indica-
tor is not identified conditional on individual and time fixed effects in a causal forest.
Gavrilova et al. (2023) modify the input data to overcome this issue. In particular, they
subtract the value in the last period before treatment from the outcome variable and
then estimate separate causal forests for each time period using the treatment group
indicator. This approach allows for the estimation of heterogeneous treatment effects
in the presence of individual and time fixed effects. To the best of our knowledge, we
are the first to test the working of a dynamic causal forest using simulations. Results
suggest our approach is more efficient, provided that the common trend assumption
holds during the entire pre-treatment period.



The contributions of this paper are twofold. First, we modify the original causal
forest algorithm by Tibshirani et al. (2022). Their algorithm uses the same set of
observed time-invariant characteristics to control for confounding variables and to look
for heterogeneity, whereas our modification can control for unobserved time-invariant
characteristics (such as individual effects). Second, we show how our modification can
be used in a (staggered) difference-in-differences research setting. We use simulations
to compare the performance of our modification and two other types of causal forests
that can be applied to difference-in-differences. We find that consistent results are only
delivered by our method and the dynamic causal forest (Gavrilova et al., 2023). Our
method is more efficient when time and individual fixed effects are present and the
common trend assumption holds. The code of the causal forest with fixed effects is
publicly available.%

This paper proceeds as follows. We review identifying assumptions underlying (stag-
gered) difference-in-differences and different estimation strategies in section 2. We dis-
cuss the causal forest algorithm in section 3. In section 4 we explain how the causal
forest with fixed effects, the manually recentered causal forest and the dynamic causal
forest apply causal forests in a difference-in-differences research design. In section 5
we present how these methods perform when single-event difference-in-differences data
is simulated, in section 6 we do this using simulated staggered difference-in-differences
data. We illustrate the use of our method in section 7, by studying the effect of pay-
rolling on worker wages using Dutch employer-employee matched registration data.
Finally, section 8 concludes.

2 Difference-in-differences

This section reviews the estimation of difference-in-differences models and the key as-
sumptions underlying them. This is done for the canonical two period, two groups
difference-in-difference design (section 2.1) and the staggered design (section 2.2). In
section 2.3 we present assumptions to identify the conditional average treatment effect
in a staggered difference-in-differences design.

2.1 Difference-in-differences

The most basic form of a difference-in-differences research design involves a single treat-
ment event, two treatment periods (before and after treatment) and two groups. In-
dividuals are observed in both time periods and belong to either the control or to the
treatment group. The idea behind difference-in-differences is that the treatment effect
can be estimated empirically by subtracting the trend in outcomes for individuals in the
control group (i.e, the difference over time) from the trend in outcomes for individuals
in the treatment group. This idea provides the method its name.

The working of difference-in-differences can be explained formally using the potential
outcomes framework (Rubin, 2005; Imbens and Rubin, 2015). Denote the value of the
outcome for individuals ¢ in period ¢ as Yj;(1) when the individual is treated and as Y;;(0)
when the individual is not. Then the average treatment effect of the treated (ATT) is
defined as the difference Y;;(1) — Y;:(0) averaged across the units receiving treatment.

6See https://github.com/MACKattenberg/cffe.
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The empirical challenge is that individuals are either in the treatment group or in the
control group. Therefore the researcher only observes Y;;(1) or Y;(0), but not both.
The difference-in-differences estimator solves this missing data problem by implicitly
imputing the missing outcome values Y;;(0) for treated units using information on units
in the control group. The validity of the difference-in-differences estimator relies on
the so-called ‘parallel-trends assumption’, the assumption that the observed trend in
outcomes for the control group equals the trend in outcomes for the treatment group
had they not received treatment (see equation 1). Also, there should be no anticipatory
effect of treatment before treatment has started (equation 2). Under these assumptions
the ATT equals the difference in outcomes before and after treatment Roth et al. (2023).

parallel trends assumption

no anticipation assumption

Yio(1) = Yio(0) (2)

The formal derivation of the difference-in-differences estimator is shown in equation
3, where t = 1 denotes the time period after treatment and where W; = 1 denotes
that the unit ¢ is in the treatment group. Underbraces are used to highlight which
parts of the equation are unobserved. The first equality defines the ATT, the estimand
of interest. The second equality follows from subtracting E[Y;o(1)|W; = 1] from both
sides, which allows to write the ATT as the difference in trends for units in the treatment
group when they receive treatment and would they not have received treatment. In the
third equality the common trend assumption is used to replace the unobserved trend
in outcomes for units in the treatment group would they not have received treatment
by the observed trend in outcomes for units in the control group. Naturally, when the
trend in outcomes for the control and treatment group differ (i.e. the common trend
assumption does not hold), the difference-in-differences estimator is biased.

ATT = E[Y;1(1) = Y;1(0)|W; = 1]

unol;grved
= E[Yi1(1) = Yio(D)[Wi = 1] = E[Yi1(0) = Yo (0)[W; = 1]
unol;sgrved
= E[Yi,l(l) - Yz‘,o(l)‘Wi = 1] - E[Yz‘,l(o) - Yz‘,o(o)‘Wi = O] (3)

Equation 3 is typically derived by estimating equation 4 using OLS, which provides
consistent estimates and asymptotically valid confidence intervals when observations
are sampled independently and the parallel-trends and no-anticipation assumptions
hold (Roth et al., 2023). In this equation i = 1,..., N denotes units and ¢ denotes time
periodst =1,...,7T. y denotes the outcome variable of interest, ¢; is an individual fixed
effect and d; are time fixed effects. W, is the treatment indicator, which is the product
of the indicator whether observations are observed after treatment and an indicator
whether individual ¢ belongs to the treatment group (W; = 1).

6



Equation 4 has a general form. In particular the individual fixed effects absorb all
time-invariant characteristics, including an indicator whether individual z belongs to the
treatment group indicator. The time fixed effects absorb time-variant characteristics
that are equal for all observations, including an indicator whether the treatment period
has started.

Yit = Ci + 0 + TWi + €4t (4)

2.2 Staggered difference-in-differences

Equation 4 has also been used to estimate ’staggered difference-in-differences’, a more
general specification where multiple treatment events define the treatment indicator
Wi Staggered difference-in-differences occur more frequently than single-event difference-
in-differences and have been believed to be more stable, because the use of multiple
treatment events provides more robust controls against confounding time trends.

Recent papers have highlighted the inconsistency of equation 4 for estimation of
the ATT in a staggered difference-in-differences research designs. First, it has been
shown that the estimate of 7 in equation 4 is a weighted average of all possible two-
group/two-period DiD estimators in the data when the treatment effect is equal in all
treatment events (Goodman-Bacon, 2021). When the treatment effect is dynamic, i.e.
the treatment effect varies with treatment event, or —as we assume— treatment effects
vary by group, the estimate of s will differ from the sample ATT (Baker et al., 2022;
De Chaisemartin and d’Haultfoeuille, 2020).

The ‘staggered’ parallel-trends assumption requires additional notation, which we
borrow from Roth et al. (2023). There are t = 1,...,T time periods and units can
receive a binary treatment in any period ¢ > 1. Once a unit is treated, they remain
treated for the remainder of the panel. We denote by D;; an indicator for whether
unit ¢ receives treatment in period t and we let GG; be the earliest period ¢ at which
unit ¢ has received treatment. If a unit is never treated, then G; = co. We use this
notation to define potential outcomes as follows. Let 0y and 1, be a s-dimensional
vector of zeros and ones, respectively. We denote unit ¢’s potential outcome in period
t if they were first treated at time G; = ¢ by Y;+(0,-1,17_,-1), and we denote by
Y;+(07) their ‘never-treated’ potential outcome. As units remain treated after receiving
treatment for the first time, we can simplify notation using g. The notation for the
potential outcomes for units that are first treated in period g becomes Y;;(g), whereas
the notation for never treated units becomes Y;;(oc0). Note that this notation allows
for dynamic treatment effects, treatment effects that vary by treatment event g and
treatment effects that vary with individual characteristics.

The ‘staggered’ parallel-trends assumption states that if treatment had not taken
place, the average outcomes for all treated groups would have evolved parallel as in
equation 5. This assumption requires that trends are parallel between any two periods
t and ¢. Sun and Abraham (2021) consider a relaxation that states that requires that
trends are parallel only between treatment period ¢ and the last period before treatment
gmin = g — 1 (equation 6). It relaxes the parallel trends assumption, because trends
need no longer be parallel during the entire period before treatment. The parallel trend
assumption can also be relaxed by imposing parallel trends for a subset of groups.



In particular, Callaway and Sant’Anna (2021) and Sun and Abraham (2021) consider
a parallel trends assumption for units that are treated eventually. This assumption
requires parallel trends between units that are eventually treated, but not between
treated units and never-treated units.

The no-anticipation assumption and the random sampling assumption generalize
straightforwardly to the staggered difference-in-difference setting. In particular, the
no-anticipation assumption is given by equation 7.

parallel trends assumption for staggered design

E[Yii(00) = Yiu(00)|Gi = g] = E[Yi(0c0) — Yiu(00)|Gi = g7, (5)
Vi#t,g# g

parallel trends assumption for staggered design — post treatment only

E [Y;(00) = Yiu(00)|G; = g] = E[Yis(00) = Yiw(00)|Gi = ¢, (6)
Vt£t,g# ¢, t,t > gumin

no anticipation assumption for staggered design

Yie(g) = Yis(o0), Viandt<g. (7)

In order to account for dynamic treatment effects, a staggered version of equation 4 has
been estimated that interacts each relative-time-after-treatment indicator 1[R;;] with
the treatment indicator Wy (see equation 8). Here R;; denote relative time after treat-
ment R;; =T — g; + 1 such that R;; = 1 denotes the first period after treatment. As
a result, 7 is estimated separately for each period after treatment. As demonstrated in
Sun and Abraham (2021), this estimator produces valid results under the parallel trends
assumption introduced above and when treated units do not anticipate treatment. How-
ever, they also point out that these estimates may be difficult to interpret when there
is treatment heterogeneity across adopted cohorts, due to ‘cross-contamination’ and
‘negative weighting’ (Sun and Abraham, 2021; Roth et al., 2023).

T
Yit = C; + (St -+ Z 1[Ri,t = T]TWit + Eit (8)
r#£0

Two type of estimators have been proposed to overcome these problems. The first type
of estimators compare outcomes in year ¢ for units ¢ against their outcomes in the base-
year, typically the year before treatment commences (¢t = g; —1). The control group can
be never-treated or not-yet-treated individuals. This approach is followed by Callaway
and Sant’Anna (2021). Because treatment effects might vary with time-since-treatment
and by treatment cohort, Callaway and Sant’Anna (2021) estimate treatment effects
separately for each combination of treatment event and relative-time-after-treatment.
Note that because treatment effects are computed relative to the base year, results are
consistent under the relaxed parallel trends assumption in equation 6.



The second type of estimator imputes the counterfactual outcome of treated indi-
viduals using outcomes and characteristics of not-yet-treated individuals, an approach
outlined in Borusyak et al. (2021) and implemented by Borusyak (2023). They fit a
TWFE regression using all units and time periods that are not-yet-treated. This model
is used to predict the potential outcome for treated individuals when they would not
have received treatment. This prediction straightforwardly can be used to construct
the average treatment effect.

Similar to Callaway and Sant’Anna (2021), this approaches yield valid estimates,
provided the parallel trend assumption holds for all groups and time periods and there
is no anticipation of treatment. As OLS is the best linear unbiased estimator under the
Gauss-Markov conditions, this approach is more efficient than the linear estimator of
Callaway and Sant’Anna (2021). Yet, the estimator proposed by Borusyak et al. (2021)
also requires a stronger identifying assumption (De Chaisemartin and d’Haultfoeuille,
2023; Roth et al., 2023).

To see why, note that the main difference in estimation methods relies in the use of
all periods before treatment as a comparison group (Borusyak et al., 2021), against the
use of a specific base-period (Callaway and Sant’Anna, 2021). Consequently, the former
requires that the common trend assumption is valid for all the periods considered (both
before and after treatment), whereas the latter require it to hold only in between the
base period b and period ¢. This makes the estimator by Borusyak (2023) more prone to
bias when time-trends diverge over time, which occurs when group-specific linear trends
are present. On the other hand, the estimator by Borusyak (2023) is more efficient when
treated units anticipate the treatment before it has started (see Roth (2022)). Also,
the estimator by Callaway and Sant’Anna (2021) is more robust to serial correlation in
the error term, because it compares outcomes in two periods in time only.

2.3 Staggered difference-in-differences with individual specific
treatment effects

Finally, we consider how the identifying assumptions in difference-in-differences change
when treatment effects are a function of individual, time-invariant characteristics, as in
equation 9. These characteristics can also affect the outcome variable, yet — obviously
— they are not identified due to the inclusion of the individual fixed effects. Again, we
assume that treatment is binary, that individuals that receive treatment remain treated
in all following periods and that individuals differ in the moment they are first treated.

Yir = ¢ + 0 + (X)) Wi + €4 9)

Let S denote a subgroup of individuals with characteristics X that have the same
treatment effect 7(X). We propose local variants of the parallel trend assumption
and the no-anticipation assumption, that only hold for the subgroup of units i € S.
Consequently, these assumptions are given by equations 10 to 12. These assumptions are
weaker than those described in Roth et al. (2023), because they identify the conditional
average treatment effect of the treated only for individuals in S.



local parallel trends assumption for staggered design

E[Yii(00) = Yiu(00)|Gi = g] = E[Yi(00) — Y u(o0)|Gi = g¢'], (10)
Vt#t,g#g,ieS

local parallel trends assumption for staggered design — post treatment only

E [Yii(00) = Yip(00)|Gi = g] = E[Y(0c0) — Yiu(00)|Gs = ¢'], (11)
V£t g# g t,t' > guin, i €S

local no anticipation assumption for staggered design

Yit(g) =Yii(o0), VieSandt<yg (12)

In principle, local conditional treatment effects can be estimated using the estimators
developed by Sun and Abraham (2021) and Borusyak et al. (2021) by making subgroups
S manually. In the next section we detail how causal forests can be used to make
subgroups of the data and estimate their conditional average treatment effects. In
section 4 we explain how to apply causal forests to difference-in-differences settings.

3 Causal forests

Causal forests are based on the random forest algorithm (Breiman, 2001).” Random

forests combine the predictions from regression trees (Breiman et al., 1984), where
each tree is grown on a separate bootstrapped set of the data (a procedure referred
to as bootstrap aggregation or 'bagging’). In a regression tree, a continuous outcome
is predicted by consecutively splitting the data along one variable and assigning the
mean value for the outcome within the group as the prediction.® A final characteristic
of random forests is that at each node in the tree, splits can be made on a random
subset of variables only. Because of this random selection procedure, variables that are
very predictive of the outcome are not always chosen. This procedure helps to prevent
overfitting the training data as it reduces the correlation between the trees in the forest
which in turn reduces the variance of the final prediction. The idea behind it is that
the out-of-sample prediction of each tree is equal to the true value plus a random error.
Since the final prediction is an average of a large number of weakly correlated trees,
the final prediction equals the average of the true values plus the average of the errors.
When errors are weakly correlated, the latter average tends to zero and predictive
performance improves.

"We provide a concise summary of random forests only. See Hastie et al. (2009) for an in-depth
discussion.

8For example, at a point in the tree (a 'node’), the data might be split into two groups according
to whether x;;, < @ or x;; > @x. The splits are chosen in a greedy way: at every node, the variable
along which the split is made, x;; and the cut-off, £}, are chosen to maximize the summed objective
function across both groups. A often used objective function is the reduction in RMSE.

10



Since random forests combine the predictions of many regression trees, they are
usually seen as an ensemble method (Hastie et al., 2009). However, they can also be
interpreted as a nearest-neighbor estimator (Athey and Wager, 2019). The predictions
of a random forest are essentialy weighted averages of outcomes, where the weight
between observation ¢ and 5 depends on the number of times observation ¢ ends up in
the same terminal node as observation j. Observations far away in the covariate space
receive small weights, whereas points nearby receive large weights.

Causal forests (Athey et al. (2019) and Wager and Athey (2018)) combine many
causal trees (Athey and Imbens, 2016) to estimate heterogeneous causal effects. Causal
trees differ from regression trees as they make splits that maximize the heterogeneity
in treatment effects. Also, causal forests do not average the predictions of the condi-
tional average treatment effect in the leaves of the causal forests. Instead they define
observations that end up in the same leaf as observation ¢ as being “similar to ” and
define similarity weights (using all trees in the forest) to estimate the treatment effect.
Thus causal forests can be interpreted as an adaptive nearest neighbor estimator that
uses recursive binary splitting to determine similar observations.

The flexibility of the algorithm mitigates the missed discovery problem, whereas
the false discovery problem is mitigated because the causal forest algorithm is ‘honest’.
Honesty refers to the fact that predictions are made realistically — out of sample — so
overfitting is mitigated. In particular, the algorithm randomly splits the observations
into two groups. One group of observations is used to generate the splits and similarity
weights, the other is used to evaluate the treatment effects that result from these splits.”
Finally, the treatment effects estimated by a causal forest are piecewise consistent and
are asymptotically normally distributed (Wager and Athey, 2018).

To see how a causal forest works, consider equation 13. Here y; is the outcome
variable, « is a constant, X; is a matrix of control variables and ¢; is an error term
assumed to be ii.d. W; is the treatment indicator and the parameter of interest is
7(X;). Note that 7(X;) is a function of X;, hence it measures the Conditional Average
Treatment Effect (CATE) conditional on X;. A causal forest relies on the unconfound-
edness assumption for identification of 7(X). This assumption is met when selection
of individuals into treatment is as good as random conditional on X;. More formally,
identification of the causal forest algorithm requires that the conditional probabilities
to receive treatment P(W; = 1|X;,W; = 1) and P(W; = 1|X;, W, = 0) overlap (Imbens
and Rubin, 2015), and that they are bounded away from zero and one (Tibshirani et al.,
2022).

As mentioned, causal forests use recursive binary splitting to maximize the hetero-
geneity in treatment effects. For illustrative purposes, suppose 7(X;) in equation 13
is estimated with a causal forest, that only contains the shallow causal tree in figure
1. The causal tree is grown to compute similarity weights as follows. Initially, all
observations in the train data are in the root node. The root node is split into two

9 As treatment effects are estimated out of sample, this approach resembles the use of cross-validation
to prevent overfitting in many machine learning applications (Hastie et al., 2009). Honesty is a vital
element in the literature that uses machine learning to estimate causal effects, see Athey et al. (2019),
Chernozhukov et al. (2018), Chernozhukov et al. (2018), Chernozhukov et al. (2017) and Athey and
Imbens (2016).
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groups according to x3 < 5. Those observations not meeting that condition are in the
left group. These observations are further split down into groups according to x; < 2.
Numbering leafs from left to right, observations that do not meet the second condition
are in the first leaf. Those that do meet this condition are in the second leaf. Likewise,
observations with x3 > 5 are split according to whether zo < 1 and end up in the third
or fourth leaf.

T=1 T=4 T=2 T=4

Figure 1: Example of a shallow causal tree

The CATESs estimated by this causal tree can be reproduced using OLS when equation
14 is estimated on the same data. In this equation /() is an indicator function equal
to one when the condition within brackets is true and is zero otherwise. In particular,
the estimated CATE for the observations in leaf 1 equals ~;, whereas predictions for
observations in leaves two, three and four are equal to 1 + Y9, 71 + 73 and 1 + Y4
respectively. In practice causal trees are generally deeper, and form more subgroups,
than the one presented in figure 1 and equation 14. This illustrates the flexibility of the
causal forest algorithm in finding treatment effect heterogeneity. Also, these subgroups
are formed by the algorithm based on the data, and not by the researcher based on
economic theory, research practice or results.

yi =a + X+
Wi+
YWixI(xs; >5 & x1; <2)+
YVWixI(xs; <5 & x1; >2)+
VWi I(xs;, <5 & x1,<2)+¢ (14)

We end this section by considering the objective function a causal forest maximizes
when making splits. The parameter 7 in equation 13 is identified by the moment
condition

E [Wi(yi — Wir(2:))|zi] = 0 (15)

By default Efy;|X;] and E[W;|X;] are determined using a (honest) regression forest,
but researchers can provide alternative estimates, a feature of the algorithm we will
discuss later in this paper. A causal forest estimates the moment condition (15) locally
by overweighing “similar” observations, where splits in the causal trees in the forest
maximize heterogeneity in 7. These splits are made as follows. In a given parent
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node P, the estimator corresponding to the moment condition (15) is simply the linear
regression estimator
N ZiGP Wiy

TP = .
2 ier WP
The idea is to split the node P into two children (Cy,C5) such that the heterogeneity

between the estimated parameters, 7, and 7¢,, increases as fast as possible. Rather
than computing (7¢,, 7¢,) for every possible split, Athey et al. (2019) propose a first-

order approximation:
PO >icc Wilys — Witp)
c~1p— 2
2icc Wi

for C' € {Cy,C3}. They then show that, given this approximation, the optimal split
can be made in a way similar to a standard random forest.

After growing the causal forest, an estimate of the treatment effect 7(x) is given by
reweighing the OLS-estimator of 15, where the weight is simply the fraction of trees
where individual 7 is in the same final leaf as an individual with covariates x. Writing
a;(z) for the weight that individual i receives in estimating 7(z), the causal forest
estimate for the CATE is then given by equation 16.

Soiny () Wiy
sz‘il i (z) W7

In practice, the outcome and treatment variables are recentered locally to improve
estimation quality (Athey et al., 2019). In terms of notation y; and W; in equations
15 and 16 are replaced by §; and W;, where ~indicates the variable is residualized by
subtracting its expectation conditional on X.

#a) = (16)

4 Using causal forests in difference-in-differences

We start this section with an explanation how subgroup analysis can be used to esti-
mate conditional average treatment effects. Then, we detail the working of the causal
forest algorithm with fixed effects and show under which conditions conditional average
treatment effects estimated by a causal forest with fixed effects (CFFE) are identical
to those using a manually formed subgroup. Then we describe a manually recentered
causal forest (MRCF') and we detail why it provides inconsistent estimates of the con-
ditional average treatment effect. We end this section with a description of a dynamic
causal forest (DCF) (Gavrilova et al., 2023).

4.1 Estimating parameters using manually defined subgroups

Suppose a dataset consists of two subgroups g = 0,1 of sizes N° and N' that have
different parameters 79. We can obtain 79 using a split sample analysis by estimat-
ing y;; = 79Wy + ¢; + 6 + €5 for each group separately. Alternatively, following the
Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963), we could have
estimated equations 17a and 17b. In equation 17a the effect of individual and time fixed
effects is partialled out using the conditional expectations of y; and W;;. In equation
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17b the within-transformation, indicated by ~, is used to partial out time-invariant char-
acteristics (Wooldridge, 2010). The average of within-transformed variables in period
t partials out time-varying effects that are constant across individuals (Somaini and
Wolak, 2016).

Yit = Tng‘t +ew, Vieyg, g=0,1 (173)
Yit = Yit — E[yitlci, 5t], Wit = Wi — E[Wit|ci7 5t]

Uit = Tng‘t +ew, Vieg, ¢g=0,1 (17b)
Vit = Yit — ﬁ Z Yit, Wit = Wy — ﬁ Z Wi
ieN9 iENY

All methods provide identical estimates for 79. In particular, we can compute 79 without
relying on estimation methods using equation 18.

. 23—21 ZiEg Wit?it
= —_
ST ey (W)

49

g=0,1 (18)

4.2 Causal forests with fixed effects

Causal forest are designed to estimate 79 directly from the data y;;, X;, W;; in equation
4 without requiring the researcher to specify the subgroups g. Unfortunately 7(x)
cannot be estimated using a regular causal forest. Recall that a regular causal forest
uses a regression forest to determine E[Wj|c;, &]. Because W, is an combination of ¢
and ¢;, the estimated propensities to be treated are concentrated around zero and one,
violating the identifying assumptions of a causal forest.

Yitar = Ci+ 0y + 6 + 7( X)) Wipe + €544+ (19)

We therefore develop the CFFE, a computationally feasible causal forest that can be
used when the data contains many fixed effects. Below we show how a CFFE partials
out individual and time fixed effects using the within-transformation and their averages
over individuals, analogous to equation 17b where this is done using a split sample
analysis. It is trivial to extend the procedure to account for other fixed effects, such
time-event fixed effects. Our estimator is numerically equivalent to the causal forest
estimator in Athey et al. (2019) with fixed effect dummies included in the “treatment
indicator” matrix. Hence, all theoretical results on the consistency and asymptotic
distribution of (Athey et al., 2019) extend to our setting. However, this approach is
not computationally feasible when the number of fixed effects is large, as a regression
with a large number of covariates has to be undertaken in every leaf of the forest.

In particular, CFFE estimates the moment condition given in equation 20 by esti-
mating 21 with OLS. The similarity indicator «;(z) is crucial to the CFFE-estimator.
Recall that «;(z) is zero for ‘dissimilar individuals’ that are never in the same leaf as ob-
servation 7. Therefore its incorporation in equation 21 essentially splits the estimation
sample such that 7(z) is estimated using similar individuals only. Furthermore, a;(x)
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is also included in the definition of 3% and W}, where it guarantees that the average of
the within transformed variables at each period is computed using similar individuals
only. Finally, time-variant characteristics that are identical for all individuals cancel
out because SV ay(z) = 1.

E W3 (i — Wir(es)

x} — 0, (20)

N
= G — Y ou(@) i,
=1

N
W{i = VVzt - Z Oéz'(l’)Wz‘u

=1

T N V.
A () = Dot 2aim1 (@) Wi
T N ) 2

D1 i1 () <VVzt>

In general, the right-hand-side of equation 21 can differ from the right-hand-side of
equation 18, because the weights «; need not be equal for all observations in the same
group g. This is because the weight «; equals the average of one over the leaf size when
observation j shares at least one leaf with observation i and is zero otherwise.’® Note
that 7%(i € ¢) in equation 21 is exactly equal to 79 in equation 18 in the special case
that a;(i € g) equals 1/N9 when individual j is in the same group as i and is zero
otherwise.

As identification in a difference-in-differences research design comes from the parallel
trend assumption, 7*(z) identifies the CATT. In sections 5 and 6 we use simulations to
investigate how well this parameter is estimated by CFFE in general. In the simulations,
we will impose treatment effects that vary at the individual level and with time since
treatment, so we estimate equation 21 for each period after treatment has begun. To do
this, we combine the observations for individuals from a specific cohort and period with
all their observations before treatment. This prevents that observations from different
time periods end up in the same leaf of the causal forest, which would bias estimates
when treatment effects are dynamic. Similar to the estimation strategy in Borusyak
(2023) this approach takes advantage of all the observations before treatment.

(21)

4.3 Manually recentered causal forest

As Athey et al. (2019) note, in general generalized random forests remain consistent
after recentering. In fact, local centering can improve the small sample properties of
the estimator. This would seem to imply that we can demean our variables manually
and use the general algorithm to compute generalized random forests.

Concretely, one might consider the following approach of a manually recentered
causal forest (MRCF). In particular, Ely;|c;, d;] in the moment condition estimated by

10Causal forest use subsampling for honest estimation. Suppose observations j and k are in the same
group as ¢. Even if the causal forests places j and k in the same leaf as i in every tree of the causal
forest, the weight o; ; will be different from o; ;, when 7 and j are sampled together more often than
observations ¢ and k or when sample sizes differ.
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a MRCF (the panel version of equation 15) is replaced by #j;; — % > on Ui and E[Wi|c;, 6]
is replaced by W;;, — % >~ Wit. In this case, the estimator becomes

Z;l Zfil Oéz‘(SC) Wi — % ZN Wzt Uit — % EN Uit
(o) = ( )G Rl ) (22)

Z;1 Zf\il ;i () (Wit - ]lv don Wzt)

However, this estimator does not identify the CATT when a difference-in-differences
research design is used. The reason is that this type of recentering is not local. Recen-
tering works because if the CATT 7(z) is constant for some subset of S of individuals,

hen
' S o — ElyalS))(Wae — E[WalS)
S (Wa — BTS2

also identifies the CATT. That is, since we can estimate the CATT using linear regres-
sion on a subset of individuals with the same treatment effect, we can do the same by
locally recentering. In essence, the causal forest gives us the individuals that are likely
to be similar.

From this, we can see that identification fails because the subset of individuals over
which the MRCF centers does not have the same treatment effect. In particular, we use
all individuals to remove the time dimension. Hence, the manually recentered forest
only identifies the treatment effect when it is homogeneous.

To see this more clearly, consider the following stylized example. Assume that the
causal forest makes optimal splits and that the weights in «;(i € ¢) are 1/N¥ for similar
observations and zero otherwise. Then 77(i € g) becomes:

2;1 ZiEg (Wlt - % ZN Wzt> (yzt - % ZN yn)

Zthl Zieg <VV“5 - % ZN I)Vit>2

This estimate is different from the one in equation 17b. It uses the average over all indi-
viduals at period ¢ to control for time fixed effects, whereas equation 17b uses the group
average. We note that these estimators do not converge to the same limit. In particular,
1/N ", §i converges to Ely;], while >, a;(2)§ converges to E[y;|z]. A similar diver-
gence occurs for the average of the treatment indicator W;;. Since the CFFE is known to
be consistent based on the results in Athey et al. (2019), the MRCF must be inconsistent
even for asympotically valid forest weights. In particular, the bias is large for subgroups
with characteristics x such that the subgroup average of the within-transformed out-
come variable and the subgroup average of the within-transformed treatment indicator
are very different from the sample average. For the same reasons as described in the
previous section, we will estimate the treatment effects separately for each period after
treatment has begun.

%T(z' €g) =

4.4 Dynamic causal forest

Recently, Gavrilova et al. (2023) demonstrated how a causal forest can be used in
a difference-in-differences setting by transforming the data. Specifically, they defined
VY, and VIW,; as the differences in the outcome and the treatment indicator between
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treatment year ¢t and a base period b, usually the last year before the treatment began.
Note that VIV, is equivalent to the treatment group indicator T;. Taking this difference
eliminates the individual fixed effects. Additionally, since the authors estimate the
treatment effect separately for each year t, the trend term V9§, = d; — §, is constant and
does not affect the estimates for the treatment effect. In particular, their approach uses
the set of variables X both for recentering of the transformed outcome and treatment
indicator and to make the similarity weights a;(z) as described in section 3 and therefore
the treatment effect estimated by DCFs is simply defined by equation 23.

_ 2;1 Ef\; ai('r)@wit@yit
o N 2
Z; Zi\; ai(z) <VWit>
Vi =V — E[Vy.| X],

Vit =Yit — Yiv,
VWi =VWi, — E[VWi| X],
VWi =Wy — Wy, =15,

(@)

The information exploited by a DCF differs from that exploited by a CFFE, because
a DCF compares outcomes in an event period to a base period, whereas a CFFE uses
the average of all observations before treatment. As was discussed in section 2 the
latter approach is more efficient because more information is used, but it requires more
stringent conditions on the common trend and serial correlation of the errors.

5 Simulation single-event difference-in-differences

In this section we present simulation results when a CFFE is used to estimate treat-
ment effect heterogeneity using a difference-in-differences research design. We consider
a difference-in-differences setup with one treatment period. The CFFE is provided a
vector of outcomes, a vector of treatment indicators and two vectors indicating indi-
vidual and time fixed effects. We compare this estimator to a MRCF. This estimator
is provided a vector of outcomes and treatment indicators as well. In addition, the
MRCEF receives a vector of recentered outcomes and recentered treatment indicators,
that are computed as described in section 4.3. Both the MRCF and the CFFE use the
ten z-variables to look for treatment effect heterogeneity using splits. Both estimators
use the default settings from the GRF-package, except for the fact that observations
are clustered at the individual level to account for the use of panel data Wager and
Athey (2018); Athey and Wager (2019).

5.1 Simulation

Equation 24 describes the data generating process (DGP) for the single event sim-
ulation. In short, we sample 1500 individuals (indexed i) who are observed in four
periods (¢t = 1,2,3,4), where the last two periods define the treatment period. Be-
sides the outcome variable y we observe ten time-invariant individual characteristics
(ki k = 1,...,10). ¢; denote unobserved individual characteristics. People in the
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treatment group (W; = 1) have structurally higher outcomes than people in the control
group (W; = 0) when £ > 0. About half of the individuals is treated. z; is a pivotal
variable in the simulated data as it affects a) the size of the treatment effect, b) the
propensity to be treated and c) the outcome variable. In particular, the treatment effect
is nonlinear in z; and equals max (0, z1t*), where ¢* indicates the number of periods
elapsed since treatment has started. Thus treatment effects vary at the individual level
and they are dynamic. Treatment status is positively correlated with z; and nega-
tively with zo as P(W; = 1) = exp(xi1)/(exp(zi1) + exp(xin)). We vary the difference
in outcomes (in absence of treatment) between the treatment and control group by
setting k = 0,5. Thus, we consider results when all relevant individual fixed effects
are observed (k = 0) and results when unobserved heterogeneity at the individual level
influences the outcome (k = 5). We consider a DGP with and without time fixed effects
by choosing A = 5 or A = 0. Finally, all x variables and the error term follows a uniform
distribution.

yg’)‘ = k(Wi +¢;) — M+ 7( X)Wy + 22, + 22, + €4, (24)
k=0,5A=0,5
P(Wiy = 1) = exp(zin)/(exp(zin) + exp(zi2)),
Wi = posty x W,
7(X;) = maz(xt*,0),
e Xa ~U(=1,1),k=1,...,10

Figure 2 shows the simulated data (when x =5 and A = 5). In particular the outcome
variable is larger for people in the treatment group in all periods. The difference between
the treatment and control group in abcence of treatment is constant before and after
the treatment period has started. Due to the treatment effect, the average outcome for
the treated when treated is larger than the average outcome when not treated. Note
that the initial difference in outcomes between the control and treatment group and
the time fixed effects are large compared to the size of treatment effect.
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Figure 2: Illustration of the DGP

Average outcome for the control group (solid red line) and the treatment group (solid magenta line).

The dashed line indicates the average outcome for the treatment group in the abcence of treatment.

5.2 Simulation results single-event difference-in-differences

The simulation results demonstrate that the CFFE-estimator produces estimates that
are consistent. Figure 3 shows that the bias of the estimator is centered around zero.
The expected bias, indicated by the dashed line, is zero, despite the fact that there
are some outliers in which our method severly underpredicts. The right panel of the
figure reveals that the predicted CATEs are concentrated around the true CATEs. The
estimator picks up the kink at around X; = 0 and then increasing with the true CATE.
However, for large outlier values of the forcing variable x % (¢ — 2) the method predicts
too low values. This occurs because forest type models underpredict (in absolute terms)
at the boundary space of the features it uses (Athey and Imbens, 2019).

19



(a) density (b) estimated values
Figure 3: causal forest with fixed effects

Estimation results when a causal forest with fized effects is used to estimate conditional average treat-
ment effects in a single event difference-in-differences research design. Panel (a) shows the bias of the
estimated treatment effect (T — 1) when k=5 and A = 5. Panel (b) shows the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=05 and A\ =5. Dots indicate the estimated treatment effects. The true treatment effect is indicated

by the solid line.

In contrast, the CATEs estimated by a MRCF are inconsistent. Figure 4 shows that
most of the estimated treatment effects are biased upwards and therefore the bias of this
estimator is not concentrated around zero (see Figure 4a). Indeed, this upward bias also
appears when we plot the estimated CATEs against the forcing variable (z1%(t—2)). The
upward bias becomes clearly visible when the forcing variable exceeds one in absolute
terms (Figure 4b). Also the estimates by the MRCF are more noisy than those from a
CFFE, especially when the true treatment effect is zero. This conclusion follows from a
comparison of the MRCF in Figure 4b to a CFFE in Figure 3b. Clearly, the estimates
by the MRCF are less well concentrated around the true CATE.
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(a) density (b) estimated values
Figure 4: manually recentered causal forest

Estimation results when a manually recentered causal forest is used to estimate conditional average
treatment effects in a single event difference-in-differences research design. Panel (a) shows the bias
of the estimated treatment effect (7 — 1) when k=15 and A = 5. Panel (b) shows the estimated values
of the treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1,
when kK = 5 and X\ = 5. Dots indicate the estimated treatment effects. The true treatment effect is

indicated by the solid line.

Figure 5 shows that the estimates from a DCF are similar to those provided by a CFFE.
The plot in the left panel shows a large mass around zero, although the top of the
distribution is slightly at the right of zero. Again, there are some outlier observations
with a negative bias (figure 5a). The right plot shows that the estimates of the DCF are
concentrated around the true CATE. In particular, the method succeeds in estimating
the kink at x — 1 = 0 and the estimated treatment effect increases linearly afterwards.
Again, panels 5a and 5b illustrate that also a DCF predicts too low values for outlier
observations of the forcing variable zy * (t — 2).
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(a) density (b) estimated values
Figure 5: dynamic causal forest

Estimation results when a dynamic causal forest is used to estimate conditional average treatment
effects in a single event difference-in-differences research design. Panel (a) shows the bias of the
estimated treatment effect (T — 1) when k=5 and A = 5. Panel (b) shows the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=05 and A\ =5. Dots indicate the estimated treatment effects. The true treatment effect is indicated

by the solid line.

The predictions of a CFFE are superior to those of a MRCF in all variants we consider
as it has less bias and a lower RMSE. This conclusion also holds compared to a DCF
when individual and/or time fixed effects are present. We present results on the bias in
table 1. It shows that the average bias of a CFFE is about two percent when there are
no indiviudal or time fixed effects. The bias is virtually zero when individual and time
fixed effects are present. This constrasts strongly to the average bias of a MRCF which
is about -0.48 regardless of fixed effects being present. The bias of the DCF is slightly
higher than a CFFE when individual and/or time fixed effects are present, between two
and five percent, but the bias is of the DCF is lower than that of the CFFE (about one
and about two percent) when there are no individual or time fixed effect (k = 0 and

= 1). However, these numbers are not statistically different as the bias of the one is

within the 95 percent confidence interval of the other.
The efficieny of a CFFE is higher than that of MRCF and DCF, as is shown in

0.5
table 2. As 7 is known, we compute the RMSE as <% SV (7 — 7:1,)2) . The RMSE

of the CFFE ranges between 0.17 and 0.24. In contrasts, the RMSEs of the MRCF
range between 0.81 and 0.85, and those of a DCF between 0.24 and 0.29. Note that the
size of the RMSEs from the CFFE are only about 75 percent of those from a DCF and
that the RMSE of the DCF is always outside the confidence interval of the CFFE. This
shows the gains in efficiency from a CFFE as measured by the RMSE is substantial.
We investigate to what extent the better performance of the CFFE compared to the
DCEF is due to the additional observations it uses, by re-estimating both estimators using
observations in periods two and three only. This rules out differences in performance
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due to differences in the information sets applied. First, the absolute value of the bias
of this CFFE is slightly higher than that of a DCF when there are no time fixed effects
(A =0), see table 1. When time fixed effects are present, the bias of the CFFE is lower
than that of a DCF.

Table 2 show that the RMSE of the CFFE is lower than that of the DCF in three
out of four simulations that we consider. But as the relative difference between the
two estimators is smaller when the CFFE uses all periods before treatment started, we
conclude from this that the CFFE is more efficient than the DCF mainly because it
can exploit information contained in additional observations.

estimator x A bias cfi

CFFE 0 0 0.02 (0.0148 - 0.0275)
CFFE 5 0 0.00 (-0.0094 - 0.0085)
CFFE 0 5 0.00 (-0.006 - 0.0089)
CFFE 5 5 0.00 (-0.0057-0.0069)
MRCF 0 0 -0.48 (-0.5006 - -0.4538)
MRCF 5 0 -049 (-0.5135--0.4647)
MRCF 0 5 -0.50 (-0.5224 --0.4752)
MRCF 5 5 -0.49 (-0.5159 - -0.4667)
DCF 0 0 0.01 (0.0034-0.0221)
DCF 5 0 0.02 (0.0123-0.033)
DCF 0 5 0.05 (0.0429 - 0.063)
DCF 5 5 0.04 (0.0287-0.0457)
CFFE2P 0 0 -0.05 (-0.0595 --0.0407)
CFFE2P 5 0 -0.02 (-0.0355--0.0133)
CFFE2P 0 5 -0.00 (-0.0117-0.0109)
CFFE2P 5 5 0.01 (0.0074 - 0.0168)
DCF2P 0 0 -0.02 (-0.0352--0.0137)
DCF2pP 5 0 0.01 (-0.0076 - 0.0182)
DCF2P 0 5 0.02 (0.0089 - 0.0295)
DCF2P 5 5 0.05 (0.0443 - 0.0584)

Table 1: bias simulation 1

The table shows the average of the bias when a causal forest with fized effects (cffe) is used to estimate
heterogeneous treatment effects and when this is done using a manually recentered causal forest (mrcf)
or a dynamic causal forest (dcf). We also present results when a CFFE and DCF are trained on periods
2 and 3 only (cffe 2p and dcf 2p). Each row presents the average of the bias for various levels of the
individual effects vary (k = 0,5) and time fized effects (A = 0,5). The reported value is computed
as % va (f; — i), where 7; indicates the true treatment effect for individual i and 7; indicates the
estimated treatment effect for individual i. The numbers within brackets denote the bootstrapped 95
percent confidence interval based on 500 replications.

Finally, the simulations demonstrate that only the estimates of the average treatment
effect provided by the CFFE contain the true value of this parameter in the data (see
Table 3 ). Recall that Athey et al. (2019)’s causal forest algorithm provides consistent
estimates for the conditional average treatment effect and its variance. We therefore
simulated 500 draws from a normal distribution with mean equal to 7; and variance
equal to the predicted variance ;. The average treatment effect was then calculated
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estimator k A rmse cfi

CFFE 0 0 0.18 (0.1671 - 0.1839)
CFFE 5 0 0.24 (0.2275 - 0.2463)
CFFE 0 5 0.21 (0.1998 - 0.2184)
CFFE 5 5 017 (0.1622 - 0.176)
MRCF 0 0 0.81 (0.7805 - 0.8332)
MRCF 5 0 0.84 (0.8147 - 0.8621)
MRCF 0 5 0.85 (0.8264 - 0.8787)
MRCF 5 5 0.85 (0.8186 - 0.8759)
DCF 0 0 0.26 (0.2412 - 0.2691)
DCF 5 0 0.29 (0.2756 - 0.3101)
DCF 0 5 0.28 (0.2607 - 0.296)
DCF 5 5 024 (0.2224 - 0.254)
CFFE2P 0 0 0.19 (0.1835-0.1954)
CFFE2P 5 0 0.23 (0.2138-0.2379)
CFFE2P 0 5 0.23 (0.2222-0.2419)
CFFE2P 5 5 0.10 (0.0944 - 0.1044)
DCF2P 0 0 0.22 (0.2039 - 0.2287)
DCF2P 5 0 0.26 (0.242-0.2706)
DCF 2P 0 5 0.20 (0.1931 - 0.2172)
DCF2P 5 5 0.14 (0.1356 - 0.1539)

Table 2: RMSE simulation 1

The table shows the RMSE when a causal forest with fized effects (cffe) is used to estimate heterogeneous
treatment effects and when this is done using a manually recentered causal forest (mrcf) or a dynamic
causal forest (dcf). We also present results when a CFFE and DCF are trained on periods 2 and 3
only (cffe 2p and def 2p). Each row presents the RMSE for various levels of the individual effects vary
0.5
(k =0,5) and time fived effects (A =0,5). The RMSE is computed as (% va(n — ﬂ-)Q) , where T;
indicates the true treatment effect for individual i and 7; indicates the estimated treatment effect for
individual i. The numbers within brackets denote the bootstrapped 95 percent confidence interval based
on 500 replications.

as the mean of the simulated treatment effects for all observations, both treated and
untreated individuals, in the treatment period. Table 3 shows that the mean of these
simulations for the CFFE is close or identical to the value of the parameter in the data
after rounding. In contrast, the mean of the simulated estimates from the DCF is lower
than the value of the average treatment in the data and the true average treatment
effect is outside its confidence bound. This suggests that the additional information
exploited by the CFFE improves the estimation of the average treatment effect. We
should mention that the difference between the average treatment effect computed by
a DCF and the true value of this parameter is small, especially when compared to the
upward biased estimate of the average treatment effect provided by a MRCF.

Overall, we conclude that the performance of the CFFE and the DCF in our first
simulation is very similar, although the performance of the former is better in terms of
average bias and RMSE. In appendix A we visually show the performance of the CFFE,
MRCF and DCF estimators for other values of x and A. Appendix B summarizes
the bias, RMSE and ATE when the error term is normally distributed. Results are
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qualitatively similar to the ones presented here.

var K A mean Ib ub
truth 1.84

CFFE 0 0 1.82 1.81 1.82
CFFE 0 5 1.84 1.83 1.84
CFFE 5 0 184 183 184
CFFE 5 5 1.84 1.83 1.84
MRCEF 0 0 231 230 232
MRCF 0 5 234 232 235
MRCF 5 0 232 231 234
MRCF 5 5 233 231 234
DCF 0 0 182 182 1.83
DCF 0 5 1.78 1.78 1.79
DCF 5 0 1.81 1.81 1.82
DCF 5 5 1.80 1.79 1.81

Table 3: ATE simulation 1

The table shows the averages of the true and estimated treatment effects by estimator for various
levels of k and A. "estimator = cffe” indicates the average of the causal forest with fized effects and
Zestimator = mrcf” indicates the average of a manually recentered causal forest. The table reports the
average (fourth column) as well as the lower and upper bound of the 95 percent confidence interval
(columns five and siz) of the ATE. These bounds have been computed by simulating 500 draws of the
estimated treatment effect from a normal distribution with mean 7; and variance 6;. Then the average
treatment effect is computed for each draws and the lower and upper bound are the 2.5" and 97.5"
percentile.

6 Simulation staggered difference-in-differences

In this section we present simulation results when a CFFE is used to estimate treatment
effect heterogeneity using a staggered difference-in-differences research design. Again,
the CFFE is provided a vector of outcomes and a vector of treatment indicators. Yet it
also has access to three vectors that indicate individual fixed effects, time fixed effects
and event time fixed effects respectively. Again, we compare this estimator to a MRCF
and DCF. The MRCF uses the same vector of outcomes and treatment indicators as the
CFFE, but it uses vectors of recenter outcomes and recentered treatment indicators,
that are computed as described in section 4.3, to partial out individual, time and event
time fixed effects. The DCF transforms the outcome vector as described in section 4.4.
All estimators use the ten z-variables to look for treatment effect heterogeneity. They
use the default settings from the GRF-package, except for the fact that observations
are clustered at the individual level.

6.1 Simulation

We consider a staggered difference-in-differences research design described by equation
25. In particular, we assume we observe individuals for eight periods and we consider
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two treatment events (indicated with superscript p = 1,2), one starting in period three
and the other in period seven. The propensity to receive treatment is the same in
both treatment events, but we allow for (substantial) heterogeneity in treatment effects
across individuals and over time. In particular the treatment effect in the first event
equals max(0,z1t*), but the treatment effect in the second event is twice as large.
Again, t* denotes the time since treatment has started. Following the conventions of a
stacked difference-in-differences research design, we discard individuals that are treated
in both treatment events and randomly assign never treated observations to the control
group for the first or second treatment event. In order to compare estimation results to
the first simulation, we ensure that fifteen hundred individuals are sampled after these
selections are made.

Yt = k(Wi + ¢) — M+ T4(X) Wiy + 22 + 22 + €4, (25)
k=0,5A=05pu=1,2
Wit = post, * Wi,
P(W; = 1)(X;) = exp(xn)/(exp(rin) + exp(zi))
™(X;) = p*x maz(zt*,0)
e Xop ~U(=1,1),k=1,...,10

Figure 6 plots the mean outcome for the treatment and control groups as a function of
calender time ¢. It clearly shows that conditioning on time fixed effects (d;) and event
time fixed effects (0;) is required to identify the treatment effect. In particular, the
simulated data is characterized by substantial differences between the control group
and the treatment groups in absence of treatment (k = 5) and by substantial time fixed
effects (A = 5) compared to the size of both treatment effects. The figure also shows
that all observations are only observed two periods before and after treatment.

(a) first treatment event (b) second treatment event
Figure 6: Illustration of the DGP (staggered design)

Hllustration of the data simulated in the staggered design. The data shows the average outcomes for the
treatment group and the matched control group for the first treatment event (panel 6a and the second
event (panel 6b). In these panels, the average outcomes for the control group is indicated by the solid
red line. The observed outcomes for the treatment group are indicated by the solid magenta line. The
average outcomes for the treatment group in the absence of treatment is indicated by the dashed line.

6.2 Simulation results staggered difference-in-differences

The simulation results for a staggered difference-in-differences research design demon-
strate that the estimates from a CFFE are consistent and more efficient than those from
a DCF. Additionally, we conclude that the estimates from a MRCF are inconsistent.

26



Figure 7 shows that the estimates of a CFFE are unbiased. The bias from a CFFE is
small and centered close to zero in both treatment events (panels 7a and 7b). Exam-
ining the distribution of the estimated treatment effects around their true value, it is
evident that the size difference in treatment effects between the first and second event
is captured by the estimator, as seen in panels 7c and 7d. This is as expected, since
treatment effects are estimated separately for each year and treatment event. Moreover,
the kink at around xzt* is accurately identified by the estimator in both events. Again,
the CFFE provides a too low estimate at the boundary space of the forcing variable
x1t*, as we have see in the previous simulation as well.
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bias plots

(a) first treatment (b) second treatment

estimated values

(c) first treatment (d) second treatment
Figure 7: causal forest with fixed effects (staggered design)

Estimation results when a causal forest with fized effects is used to estimate conditional average treat-
ment effects in a staggered difference-in-differences research design. Panel (a) and (b) show the bias
of the estimated treatment effect (7 — 1) when k = 5 and A\ = 5. Panel (a) shows results for the
first treatment event, panel (b) for the second. Panels (c¢) and (d) show the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=5 and A = 5. Dots indicate the estimated treatment effects. The true treatment effect is indicated

by the solid line. Panel (c) shows results for the first treatment event, panel (d) for the second.

The shortcomings of a MRCF in a single event difference-in-differences research design
also appear when a staggered difference-in-differences research design is used. Panels 8a
and 8b show that its estimates are biased upwards severely. This picture is confirmed
when we compare the predicted treatment effects to the true treatment effects in panels
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8c and 8d. Indeed, estimated treatment effects are structurally above the true treatment
effects for both treatment events. Again we conclude that estimates are biased upwards
both when treatment effects should be zero (which is the case for observations with
negative values of 1) and when treatment effects should be large. On the bright side,
the MRCF successfully detects the heterogeneity in treatment effect over treatment
events, albeit with bias. Also, the estimated effects for the second treatment event are

about two times as large as those estimated for the first treatment event, as they should
be.
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bias plots

(a) first treatment (b) second treatment

estimated values

(c) first treatment (d) second treatment
Figure 8: manually recentered causal forest (staggered design)

Estimation results when a manually recentered causal forest is used to estimate conditional average
treatment effects in a staggered difference-in-differences research design. Panel (a) and (b) show the
bias of the estimated treatment effect (7 — 1) when kK =5 and A = 5. Panel (a) shows results for the
first treatment event, panel (b) for the second. Panels (c¢) and (d) show the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=5 and A = 5. Dots indicate the estimated treatment effects. The true treatment effect is indicated

by the solid line. Panel (c) shows results for the first treatment event, panel (d) for the second.

The results from a DCF are by and large comparable to those from a CFFE also when
estimating treatment effects for a staggered difference-in-differences design. Figures
9a and 9b demonstrate that the bias of the DCF predictions is generally centered
around zero, although there are some outliers with a negative bias especially in the
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first treatment. This bias is mainly caused by observations with high values of the
forcing variable x1t* driving the size of the treatment effect (see figures 9c and 9d). A
comparison of figures 7 and 9 suggests that in this simulation the DCF underestimates
more for large values of the forcing variable than a CFFE. The DCF captures the kink
in the treatment effects when z;t* = 0, and the estimates for the second event are
approximately double those of the first.

Our simulation suggests that the CFFE is more accurate in predicting the CATT
than the DCF, although both estimators have a similar estimation quality in terms of
bias when compared to that of the MRCF. Table 4 shows that the bias of the CFFE
(about 0.04 when £ =5 and A = 5) is lower than that of the MRCF (about -1.34) and
the DCF (about 0.11). That the bias of the MRCF is substantially higher than that of
the CFFE and DCF is in line with our theoretical results discussed in section 4.3.
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bias plots

(a) first treatment (b) second treatment

estimated values

(c) first treatment (d) second treatment
Figure 9: dynamic causal forest (staggered design)

Estimation results when a dynamic causal forest is used to estimate conditional average treatment
effects in a staggered difference-in-differences research design. Panel (a) and (b) show the bias of the
estimated treatment effect (7 —7) when k =5 and A = 5. Panel (a) shows results for the first treatment
event, panel (b) for the second. Panels (c¢) and (d) show the estimated values of the treatment effect
(7) and the true treatment effect (1) as a function of the forcing variable, x1, when kK =5 and X\ = 5.
Dots indicate the estimated treatment effects. The true treatment effect is indicated by the solid line.

Panel (c) shows results for the first treatment event, panel (d) for the second.

The performance of the CFFE is superior to that of the MRCF and the DCF also in
terms of efficiency. We derive this conclusion from table 5 which shows the RMSE for
the three causal forest estimators for different values of the individual and time fixed
effects. The RMSE for the CFFE is quite similar regardless of the considered values for
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estimator « A bias cfi

CFFE 0 0 0.03 (0.0089 -0.0475)
CFFE 5 0 0.02 (0.0043 - 0.0409)
CFFE 0 5 -0.01 (-0.0281 - 0.0095)
CFFE 5 5 0.04 (0.0173 - 0.0589)
MRCF 0 0 -1.36 (-1.4386 --1.2871)
MRCF 5 0 -1.35 (-1.4223--1.2726)
MRCF 0 5 -1.39 (-1.4627 - -1.3135)
MRCF 5 5 -1.34 (—1.4168 - —1.2656)
DCF 0 0 0.13 (0.0931-0.1697)
DCF 5 0 0.13 (0.0942 - 0.1719)
DCF 0 5 0.11 (0.0657-0.1479)
DCF 5 5 0.11 (0.073-0.1539)
CFFE2P 0 0 0.02 (-0.0023 - 0.0431)
CFFE2P 5 0 0.03 (0.0094 - 0.0478)
CFFE2P 0 5 -0.03 (-0.054 --0.0089)
CFFE2P 5 5 -0.01 (-0.0352-0.0145)
DCF 2P 0 0 0.08 (0.0411-0.1161)
DCF2P 5 0 0.10 (0.0672-0.1386)
DCF2P 0 5 0.04 (0.0031-0.0786)
DCF2P 5 5 0.07 (0.0295 - 0.1065)

Table 4: bias simulation 2

The table shows the average of the bias when a causal forest with fized effects (cffe) is used to estimate
heterogeneous treatment effects and when this is done using a manually recentered causal forest (mrcf)
or a dynamic causal forest (dcf). We also present results when a CFFE and DCF are trained on periods
2 and 3 only (cffe 2p and dcf 2p). Each row presents the average of the bias for various levels of the
individual effects vary (k = 0,5) and time fized effects (A = 0,5). The reported value is computed

as % va (f; — 15), where 7; indicates the true treatment effect for individual i and 7; indicates the
estimated treatment effect for individual ©. The numbers within brackets denote the bootstrapped 95
percent confidence interval based on 500 replications.

the individual and time fixed effects and equal to about 0.59 when k = 5 and A = 5. The
RMSE of the MRCF and DCF are substantially higher with values of about 2.53 and
1.20 respectively. Note that these values are outside the bootstrapped confidence bound
for the CFFE estimator. These findings confirm the conclusion in De Chaisemartin and
d’Haultfoeuille (2023); Roth et al. (2023) that TWFE-estimators comparing treatment-
periods to one base-period are less efficient than those that compare treatment-periods
to all periods before treatment, provided the common trend assumption holds in all
periods used for estimation (as is the case in our simulation).

Again, we estimate a CFFE and a DCF on identical sets of observations, the obser-
vations just before and just after treatment, to investigate to what extent the superior
predictive performance of the CFFE is explained by the use of additional observations
before treatment. Table 4 shows that the bias of the CFFE 2P estimator is lower than
that of the DCF 2P estimator, although both numbers are low. The same picture arises
when we look at the RMSE: this value is always lower for the CFFE 2P-estimator com-
pared to the DCF 2P-estimator. However the relative performance of CFFE 2P against
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DCEF 2P is not as good as the relative performance of CFFE against DCF, which leads
us to conclude that the additional information used by the CFFE is the main driver of
the better performance of the CFFE estimator.

estimator x A rmse cfi

CFFE 0 0 052 (0.4719-0.5781)
CFFE 5 0 0.51 (0.4553 - 0.562)
CFFE 0 5 0.52 (0.4681 - 0.5737)
CFFE 5 5 0.58 (0.5273 - 0.6327)
MRCF 0 0 253 (24204 - 2.6456)
MRCF 5 0 253 (2.4234 - 2.6406)
MRCF 0 5 256 (2.4528- 2.6815)
MRCF 5 5 2.53 (2.4184 - 2.6445)
DCF 0O 0 1.16 (1.0675 - 1.2426)
DCF 5 0 1.13 (1.0385-1.2103)
DCF 0 5 1.21 (1.1211 - 1.2986)
DCF 5 5 1.20 (1.106 - 1.2812)
CFFE2P 0 0 0.48 (0.4336 - 0.5326)
CFFE2P 5 0 0.38 (0.3306 - 0.4342)
CFFE2P 0 5 0.45 (0.4-0.5004)
CFFE2P 5 5 0.50 (0.4578 - 0.5549)
DCF2P 0 0 0.76 (0.6881 - 0.8272)
DCF2P 5 0 0.70 (0.6331 - 0.7663)
DCF2P 0 5 0.77 (0.7039 - 0.8411)
DCF2P 5 5 0.77 (0.7041 - 0.8477)

Table 5: RMSE simulation 2

The table shows the RMSE when a causal forest with fized effects (cffe) is used to estimate heterogeneous
treatment effects and when this is done using a manually recentered causal forest (mrcf) or a dynamic
causal forest (dcf). We also present results when a CFFE and DCF are trained on periods 2 and 3
only (cffe 2p and def 2p). Each row presents the RMSE for various levels of the individual effects vary
0.5
(k =0,5) and time fived effects (A =0,5). The RMSE is computed as (% va(n — ﬂ-)Q) , where T;
indicates the true treatment effect for individual i and 7; indicates the estimated treatment effect for
individual i. The numbers within brackets denote the bootstrapped 95 percent confidence interval based
on 500 replications.

Finally, we turn to estimates of the ATE and we conclude that its estimates by the
CFFE are closest to the average treatment effect in the data. Table 6 shows the
estimate for the ATE by the CFFE (about 4.22), is very close to the simulated average
treatment effect of 4.24. Although the relative difference is less than one percent, the
95 percent confidence interval for the CFFE is so narrow that it does not contain the
true parameter except when kappa = 0 and A = 5. The DCF estimates an average
treatment effect of about 4.12, with a relative difference from the true parameter value
of less than three percent. In contrast, the average treatment effect estimated by a
MRCF is about 5.6, which is substantially higher than the true parameter value (a
deviance equal to more than thirty percent of the true parameter). Thus, the results
of Table 6 suggest that the CFFE and DCF can be used to accurately estimate the
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average treatment effect in the data, while also revealing the full range of heterogeneity
in CATT (as shown by figures 7 and 9).

var K A mean Ib ub
truth 4.24

CFFE 0 0 421 4.20 4.23
CFFE 0 5 425 424 4.26
CFFE 5 0 422 420 4.23
CFFE 5 5 420 419 4.21
MRCEF 0 0 560 5.54 5.64
MRCF 0 5 5.62 5.58 5.66
MRCF 5 0 558 5.54 5.64
MRCF 5 5 558 5.54 5.63
DCF 0 0 411 4.09 4.13
DCF 0 5 413 412 4.15
DCF 5 0 411 4.09 4.12
DCF 5 5 413 4.11 4.14

Table 6: ATE simulation 2

The table shows the averages of the true and estimated treatment effects by estimator for various
levels of k and A. "estimator = cffe” indicates the average of the causal forest with fized effects and
Zestimator = mrcf” indicates the average of a manually recentered causal forest. The table reports the
average (fourth column) as well as the lower and upper bound of the 95 percent confidence interval
(columns five and siz) of the ATE. These bounds have been computed by simulating 500 draws of the
estimated treatment effect from a normal distribution with mean 7; and variance 6;. Then the average
treatment effect is computed for each draws and the lower and upper bound are the 2.5" and 97.5"
percentile.
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7 The heterogeneous effects of alternative work ar-
rangements

Over the last two decades the share of the workforce engaged in ‘flexible’ alternative
work arrangements has increased strongly in many OECD countries, including Italy, the
Netherlands, the United Kingdom and the United States (Goos et al., 2022; Boeri et al.,
2020; Katz and Krueger, 2019). People employed in alternative work arrangements
work as temporary help agency workers, contract workers and independent contractor
or freelancers. The growing use of alternative work arrangements has raised concerns
about its effect on individual worker outcomes and about the need to change social
protection to support these workers.

Unfortunately, the causal effect of alternative work arrangements on worker out-
comes is not well understood. The main concern is that workers in alternative work
arrangements could be negatively selected. That is to say, it is difficult to disentan-
gle whether workers are paid less because they are employed in such arrangements,
or lower-paid workers are simply more likely to be employed in these arrangements.
Indeed, Drenik et al. (2023) show that workers at temp agencies have lower worker
fixed effects, as measured by Abowd et al. (1999)-style models. Additionally, Katz and
Krueger (2019) find that after controlling for observables, the wage penalty associated
with temp agency work declines.

Moreover, most studies rely on surveys that typically do not capture well certain key
aspects of alternative work arrangements, such as working many small jobs (Abraham
et al., 2017; Abraham and Amaya, 2019; Katz and Krueger, 2019). Administrative
matched employer-employee data sets do measure multiple small jobs of workers, but,
often the employer-employee match is not well registered. In case of temporary work,
the temporary work agency (the de jure employer) is registered as the employer, and
not the firm where the work is done (the de facto employer). Suppose we observe that
hourly wages decrease for workers who switch from a regular contract to an alternative
work arrangement. Then we do not know whether this is due to the type of contract
or whether this is due to a change in work environment and tasks.!!

Goos et al. (2022) (hereafter: GMSSB) study the case of payrolling in the Nether-
lands. Payrolling is a legal work arrangement whereby workers hired by one firm are
placed on the payroll of another firm while continuing their job duties at the original
firm. Using administrative matched employer-employee data, they compare individ-
uals that are payrolled to individuals that work at firms that will payroll workers in
the future using a staggered difference-in-differences research design. The authors find
that, following a switch to payrolling, workers experience worse labor market outcomes,
including lower hourly wage growth, a lower incidence of permanent contracts, lower
employment probability, and lower pension contributions.

GMSSB report the conditional treatment effect for 29 subgroups. They conclude
that the estimated overall impacts mask large heterogeneity between groups. The
impact on hourly wages, for example, is negative for female workers, young (aged 18-
24) and older workers (aged 46 - 60 years) and students. In contrast, for first generation
migrants and higher educated workers the impacts are smaller and insignificant. In this

1 Some studies do observe the location of workers using alternative work contracts, see Drenik et al.
(2023); Goldschmidt and Schmieder (2017).
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paper we compare the heterogeneity analysis in GMSSB to a heterogeneity analysis
based on a CFFE.

7.1 Data and methodology

We use the same estimation data as in GMSSB, with the exception of the estimation
window and the number of matched control workers. Due to computational constraints,
we set the maximum control workers for each treatment worker to 1 and limit the
estimation window to 4 quarters before and 4 quarters after the payrolling event. In
order to compare the CFFE outcomes with those in the original paper we re-estimate the
original two-way fixed effect estimation on our restricted data set. After setting these
restrictions, we have 39,880 treated workers and 39,865 matched control workers. We
observe the same worker and job characteristics as in GMSSB’s heterogeneity analysis:
age, migration background, contract type, job tenure, enrollment in education and
attained education level.

We apply a CFFE in which person, calendar time, and event time fixed effects are
partialled out. The covariates that are provided to the CFFE to explore heterogeneity
are: estimation quarter (from 2009Q1 to 2016Q1), gender, age at time of payrolling (18-
24, 25-34, 35-44, 45-60), migration background (native, first generation migrant, second
generation migrant), contract type before payrolling (temporary contract, permanent
contract), job tenure before payrolling (0-1 years, 1-2 years, 2+ years), enrollment in
education, and education level attained (low, middle, high).

We estimate the average treatment effect by estimating a specification that explains
hourly wage using an indicator for being outsourced and indicators for individual, time
and time event fixed effects.

7.2 Heterogeneity analysis using manually formed subgroups

First we repeat the main heterogeneity analysis by GMSSB for our data. Payrolling
decreases the hourly wage in the first year of treatment with €-0.17 / hour or nearly
1.6 percent.'? This estimate is virtually similar to the effect reported by GMSSB in the
first four quarters after payrolling occurred (see GMSSB Figure 9).

We conclude with GMSSB that the average treatment effect masks substantial het-
erogeneity between groups. We derive this conclusion after we compare the average
treatment effect to the conditional average treatment effect for the 29 subgroups stud-
ied in GMSSB. Results are summarized in Figure 10. The figure reports that 23 out of
30 reported coefficients are significantly different from zero at the conventional signifi-
cance level. The 95 percent confidence intervals of significant effects are often relatively
wide. Most striking is the positive effect on wages of about €0.3 / hour for first genera-
tion migration workers, although here the confidence bound is also relatively large. This
effect is economically relevant as about 12 percent of workers in the estimation sample
has first generation background, see GMSSB.!* Overall, Figure 10 indicates substantial

12The standard error of the parameter is €0.043 / hour. The average hourly wage of payrolled
workers is €10.835 euro, see GMSSB.

13The share of workers with a secondary migration background in the estimation sample is about
12 percent as well, see GMSSB.
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variation by migration background, contract group, educational degree, being enrolled
in education, estimation year and gender.

The effect of payrolling on hourly wages is always negative or insignificant when
we correct for multiple hypothesis testing (Figure 10). Only 12 out of thirty estimated
effects remain significant after we apply the Holm-Bonferroni correction. Importantly,
the positive coefficient on first generation migration workers is not estimated precisely
enough to reject the null hypothesis. The conclusion that this null hypothesis should be
rejected is strengthened by the fact that GMSSB estimate a lower, but highly insignif-
icant effect for this group as well. The figure suggest that the negative effect is driven
by those workers that are young workers (aged 18 - 24), that are enrolled in education,
that hold a middle or high educational degree, female workers, native Dutch workers
and those workers with less than a year of tenure.

Figure 10: Heterogeneity in effects of payrolling on the hourly wage

Subgroup analysis for subgroups reported in GMSSB. The circles indicate the conditional average treat-
ment effect of payrolling on hourly wages for subgroups mentioned on the y-axis. The horizontal lines
indicate the 95 percent confidence bound. When subgroup parameters are indicated by a circle and
a cross, the null hypothesis is rejected after adjusting for multiple hypothesis testing using the Holm-
Bonferroni method.

7.3 Heterogeneity analysis using a causal forest

We now repeat the exercise above using the CFFE estimator. In line with the large
confidence bounds shown in figure 10, we find that many conditional average treatment
effects are positive. This conclusion is derived from Figure 11, which shows the distri-
bution of the estimated conditional average treatment effect by our CFFE. The solid
line indicates the sample mean of the conditional average treatment effect of payrolling
on the hourly wage, which equals €-0.20 / hour (1.8 percent of the average hourly wage
of payrolled workers), which is similar to the average effect estimated using OLS. If
there would not be heterogeneity in treatment effects, the distribution would be clus-
tered around the sample mean. Although most of the mass is indeed around the sample
average, the spread is substantial as indicated by the treatment effects of workers that
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form the 2.5'" and 97.5" percentiles. Payrolling results in a decrease in hourly wages of
€1.6 (15%) for the first, but an increase in hourly wages by €1.2 (11%) for the latter.

Figure 11: Histogram of estimated conditional average treatment effects

Density plot for the conditional average treatment effect of payrolling on the hourly wage estimated by
a causal forest with fixed effects. The solid vertical line indicates the sample mean of the conditional
average treatment effect equal to -0.20. To improve readability, we only plot values larger than -
2.5 and smaller than 2.5 omitting 1235 out of 318.980 observations from the plot. Fized effects are
computed for indiwidual, time and event time. Variables used to look for heterogeneity are: gender,
age group at time of payrolling, migration background, contract type before payrolling, job tenure before
payrolling, enrollment in education, and education level attained. treatment efffects are compute by
every combination of quarter sinze payrolling occurred and quarter of the payrolling-event.

We find formal evidence suggesting heterogeneity in the effect of payrolling on hourly
wages as shown by the Area Under the Targeting Operaror Characteristic (AUTOC)
curve (Tibshirani et al., 2023; Yadlowsky et al., 2021). Here, individuals are ranked
according to their average estimated treatment effect. Next, we take the ¢ percent
of individuals with the highest (in our case: the most positive) treatment effect and
we compute the difference between the ATT for this subgroup and the overall ATT.
Figure 12 shows this difference when ¢ ranges from 0.1 to 1, when the difference is zero.
The difference between the subgroup and overall average treatment effects steadily
decreases in ¢ and the difference remains significant even when ¢ rises to 0.5, although
the confidence interval almost contains zero. Formally, we test whether the area under
the AUTOC is different from zero. This area, also defined as the Rank-weighted Average
Treatment Effect (RATE) is 0.018. Bootstrapped confidence bounds based on 500
replications suggest that the RATE differs significantly from zero. This forms additional
evidence that our CFFE detects treatment effect heterogeneity.
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Figure 12: Subgroup analyses based on causal forest estimates (GATES)

Workers are ranked according to the estimated conditional average treatment effect by a causal forest
with fized effects. Then the difference between the overall ATT and the ATT for the subgroup with
the q percent most affected individuals is estimated. The causal forest with fixed effect used to explain
heterogeneity in the effect on hourly wage makes splits using estimation quarter, gender, age group at
time of payrolling, migration background, contract type before payrolling, job tenure before payrolling,
enrollment in education, and education level attained.

Next, we turn to the estimation of the ATT for subgroups and we conclude that the
average treatment effect differs significantly from zero for the first two deciles only.
To derive this conclusion we group workers into deciles according to the average of
their estimated CATE from the CFFE and plot the estimated treatment effects. The
treatment effect of payrolling is significant and about €-0.4 per hour (3.7 percent) for
the first two deciles only. This effect is substantially larger than the decrease in wages of
at most €0.32 per hour (3 percent) that was found in the manual subgroup analysis (for
highly educated workers and for workers with a temporary contract). The treatment
effects for the other deciles are insignificant and substantially smaller, see figure 13 .

Overall, the conclusion from this CFFE-based analysis differs substantially from
the manual subgroup analysis. Even after correcting for multiple hypothesis testing,
the latter suggests evidence for heterogeneity in many dimensions including gender,
age, migration background and educational degree. In particular, the manual sub-
group analysis suggests that many workers are negatively affected by payrolling. For
instance, the negative effect for female workers of €-0.27 per hour (2.5 percent) suggest
that payrolling negatively effects worker outcomes for about half of the population. In
contrast, the analysis from a CFFE indicates that negative treatment effects are con-
centrated among a specific subgroup of workers that forms about twenty percent of the
population.

In agreement with the manual subgroup analysis, this specific subgroup is typically
composed of female, young, educationally enrolled, or first-generation migrant workers.
This last conclusion is derived from figure 14, that considers the characteristics of
workers by decile of treatment effect. Surprisingly, workers with low education are
underrepresented in the first decile, just as workers with a temporary contract.
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(a) decile 1 (b) decile 2

(c) decile 3 (d) decile 4
(e) decile 5 (f) decile 6
(g) decile 7 (h) decile 8
(i) decile 9 (j) decile 10

Figure 13: dynamic ATE for the first four deciles

Dynamic ATE estimation results when a causal forest with fixved effects is used to estimate conditional
average treatment effects in a staggered difference-in-differences research design. Next workers have
been grouped into deciles according to their estimated treatment effect.
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Figure 14: Classification analysis (CLAN)

Workers are grouped into deciles according to the estimated conditional average treatment effect predicted by a causal forest. Cells show the relative difference
in worker characteristics by decile against the average worker. Thus in decile ten, the share of second generation migration workers is more than 100 percent
higher than the average share of second generation migration workers (second row, final column).



8 Conclusion

Scholars studying the difference-in-differences methodology have extensively examined
the estimation of the ATT, leading to the development of new estimators for the ATT
when treatment effects are dynamic or vary with treatment event. This paper takes
a different approach by concentrating on the CATT, and investigates the potential of
using causal forests to determine how treatment effects vary in relation to covariate
variables, an area which has been identified as a promising area for future research by
Roth et al. (2023).

We present the causal forest with fixed effects (CFFE), a modification of the original
causal forest algorithm by Tibshirani et al. (2022) that allows to estimate a causal forest
conditional on a large number of fixed effects. Our modification uses averages at the
individual level and over time to partial out individual and time fixed effects. We
show our modification can be applied to estimate CATT in a (staggered) difference-in-
differences setting. As such, this paper is closely related to the dynamic causal forest
(DCF) method developed by Gavrilova et al. (2023), where the data is transformed
to partial out individual and time fixed effects. We use simulations to compare the
performance of our CFFE to their DCF and a naive manually recentered causal forest
(MRCF).

We find that a CFFE provides consistent estimates of the true heterogeneity in
treatment effects. This conclusion follows from the simulations for a single event and
staggered difference-in-differences research design. Also the average of the estimated
treatment effects in the data is nearly similar to true average of treatment effects. This
suggests that our modification is capable of accurately estimating the conditional and
average treatment effects, even when treatment effects are dynamic and when they vary
depending on the characteristics of the treated individuals. Comparing our CFFE-
estimator to the DCF-estimator, we find that both provide unbiased and consistent
results. However, the CFFE-estimator is more efficient, both in the single event as in
the staggered difference-in-differences simulation. This is mostly due to the fact that
it uses more observations from the periods before treatment, which allows it to better
distinguish signal from noise in the data, and because the common trend assumption
holds in all periods in our simulation (De Chaisemartin and d’Haultfoeuille, 2023; Roth
et al., 2023).

We use a CFFE to describe the heterogeneous effects of alternative work arrange-
ments on worker outcomes. When subgroups are formed manually, we document sub-
stantial heterogeneity in the effect of payrolling on hourly wages in the short run.
Many of the investigated subgroups show a significant decrease in hourly wages after
payrolling, which suggests that payrolling has negative consequences for workers accros
the board. Yet estimates of these effects are relatively inefficient as reflected by the
relatively wide confidence bounds. In particular, evidence that workers with a first gen-
eration background is significant, but not robust to the Holm-Bonferroni adjustment to
control for multiple hypothesis testing. As this conclusion was not found in previous
work with similar data (Goos et al., 2022), this illustrates the risk that some significant
results in manual subgroup analyses might be spurious.

In contrast, a CFFE allows us to group workers into deciles according to their
conditional average treatment effect. Then we document that most of the treatment
effects are concentrated around the sample average of €-0.2 per hour (a decrease of
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1.8 percent), although treatment effects can be substantially larger in the tails. We
group workers according to the estimated treatment effect and we find evidence that
the negative effects of payrolling are concentrated among workers in the first two deciles
only. The treatment effects for these deciles is about €-0.4 per hour (3.7 percent), which
is substantially lower than results appearing from the manual subgroup analysis. For the
remaining eight deciles, we do not find evidence that payrolling changes hourly wage on
average. This reveals a causal forest can document heterogeneity in conditional average
treatment effects that was not picked up by heterogeneity analysis using manually
formed subgroups.

Finally, we see several developments that could improve the use of causal forest
in future research. We did not develop a doubly robust estimator for the average
treatment effect, although we acknowledge that such an estimator could improve the
use of causal forests (CFFE or DCF) in future empirical studies. We demonstrate
that our algorithm is successful in detecting heterogeneity in treatment effects, but
we remain largely unaware of the individual characteristics that explain them. Future
research, could enhance the interpretability of the heterogeneous treatment effects that
our algorithm provides, for instance using fit-of-fit approaches (Bargagli-Stoffi et al.,
2020) or explainable machine learning methods (Molnar, 2020). Finally, we note that
further research could study the robustness of our approach to estimate the CATT, for
instance when treatment anticipation effects are present or when the common trend
assumption is mildly violated due to group specific time trends.

References

Abadie, A. (2005). Semiparametric difference-in-differences estimators. The Review of
Economic Studies 72(1), 1-19.

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High wage workers and high
wage firms. Econometrica 67(2), 251-333.

Abraham, K., J. Haltiwanger, K. Sandusky, and J. Spletzer (2017). Measuring and
accounting for innovation in the 21st century. In C. Corrado, J. Haskel, J. Miranda,
and D. Sichel (Eds.), Measuring the gig economy: Current knowledge and open issues.
University of Chicago Press.

Abraham, K. G. and A. Amaya (2019). Probing for informal work activity. Journal of
Official Statistics 35(3), 487-508.

Angrist, J. D. and J.-S. Pischke (2009). Mostly harmless econometrics: An empiricist’s
companion. Princeton university press.

Angrist, J. D. and J.-S. Pischke (2010). The credibility revolution in empirical eco-
nomics: How better research design is taking the con out of econometrics. Journal
of economic perspectives 24(2), 3-30.

Arkhangelsky, D., S. Athey, D. A. Hirshberg, G. W. Imbens, and S. Wager (2021).
Synthetic difference-in-differences. American Economic Review 111(12), 4088-4118.

45



Assmann, S. F., S. J. Pocock, L. E. Enos, and L. E. Kasten (2000). Subgroup analysis
and other (mis) uses of baseline data in clinical trials. The Lancet 355(9209), 1064—
1069.

Athey, S. and G. Imbens (2016). Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences 113(27), 7353-7360.

Athey, S. and G. Imbens (2019). Machine learning methods economists should know
about. Annual Review of Economics 11, 685-725.

Athey, S. and G. W. Imbens (2006). Identification and inference in nonlinear difference-
in-differences models. Econometrica 74(2), 431-497.

Athey, S., J. Tibshirani, and S. Wager (2019). Generalized random forests. The Annals
of Statistics 47(2), 1148-1178.

Athey, S. and S. Wager (2019). Estimating treatment effects with causal forests: An
application. Observational Studies 5(2), 37-51.

Baker, A. C., D. F. Larcker, and C. C. Wang (2022). How much should we trust stag-
gered difference-in-differences estimates? Journal of Financial Economics 144 (2),

370-395.

Bargagli-Stoffi, F. J., R. Cadei, K. Lee, and F. Dominici (2020). Causal rule ensemble:
Interpretable discovery and inference of heterogeneous causal effects. arXiv preprint
arXiv:2009.09036 .

Bargagli-Stoffi, F. J., K. De Witte, and G. Gnecco (2022). Heterogeneous causal effects
with imperfect compliance: A bayesian machine learning approach. The Annals of
Applied Statistics 16(3), 1986-2009.

Bargagli Stoffi, F. J. and G. Gnecco (2020). Causal tree with instrumental variable: an
extension of the causal tree framework to irregular assignment mechanisms. Interna-
tional Journal of Data Science and Analytics 9(3), 315-337.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological) 57(1), 289-300.

Bertrand, M., E. Duflo, and S. Mullainathan (2004). How much should we trust
differences-in-differences estimates?  The Quarterly journal of economics 119(1),
249-275.

Bodory, H., H. Busshoff, and M. Lechner (2022). High resolution treatment effects
estimation: Uncovering effect heterogeneities with the modified causal forest. En-
tropy 24(8), 1039.

Boeri, T., G. Giupponi, A. B. Krueger, and S. Machin (2020). Solo self-employment
and alternative work arrangements: A cross-country perspective on the changing
composition of jobs. Journal of Economic Perspectives 34 (1), 170-195.

46



Borusyak, K. (2023). Did_imputation: Stata module to perform treatment effect esti-
mation and pre-trend testing in event studies.

Borusyak, K., X. Jaravel, and J. Spiess (2021). Revisiting event study designs: Robust
and efficient estimation. arXiv preprint arXiv:2108.12419.

Breiman, L. (2001). Random forests. Machine learning 45(1), 5-32.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression
Trees. Belmont, CA: Wadsworth.

Brock, J. M. and R. De Haas (2023). Discriminatory lending: Evidence from bankers
in the lab. American Economic Journal: Applied Economics 15(2), 31-68.

Callaway, B. and P. H. Sant’Anna (2021). Difference-in-differences with multiple time
periods. Journal of econometrics 225(2), 200-230.

Chang, N.-C. (2020). Double/debiased machine learning for difference-in-differences
models. The Econometrics Journal 23(2), 177-191.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey
(2017). Double/debiased /neyman machine learning of treatment effects. American
Economic Review 107(5), 261-65.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and
J. Robins (2018). Double/debiased machine learning for treatment and structural
parameters.

Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernandez-Val (2018). Generic machine
learning inference on heterogeneous treatment effects in randomized experiments,
with an application to immunization in india. Technical report, National Bureau of
Economic Research.

Chipman, H. A., E. I. George, and R. E. McCulloch (2010). Bart: Bayesian additive
regression trees. The Annals of Applied Statistics 4 (1), 266-298.

Cook, D. 1., V. J. Gebski, and A. C. Keech (2004). Subgroup analysis in clinical trials.
Medical Journal of Australia 180(6), 289.

Currie, J., H. Kleven, and E. Zwiers (2020). Technology and big data are changing
economics: Mining text to track methods. AEA Papers and Proceedings 110, 42-48.

Davis, J. M. and S. B. Heller (2020). Rethinking the benefits of youth employment
programs: The heterogeneous effects of summer jobs. Review of Economics and
Statistics 102(4), 664-677.

De Chaisemartin, C. and X. d’Haultfoeuille (2020). Two-way fixed effects estimators
with heterogeneous treatment effects. American Economic Review 110(9), 2964-96.

De Chaisemartin, C. and X. d’Haultfoeuille (2023). Two-way fixed effects and
differences-in-differences with heterogeneous treatment effects: A survey. The Econo-
metrics Journal 26(3), C1-C30.

47



Donald, S. G. and K. Lang (2007). Inference with difference-in-differences and other
panel data. The review of Economics and Statistics 89(2), 221-233.

Doudchenko, N. and G. W. Imbens (2016). Balancing, regression, difference-in-
differences and synthetic control methods: A synthesis. Technical report, National
Bureau of Economic Research.

Drenik, A., S. Jdger, P. Plotkin, and B. Schoefer (2023). Paying outsourced labor:
Direct evidence from linked temp agency-worker-client data. Review of Economics
and Statistics 105(1), 206-216.

Dube, A., D. Girardi, O. Jorda, and A. Taylor (2023). A local projections approach to
difference-in-differences event studies. Technical report, National Bureau of Economic
Research.

Foster, J. C., J. M. Taylor, and S. J. Ruberg (2011). Subgroup identification from
randomized clinical trial data. Statistics in medicine 30(24), 2867-2880.

Frisch, R. and F. V. Waugh (1933). Partial time regressions as compared with individual
trends. Econometrica: Journal of the Econometric Society 1(4), 387-401.

Gavrilova, E.; A. Langgrgen, and F. Zoutman (2023). Dynamic causal forests, with an
application to payroll tax incidence in norway.

Goldschmidt, D. and J. F. Schmieder (2017). The rise of domestic outsourcing and the
evolution of the german wage structure. The Quarterly Journal of Economics 132(3),
1165-1217.

Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment tim-
ing. Journal of Econometrics 225(2), 254-277.

Goos, M., A. Manning, A. Salomons, B. Scheer, and W. van den Berge (2022). Alterna-
tive work arrangements and worker outcomes: Evidence from payrolling. Technical
report, CPB Netherlands Bureau for Economic Policy Analysis.

Green, D. P. and H. L. Kern (2012). Modeling heterogeneous treatment effects in survey
experiments with bayesian additive regression trees. Public opinion quarterly 76(3),
491-511.

Gulen, H.; C. Jens, and T. B. Page (2020). An application of causal forest in corpo-
rate finance: How does financing affect investment? Technical report, Texas A&M
University.

Hartford, J., G. Lewis, K. Leyton-Brown, and M. Taddy (2016). Counterfactual pre-
diction with deep instrumental variables networks. arXiv preprint arXiv:1612.09596.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The elements of
statistical learning: data mining, inference, and prediction, Volume 2. Springer.

Hatamyar, J., N. Kreif, R. Rocha, and M. Huber (2023). Machine learning for staggered
difference-in-differences and dynamic treatment effect heterogeneity. arXiv preprint
arX1w:2310.11962.

48



Hermansson, E. and D. Svensson (2021). On discovering treatment-effect modifiers
using virtual twins and causal forest ml in the presence of prognostic biomarkers. In
International Conference on Computational Science and Its Applications, pp. 624—
640. Springer.

Hill, J. and Y.-S. Su (2013). Assessing lack of common support in causal inference using
bayesian nonparametrics: Implications for evaluating the effect of breastfeeding on
children’s cognitive outcomes. The Annals of Applied Statistics 7(3), 1386-1420.

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of
Computational and Graphical Statistics 20(1), 217-240.

Hoffman, I. and E. Mast (2019). Heterogeneity in the effect of federal spending on local
crime: Evidence from causal forests. Regional Science and Urban Economics 78,
103463.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics 6(2), 65-70.

Imai, K. and M. Ratkovic (2013). Estimating treatment effect heterogeneity in ran-
domized program evaluation. The Annals of Applied Statistics 7(1), 443-470.

Imbens, G. W. and D. B. Rubin (2015). Causal inference in statistics, social, and
biomedical sciences. Cambridge University Press.

Jawadekar, N., K. Kezios, M. C. Odden, J. A. Stingone, S. Calonico, K. Rudolph, and
A. Z. Al Hazzouri (2023). Practical guide to honest causal forests for identifying
heterogeneous treatment effects. American Journal of Epidemiology, kwad043.

Jens, C., T. B. Page, and J. C. Reeder III (2021). Controlling for group-level hetero-
geneity in causal forest.

Johnson, M., J. Cao, and H. Kang (2022). Detecting heterogeneous treatment effects
with instrumental variables and application to the oregon health insurance experi-
ment. The Annals of Applied Statistics 16(2), 1111-1129.

Katz, L. F. and A. B. Krueger (2019). The rise and nature of alternative work arrange-
ments in the united states, 1995-2015. ILR review 72(2), 382-416.

Knaus, M. C. (2022). Double machine learning-based programme evaluation under
unconfoundedness. The Econometrics Journal 25(3), 602-627.

Knittel, C. R. and S. Stolper (2021). Machine learning about treatment effect hetero-
geneity: The case of household energy use. In AFEA Papers and Proceedings, Volume
111, pp. 440-44.

Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple regres-
sion analysis. Journal of the American Statistical Association 58(304), 993-1010.

49



Luo, X., X. Lu, and J. Li (2019). When and how to leverage e-commerce cart targeting:
the relative and moderated effects of scarcity and price incentives with a two-stage
field experiment and causal forest optimization. Information Systems Research 30(4),
1203-1227.

Miller, S. (2020). Causal forest estimation of heterogeneous and time-varying environ-
mental policy effects. Journal of Environmental Economics and Management 103,
102337.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.
Munroe, R. (2022). Significant. https://xkcd.com/882/, accessed = 2022-11-09.

Murakami, K., H. Shimada, Y. Ushifusa, and T. Ida (2022). Heterogeneous treat-
ment effects of nudge and rebate: Causal machine learning in a field experiment on
electricity conservation. International Economic Review 63(4), 1779-1803.

Raghavan, S., K. Josey, G. Bahn, D. Reda, S. Basu, S. A. Berkowitz, N. Emanuele,
P. Reaven, and D. Ghosh (2022). Generalizability of heterogeneous treatment effects
based on causal forests applied to two randomized clinical trials of intensive glycemic
control. Annals of Epidemiology 65, 101-108.

Roth, J. (2022). Pretest with caution: Event-study estimates after testing for parallel
trends. American Economic Review: Insights 4(3), 305-322.

Roth, J., P. H. Sant’Anna, A. Bilinski, and J. Poe (2023). What’s trending in difference-
in-differences? a synthesis of the recent econometrics literature. Journal of Econo-
melrics.

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling,
decisions. Journal of the American Statistical Association 100(469), 322-331.

Shah, A. M., M. Osborne, J. Lefkowitz Kalter, A. Fertig, A. Fishbane, and D. Soman
(2023). Identifying heterogeneity using recursive partitioning: Evidence from sms
nudges encouraging voluntary retirement savings in mexico. PNAS Nezus, pgad058.

Shiba, K., A. Daoud, H. Hikichi, A. Yazawa, J. Aida, K. Kondo, and I. Kawachi (2021).
Heterogeneity in cognitive disability after a major disaster: A natural experiment
study. Science advances 7(40), eabj2610.

Somaini, P. and F. A. Wolak (2016). An algorithm to estimate the two-way fixed effects
model. Journal of Econometric Methods 5(1), 143-152.

Su, X., C.-L. Tsai, H. Wang, D. M. Nickerson, and B. Li (2009). Subgroup analysis via
recursive partitioning. Journal of Machine Learning Research 10(2), 141-158.

Sun, L. and S. Abraham (2021). Estimating dynamic treatment effects in event studies
with heterogeneous treatment effects. Journal of Econometrics 225(2), 175-199.

Tian, L., A. A. Alizadeh, A. J. Gentles, and R. Tibshirani (2014). A simple method
for estimating interactions between a treatment and a large number of covariates.
Journal of the American Statistical Association 109(508), 1517-1532.

20


https://xkcd.com/882/

Tibshirani, J., S. Athey, E. Sverdrup, and S. Wager (2022). The grf algorithm. https:
//grf-labs.github.io/grf/REFERENCE. html, Accessed 2022-11-09.

Tibshirani, J., S. Athey, E. Sverdrup, and S. Wager (2023). Assessing heterogeneity with
rate. https://grf-labs.github.io/grf/articles/rate.html, Accessed 2023-11-
14.

Verstraete, K., I. Gyselinck, H. Huts, N. Das, M. Topalovic, M. De Vos, and W. Janssens
(2023). Estimating individual treatment effects on copd exacerbations by causal
machine learning on randomised controlled trials. thoraz, 1-7.

Wager, S. and S. Athey (2018). Estimation and inference of heterogeneous treatment ef-
fects using random forests. Journal of the American Statistical Association 113(523),
1228-1242.

Wang, T., C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille (2017). A
bayesian framework for learning rule sets for interpretable classification. The Journal
of Machine Learning Research 18(1), 2357-2393.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT
press.

Yadlowsky, S., S. Fleming, N. Shah, E. Brunskill, and S. Wager (2021). Evaluating
treatment prioritization rules via rank-weighted average treatment effects. arXiv
preprint arXiw:2111.07966.

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-based recursive partitioning.
Journal of Computational and Graphical Statistics 17(2), 492-514.

Zheng, L. and W. Yin (2023). Estimating and evaluating treatment effect heterogeneity:
A causal forests approach. Research & Politics 10(1), 20531680231153080.

A All simulation results

In the main text we have visualized estimation results when k = 5 and A = 5. Here we
report all results, thus those when x = 0,5 and A = 0,5 and results when x = 5 and
A = 0. Results are nearly identical to those presented in the main test, which illustrates
a CFFE effectively estimates the CATT when individual and/or time fixed effects are
not present in the data.
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A.1 Causal forest with fixed effects: simulation 1

(a) bias (b) estimated values
(c) bias (d) estimated values
(e) bias (f) estimated values

Figure 15: causal forest with fixed effects

Estimation results when a causal forest with fized effects is used to estimate conditional average treat-
ment effects in a single event difference-in-differences research design. Panel (a) shows the bias of the
estimated treatment effect (7 — 1) when k =0 and A = 0. Panel (b) shows the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=0 and A = 0. Dots indicate the estimated treatment effects. The true treatment effect is indicated
by the solid line. Panels (c) to (f) show these plots for different values of k and .
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A.2 Causal forest with fixed effects: simulation 2

(a) event 1 (b) event 2 (c) event 1 (d) event 2
(e) event 1 (f) event 2 (g) event 1 (h) event 2
(i) event 1 (j) event 2 (k) event 1 (1) event 2

Figure 16: causal forest with fixed effects

Estimation results when a causal forest with fized effects is used to estimate conditional average treat-
ment effects in a single event difference-in-differences research design. Panel (a) shows the bias of the
estimated treatment effect (7 — 1) when k =0 and A = 0. Panel (b) does this for event 2. Panel (c)
shows the estimated values of the treatment effect (7) and the true treatment effect (1) as a function
of the forcing variable, x1 times time since the event, when k = 0 and A = 0 for event 1. Panel (d)
does this for event 2. The other panels shows these plots when k=0 and A =5 (panels (e) to (h)) or
when k =5 and A =0 (panels (i) to (1)).
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A.3 Manually recentered causal forest: simulation 1

(a) density (b) estimated values
(c) density (d) estimated values
(e) density (f) estimated values

Figure 17: manually recentered causal forest

Estimation results when a manually recentered causal forest is used to estimate conditional average
treatment effects in a single event difference-in-differences research design. Panel (a) shows the bias
of the estimated treatment effect (7 — 1) when k=0 and A = 0. Panel (b) shows the estimated values
of the treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1,
when kK = 0 and X\ = 0. Dots indicate the estimated treatment effects. The true treatment effect is
indicated by the solid line. Panels (c) to (f) show these plots for different values of k and M.

o4



A.4 Manually recentered causal forest: simulation 2

(a) event 1 (b) event2 (c) event 1 (d) event 2
(e) event 1 (f) event 2 (g) event 1 (h) event 2
(i) event 1 (j) event 2 (k) event 1 (1) event 2

Figure 18: manually recentered causal forest

Estimation results when a manually recentered causal forest is used to estimate conditional average
treatment effects in a single event difference-in-differences research design. Panel (a) shows the bias of
the estimated treatment effect (7 —7) when k=0 and A = 0. Panel (b) does this for event 2. Panel (c)
shows the estimated values of the treatment effect (7) and the true treatment effect (1) as a function
of the forcing variable, x1 times time since the event, when k = 0 and A = 0 for event 1. Panel (d)
does this for event 2. The other panels shows these plots when k =0 and A =5 (panels (e) to (h)) or
when k =5 and A =0 (panels (i) to (1)).
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A.5 Dynamic causal forest: simulation 1

(a) density (b) estimated values
(c) density (d) estimated values
(e) bias (f) estimated values

Figure 19: dynamic causal forest

Estimation results when a dynamic causal forest is used to estimate conditional average treatment
effects in a single event difference-in-differences research design. Panel (a) shows the bias of the
estimated treatment effect (T —7) when K =0 and A = 0. Panel (b) shows the estimated values of the
treatment effect (7) and the true treatment effect (1) as a function of the forcing variable, x1, when
k=0 and A = 0. Dots indicate the estimated treatment effects. The true treatment effect is indicated
by the solid line. Panels (c) to (f) show these plots for different values of k and X.
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A.6 Dynamic causal forest: simulation 2

(a) event 1 (b) event 2 (c) event 1 (d) event 2
(e) event 1 (f) event 2 (g) event 1 (h) event 2
(i) event 1 (j) event 2 (k) event 1 (1) event 2

Figure 20: dynamic causal forest

Estimation results when a manually recentered causal forest is used to estimate conditional average
treatment effects in a single event difference-in-differences research design. Panel (a) shows the bias of
the estimated treatment effect (7 —7) when k=0 and A = 0. Panel (b) does this for event 2. Panel (c)
shows the estimated values of the treatment effect (7) and the true treatment effect (1) as a function
of the forcing variable, x1 times time since the event, when k = 0 and A = 0 for event 1. Panel (d)
does this for event 2. The other panels shows these plots when k =0 and A =5 (panels (e) to (h)) or
when k =5 and A =0 (panels (i) to (1)).
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B Simulation results using alternatively distributed
data

The simulated data in the paper follows a uniform distribution. Here we show how
results change when the data is simulated using a normal distribution. Overall, results
are quite similar regardless whether the data is simulated using the uniform or normal
distribution.

B.1 Tables simulation 1

Tables 7 to 9 show the bias, RMSE and the ATE of the estimators. In particular,
the bias of a CFFE and DCF are similar, and different from that of a MRCF (Table
7). Also, we conclude that the estimates provided by a CFFE are more precise than
those of a MRCF and DCF (Table 8). Also, the CFFE correctly estimates the average
treatment effect (Table 9).

estimator « A bias cfi

CFFE 0 0 -0.05 (-0.073--0.0327)

CFFE 5 0 0.01 (-0.0135-0.0328)

CFFE 0 5 -0.05 (-0.0722--0.0229)
CFFE 5 5 -0.06 (-0.0789 --0.0341)
MRCF 0 0 -1.44 (-1.5106 - -1.3758)
MRCF 5 0 -1.39 (-1.4672 - -1.3265)
MRCF 0 5 -143 (-1.5002 - -1.3605)
MRCF 5 5 -1.49 (-1.5674 - —1.4295)
DCF 0 0 -0.04 (-0.0785--0.0076)
DCF 5 0 0.03 (-0.0038-0.0743)

DCF 0 5 -0.04 (-0.0738 -0.0049)
DCF 5 5 0.02 (-0.0157 - 0.0593)
CFFE2P 0 0 -0.11 (-0.125--0.0854)

CFFE2P 5 0 -0.01 (-0.0337-0.0249)
CFFE2P 0 5 -0.12 (-0.1523 --0.0928)
CFFE2P 5 5 -0.07 (-0.0938 --0.051)

DCF2P 0 0 -0.06 (-0.0894 --0.0231)
DCF2P 5 0 0.03 (-0.0114 - 0.0677)
DCF2P 0 5 -0.09 (-0.1215--0.0518)
DCF2P 5 5 0.00 (-0.0308-0.0373)

Table 7: bias simulation 1

The table shows the average of the bias when a causal forest with fized effects (cffe) is used to estimate
heterogeneous treatment effects and when this is done using a manually recentered causal forest (mrcf)
or a dynamic causal forest (dcf). We also present results when a CFFE and DCF are trained on periods
2 and 3 only (cffe 2p and dcf 2p). Each row presents the average of the bias for various levels of the
individual effects vary (k = 0,5) and time fized effects (A = 0,5). The reported value is computed
as % va (f; — 15), where 7; indicates the true treatment effect for individual i and 7; indicates the
estimated treatment effect for individual ©. The numbers within brackets denote the bootstrapped 95
percent confidence interval based on 500 replications.
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estimator k A rmse cfi

CFFE 0 0 0.59 (0.3907 - 0.8036)
CFFE 5 0 0.63 (0.4395-0.8441)
CFFE 0 5 0.63 (0.4554 - 0.8283)
CFFE 5 5 0.59 (0.4007 - 0.8147)
MRCF 0 0 239 (2.2967 - 2.4893)
MRCF 5 0 237 (2.283-24783)
MRCF 0 5 240 (2.3163 - 2.5062)
MRCF 5 5 244 (2.3419 - 2.5394)
DCF 0 0 1.00 (0.7933-1.2194)
DCF 5 0 1.08 (0.8723 - 1.2959)
DCF 0 5 1.08 (0.8649 - 1.2967)
DCF 5 5 1.02 (0.8162 - 1.2387)
CFFE2P 0 0 0.43 (0.3-0.5641)
CFFE2P 5 0 0.59 (0.4494 - 0.7373)
CFFE2P 0 5 0.60 (0.4867 - 0.7419)
CFFE2P 5 5 0.43 (0.2892 - 0.5702)
DCF2P 0 0 0.68 (0.5276 - 0.8352)
DCF2P 5 0 0.81 (0.6706 - 0.9642)
DCF2P 0 5 0.75 (0.6082 - 0.9091)
DCF2P 5 5 0.69 (0.5405 - 0.8433)

Table 8: RMSE simulation 1

The table shows the RMSE when a causal forest with fized effects (cffe) is used to estimate heterogeneous
treatment effects and when this is done using a manually recentered causal forest (mref) or a dynamic
causal forest (dcf). We also present results when a CFFE and DCF are trained on periods 2 and 3
only (cffe 2p and dcf 2p). Fach row presents the RMSE for various levels of the individual effects vary

0.5
(k =0,5) and time fized effects (A =0,5). The RMSE is computed as (% va(n - f’i)g)

indicates the true treatment effect for individual i and 7; indicates the estimated treatment effect for
individual i. The numbers within brackets denote the bootstrapped 95 percent confidence interval based

on 500 replications.
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var Kk A mean Ib ub
truth 2.97

CFFE 0 0 3.03 3.01 3.04
CFFE 0 5 3.02 3.01 3.04
CFFE 5 0 296 295 2098
CFFE 5 5 3.03 3.02 3.04
MRCF 0 0 441 4.39 4.44
MRCF 0 5 4.40 4.37 4.42
MRCF 5 0 4.37 4.34 4.39
MRCF 5 5 447 4.44 4.49
DCF 0 0 3.02 3.00 3.03
DCF 0 5 301 299 3.02
DCF 5 0 294 292 2.95
DCF 5 5 295 294 297

Table 9: ATE simulation 1

The table shows the averages of the true and estimated treatment effects by estimator for various
levels of k and X\. "estimator = cffe” indicates the average of the causal forest with fizved effects and
Zestimator = mrcf” indicates the average of a manually recentered causal forest. The table reports the
average (fourth column) as well as the lower and upper bound of the 95 percent confidence interval
(columns five and six) of the ATE. These bounds have been computed by simulating 500 draws of the
estimated treatment effect from a normal distribution with mean 7; and variance ;. Then the average
treatment effect is computed for each draws and the lower and upper bound are the 2.5 and 97.5"

percentile.
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B.2 Tables simulation 2

Tables 10 to 12 show the bias, RMSE and the ATE of the estimators. In particular,
the bias of a CFFE and DCF are similar, and different from that of a MRCF (Table
10). Also, we conclude that the estimates provided by a CFFE are more precise than
those of a MRCF and DCF (Table 11). Also, the CFFE correctly estimates the average
treatment effect (Table 12).

estimator « A bias cfi

CFFE 0 0 -0.13 (-0.1856 --0.0572)
CFFE 5 0 -0.11 (-0.1729 - -0.0389)
CFFE 0 5 -0.15 (-0.2074 - -0.0732)
CFFE 5 5 -0.02 (-0.0753 - 0.0528)
MRCF 0 0 -2.00 (-2.1236--1.8852)
MRCF 5 0 -2.00 (-2.1164 --1.8861)
MRCF 0 5 -2.03 (-2.1528 - —1.9231)
MRCF 5 5 -1.89 (-2.0157--1.7861)
DCF 0 0 -0.07 (-0.1653 - 0.0397)
DCF 5 0 -0.08 (-0.1765 - 0.0331)
DCF 0 5 -0.10 (-0.191 - 0.0153)
DCF 5 5 -0.07 (-0.1627 - 0.034)
CFFE2P 0 0 -0.14 (-0.1982--0.0687)
CFFE2P 5 0 -0.07 (-0.149 - 0.0096)
CFFE2P 0 5 -0.15 (-0.2083 --0.0726)
CFFE2P 5 5 -0.08 (-0.1458--0.0182)
DCF2P 0 0 -0.10 (-0.1993--0.0108)
DCF2P 5 0 -0.03 (-0.1343-0.0777)
DCF2P 0 5 -0.09 (-0.1899 - 0.0053)
DCF2P 5 5 -0.08 (-0.1754-0.0151)

Table 10: Bias simulation 2

The table shows the RMSE when a causal forest with fized effects (cffe) is used to estimate heterogeneous
treatment effects and when this is done using a manually recentered causal forest (mrcf) or a dynamic
causal forest (dcf). We also present results when o CFFE and DCF are trained on periods 2 and 3
only (cffe 2p and def 2p). Each row presents the RMSE for various levels of the individual effects vary

0.5
(k =0,5) and time fived effects (A =0,5). The RMSE is computed as (% Ziv(n - ﬂ-)Z) , where T;
indicates the true treatment effect for individual i and 7; indicates the estimated treatment effect for

individual i. The numbers within brackets denote the bootstrapped 95 percent confidence interval based
on 500 replications.
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estimator k A rmse cfi

CFFE 0 0 1.83 (1.4342-2.3108)
CFFE 5 0 1.89 (1.4725 - 2.3909)
CFFE 0 5 1.88 (1.4682-2.3773)
CFFE 5 5 1.85 (1.4476 - 2.3469)
MRCF 0 0 4.04 (3.8503-4.2527)
MRCF 5 0 391 (3.7302 - 4.1086)
MRCF 0 5 3.95 (3.7746 - 4.1505)
MRCF 5 5 3.87 (3.6829 - 4.0825)
DCF 0 0 284 (2.3843-3.421)
DCF 5 0 295 (2.4866 - 3.5323)
DCF 0 5 287 (2.4092 - 3.4659)
DCF 5 5 281 (2.3548 - 3.3943)
CFFE2P 0 0 1.30 (0.9113 - 1.6589)
CFFE2P 5 0 1.45 (1.044 - 1.8402)
CFFE2P 0 5 1.33 (0.9331 - 1.6967)
CFFE2P 5 5 1.23 (0.8501 - 1.5738)
DCF2P 0 0 1.79 (1.3646 - 2.2024)
DCF2P 5 0 1.93 (1.4824-2.3514)
DCF2P 0 5 1.84 (1.3973-2.2573)
DCF2P 5 5 1.77 (1.3493 - 2.1693)

Table 11: RMSE simulation 2

The table shows the RMSE when a causal forest with fized effects (cffe) is used to estimate heterogeneous
treatment effects and when this is done using a manually recentered causal forest (mref) or a dynamic
causal forest (dcf). We also present results when a CFFE and DCF are trained on periods 2 and 3
only (cffe 2p and dcf 2p). Fach row presents the RMSE for various levels of the individual effects vary

0.5
(k =0,5) and time fized effects (A =0,5). The RMSE is computed as (% va(n - f’i)g)

indicates the true treatment effect for individual i and 7; indicates the estimated treatment effect for
individual i. The numbers within brackets denote the bootstrapped 95 percent confidence interval based

on 500 replications.

62



var Kk A mean Ib ub
truth 5.47

CFFE 0 0 560 557 5.62
CFFE 0 5 5.62 559 5.65
CFFE 5 0 558 555 5.61
CFFE 5 5 549 5.46 5.51
MRCF 0 0 7.46 7.38 7.53
MRCF 0 5 7.51 7.43 7.59
MRCF 5 0 746 740 7.54
MRCF 5 5 736 7.29 7.43
DCF 0 0 554 551 5.57
DCF 0 5 557 553 5.60
DCF 5 0 555 552 5.58
DCF 5 5 554 550 5.57

Table 12: ATE simulation 2

The table shows the averages of the true and estimated treatment effects by estimator for various
levels of k and X\. "estimator = cffe” indicates the average of the causal forest with fizved effects and
Zestimator = mrcf” indicates the average of a manually recentered causal forest. The table reports the
average (fourth column) as well as the lower and upper bound of the 95 percent confidence interval
(columns five and six) of the ATE. These bounds have been computed by simulating 500 draws of the
estimated treatment effect from a normal distribution with mean 7; and variance &;. Then the average
treatment effect is computed for each draws and the lower and upper bound are the 2.5 and 97.5"

percentile.
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