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1 Introduction

We have described the latest version of the Saffier model in Bettendorf et al. (2021),

including the estimation of the main equations (see Section 3). In this document we

discuss in more detail the estimation outcomes of our preferred specification and alternative

specifications.

An error correction specification is estimated for three equations (consumption, exports

and imports). We follow the polynomial adjustment cost (PAC) approach of Tinsley

(2002) in the estimation of 6 equations (labour demand, investment, three prices and

wages). Expectations are captured by the PAC specification, except for the consumption

equation (which includes a permanent income term). Expected values are generated as

forecasts of a VAR model. All PAC equations share a core VAR model. Therefore,

we start in the next section with a discussion of the set-up and results of this core VAR

model. In estimating the PAC equations we use VAR-expectations. Since we assume static

expectations in simulating the current version, we might instead estimate error correction

models without forward looking terms. However, estimation results do not differ much

between the PAC and ECM approach. In the following 7 sections we discuss successively

the main behavioural equations (the last section covers the 3 price equations).

The estimation tasks were distributed as follows:

• Henk Kranendonk prepared the datasets for each estimation

• Stefan Boeters prepared Sections 2,3,4 and 9

• Loes Verstegen prepared Sections 5 and 8

• Leon Bettendorf prepared Sections 5,6 and 7
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2 Core VAR

Following the approach of the ECB-BASE model (Angelini et al, 2019, Zimic and Marce-

latti, 2017), we set up a core VAR model for forecasting the variables that determine the

targets in the 6 PAC equations of Saffier 3.0 (three price equations, labour and investment

demand, wage). The core VAR model contains three variables of the euro area (interest

rate, inflation, output gap) and two variables for the Netherlands (inflation, output gap).

This core VAR is used in the second (forecasting) step of all PAC estimations.

2.1 Core VAR set-up

Inspired by the set-up of the ECB model, the core VAR system contains 5 variables (y):

• output gap NL (GAP NL)

• consumer price inflation NL (CPI NL)

• short-term interest rate (RK EA)

• output gap Euro Area (GAP EA)

• consumer price inflation Euro Area (CPI EA)

Each of these variables has a target (ȳ). Targets for GAP NL and GAP EA are zero

(but kept in the notation for generality), targets for CPI NL, RK EA and CPI EA are

time-varying and taken from expert forecast series.

The general specification is:

∆yt = R∆yt−1 +A(yt−1 − ȳt−1)

with two 5 × 5 coefficient matrices (R and A) to be estimated. However, we adopt the

assumption of an only partial linkage between the NL and the EA part of the VAR:

• EA variables do not depend on NL variables,

• NL variables depend on EA variables only through the common interest rate.

This leaves us with two times 15 parameters to be estimated:

GAP NL CPI NL RK EA GAP EA CPI EA

GAP NL × × × 0 0

CPI NL × × × 0 0

RK EA 0 0 × × ×
GAP EA 0 0 × × ×
CPI EA 0 0 × × ×
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The stability of the resulting VAR is most straightforwardly checked by formulating it
as 10× 10 system in levels and lagged levels. This gives the coefficient matrix ]



1 + r11 + a11 r12 + a12 r13 + a13 0 0 −r11 −r12 −r13 0 0

r21 + a21 1 + r22 + a22 r23 + a23 0 0 −r21 −r22 −r23 0 0

0 0 1 + r33 + a33 r34 + a34 r35 + a35 0 0 −r33 −r34 −r35

0 0 r43 + a43 1 + r44 + a44 r45 + a45 0 0 −r43 −r44 −r45

0 0 r53 + a53 r54 + a54 1 + r55 + a55 0 0 −r53 −r54 −r55

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0


whose eigenvalues can be checked. The largest eigenvalue with the sample 1996q3-2019q4

is 0.921, which gives a stable system.1

Coefficient matrices R and A, sample 1996-2016:

R [, 1] [, 2] [, 3] [, 4] [, 5]

[1, ] −0.149 0.283 1.409 0.000 0.000

[2, ] −0.132 −0.041 0.183 0.000 0.000

[3, ] 0.000 0.000 0.402 0.132 0.159

[4, ] 0.000 0.000 0.451 0.123 0.293

[5, ] 0.000 0.000 −0.094 0.040 −0.114

A [, 1] [, 2] [, 3] [, 4] [, 5]

[1, ] −0.102 −0.182 −0.031 0.000 0.000

[2, ] 0.059 −0.844 −0.026 0.000 0.000

[3, ] 0.000 0.000 −0.085 0.007 0.110

[4, ] 0.000 0.000 −0.151 −0.055 −0.046

[5, ] 0.000 0.000 −0.079 0.060 −0.678

2.2 Fit core VAR

The following figures (5 core VAR variables in both levels and first differences) show the

fit of the VAR equations.

1In an intermediate version we were struggling with instability due to data errors. So checking the

eigenvalues is always a useful test.
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Figure 1: Fit of the VAR equations
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2.3 Forecast

The following figures show the forecast properties of the core VAR. All 5 variables stabilise

within a few years. The two gaps converge to zero, the other three variables have a variable

target.
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Figure 2: Forecasts of the VAR variables (1996-2019)
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3 Labour demand

We estimate labour demand of the market sector in total hours. In order to capture the

effect of expectations, we set up our estimation in the polynomial adjustment cost (PAC)

approach of Tinsley (2002), which is prominently featured in the FRB/US model (Brayton

et al., 2000) and in ECB-BASE (Angelini et al, 2019).

The PAC approach results in an extended error-correction type of estimation equations.

Estimation proceeds in three steps:

1. Long-term (co-integration) relationship estimated by OLS.

2. Forecasting relationships for the determinants of labour demand estimated in a VAR

model with a limited number of core variables.

3. Short-term relationship estimated as an error-correction model with extensions ac-

counting for expectation effects and auxiliary contemporaneous effects.

In the first step we estimate the long-term relationships, using the specification of the

production function in the model, CES with σ = 0.5 (Section 3.2).

In the second step (Section 3.3), we estimate a VAR system based on interest rates,

inflation rates and the output gap, which provides us with forecasts for the variables of

interest (see Zimic and Marcelatti, 2017, for the general approach and Section 2, for the

implementation in Saffier 3.0).

In the third step (Section 3.4), we estimate the core PAC equations, using short-term

price and output changes and expected target changes as regressors.

The short-term coefficients used in Saffier 3.0 of Bettendorf et al. (2021) are docu-

mented in Table 1, first column. The error correction term is small and not significantly

different from zero. Labour demand is the only PAC equation in the model (out of 6 that

we have estimated) where the addition of a lagged dependent variable (PAC of degree

m = 2) improves the fit considerably. The coefficients of the auxiliary variables are of the

expected sign and highly significant. Still, due to the low error-correction coefficient, slow

adjustment on the labour market remains a concern of the model results.
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3.1 Data

• Lt: log labour demand in hours

• Yt: log output

• PLt: log hourly real wage

• Ct: log per unit structural real production cost

• HLt: log structural labour productivity

HLt is generated as the filtered residual of combining the production function of Saffier 3.0

(elasticity of substitution = 0.5, labour-saving technological progress only) with empirical

quantities (output, labour and capital inputs). Ct is calculated consistently with the

production function assumptions from the average factor shares, the factor prices and the

structural labour productivity. All variables are in logs.

Estimation period is 1996q1-2019q4. We lose some observations at the start of the

period when lags are involved.

3.2 Long run

The core parameters of the long-run equation for labour demand are not estimated, but

imposed based on the production function assumptions (σ = 0.5). The only parameters

to be estimated is the constant, which collects the average log labour share and different

normalisation constants for the other variables. As a single constant for the whole period

results in systematically positive residuals towards the end of the sample (which prove to

be without explanatory value in the short run), we allow for one additive structural break

in 2014q2.2

Lt = α0 + α1dum14−19 + Yt − σ (PLt − Ct) + (σ − 1)HLt

Fit (left) and residuals of the long-term equation are shown in Figure 3.

3.3 VAR

The VAR explaining the price expectations is built up in three steps. First, the core VAR

in the five variables yt = GAP NL, CPI NL, RK EA, GAP EA and CPI EA is set up.

This is documented in Section 2.

2The breakpoint has been determined by running a loop over candidate breakpoints between 2010 and

2017 and selecting the point that results in the best fit of the short-run equation.
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Figure 3: Long-term: fit (left) and residuals (right)
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Second, four explaining variables (xt = Yt, PLt, Ct, HLt) are forecast on basis of the

“Dutch” variables in the core VAR and an autoregressive term:

∆xt = β0 + β1∆GAP NLt−1 + β2∆CPI NLt−1 + β3∆RK EAt−1 + β4∆xt−1

The constants in these four equations are restricted so that the long-term growth rate of

employment converges to the exogenous rate.3

Third, the forecast of the target for Lt is calculated using the parameters from the

long-term equation.

3We have

gY = cY /(1− rY )

gW = cW /(1− rW )

gC = cC/(1− rC)

gH = cH/(1− rH)

where the ci and ri are the constants and the autoregressive coefficients in the VAR equations for the log

changes in the respective variables. For gL∗ = 0, we need

gY − σ(gW − gC) + (σ − 1)gH = 0

that is

gH =
gY − σ(gW − gC)

1− σ
for σ = 0.5

gH = 2gY − gW + gC

cH/(1− rH) = 2cY /(1− rY )− cW /(1− rW ) + cC/(1− rC)

It turns out that rH is estimated to be (slightly) above 1 (as it is in a single-equation estimation of H),

resulting in an instability and diverging (instead of converging) growth rates. In order to impose stability,

we further restrict rH = 0.9.
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As individual VAR coefficients are not particularly informative, we illustrate the per-

formance of the VAR forecast with forecast figures for the four determinants of labour

demand and the labour demand target itself.4

3.4 Short-term estimation: PAC

The PAC model is estimated as an ECM equation that is extended with one complex

expectations term (“zt”). This term is calculated from the forecast of the target variable

and the other estimated parameters. Estimation is therefore iterative: zt is calculated

with given parameters and added as a time-varying offset for the estimation of an updated

set of parameters.5 This proceeds until convergence.

The base specification of the PAC equation is

∆Lt = γ1 (Lt − L⋆
t ) + γ2∆Lt−1 + γ3∆Yt + γ4∆Wt + γ5∆Ct + γ6∆Ht + zt

Our specification search (documented in separate notes) resulted in a PAC of degreem = 2,

i.e. with one autoregressive term.

Table 1 shows the estimation results. To put the results in perspective, we add the

pure ECM results (without the zt term) and the PAC results with m = 1.

The following figures show the fit and the residuals in the short run.

4These are “quasi forecasts” because the parameters have been estimated using the whole sample, not

only the part that was known at the moment the forecast starts.
5The expectations term, zt can be expressed as

zt =

∞∑
s=0

fs∆pi⋆t+s

The expected changes in the target, ∆pi⋆t+s, are calculated by the VAR, the associated weights are functions

of the estimated γ’s. E.g. for m = 1 we have fs = γ1 [(1− γ1)β]
s ,where β is an exogenous discount factor.
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Figure 4: Forecasts of the VAR variables Labour demand
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Figure 5: Short-term: fit (left) and residuals (right)
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Table 1: Labour demand short-term

PAC m=2 ECM PAC m=1

γ1 −0.047 −0.043 −0.080∗∗

(0.035) (0.031) (0.037)

∆Lt−1 (γ2) 0.385∗∗∗ 0.441∗∗∗

(0.083) (0.084)

∆Yt (γ3) 0.309∗∗∗ 0.332∗∗∗ 0.467∗∗∗

(0.066) (0.066) (0.056)

∆Wt (γ4) −0.317∗∗∗ −0.317∗∗∗ −0.348∗∗∗

(0.060) (0.060) (0.065)

∆Ct (γ5) 0.131∗∗∗ 0.141∗∗∗ 0.195∗∗∗

(0.032) (0.032) (0.030)

∆Ht (γ6) 0.316∗∗ 0.289∗∗ 0.298∗∗

(0.134) (0.134) (0.146)

R2 0.708 0.708 0.641

Adj. R2 0.688 0.688 0.621

Num. obs. 93 95 93

RMSE*100 0.300 0.303 0.329

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.060 0.030 0.051

LB(1) p 0.066 0.023 0.016

LB(4) p 0.047 0.010 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



4 Investment

We estimate investment demand of the market sector, which is notoriously difficult to fit.

In order to capture the effect of expectations, we set up our estimation in the polynomial

adjustment cost (PAC) approach of Tinsley (2002), which is prominently featured in the

FRB/US model (Brayton et al., 2000) and in ECB-BASE (Angelini et al, 2019).

The PAC approach results in an extended error-correction type of estimation equations.

Estimation proceeds in three steps:

1. Long-term (co-integration) relationship estimated by OLS.

2. Forecasting relationships for the determinants of investment estimated in a VAR

model with a limited number of core variables.

3. Short-term relationship estimated as an error-correction model with extensions ac-

counting for expectation effects and auxiliary contemporaneous effects.

In the first step we estimate the long-term relationships, using a pure accelerator model

without price effects (Section 4.2).

In the second step (Section 4.3), we estimate a VAR system based on interest rates,

inflation rates and the output gap, which provides us with forecasts for the variables of

interest (see Zimic and Marcelatti, 2017, for the general approach and Section 2, for the

implementation in Saffier 3.0).

In the third step (Section 4.4), we estimate the core PAC equations, using short-term

output changes and expected target changes as regressors.

The short-term coefficients used in Saffier 3.0 of Bettendorf et al. (2021) are doc-

umented in Table 2, first column. Both the error correction term and the short-term

coefficient of output changes are large and significantly different from zero. Still, the fit

of the equation is considerably lower than that of other PAC equations in the model.
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4.1 Data

• It: log investment market sector

• Yt: log output market sector

• PKt: log user cost of capital (composed of rental rate and price of investment goods)

• Ct: log per unit structural real production cost

Estimation period is 1996q1-2019q4. We lose some observations at the start of the period

when lags are involved.

4.2 Long run

We assume that the captial stock target follows from a CES production function with

σ = 0.5 (for consistency with the rest of the model)

K∗
t = α′

0 + Yt − 0.5 (PKt − Ct)

and that the target investment level is a fixed fraction (long-run growth + depreciation)

of the target capital stock (so that the variables differ only by a constant η in logs).

I∗t = K∗
t + η

We then estimate

I∗t = α0 + Yt − 0.5 (PKt − Ct) (1)

where α0 = α′
0 + η.

Fit (left) and residuals of the long-run equation are shown in Figure 6.

4.3 VAR

The VAR explaining the price expectations is built up in three steps. First, the core VAR

in the five variables yt = GAP NL, CPI NL, RK EA, GAP EA and CPI EA is set up.

This is documented in a separate note (Section 2).

Second, three explaining variables (xt = Yt, PKt, Ct) are forecast on basis of the

“Dutch” variables in the core VAR and an autoregressive term:

∆xt = β0 + β1∆GAP NLt−1 + β2∆CPI NLt−1 + β3∆RK EAt−1 + β4∆xt−1

The constants in the equations for PKt, Ct are restricted so that the long-term growth

rate of these two prices converges to the same value.
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Figure 6: Long-run: fit (left) and residuals (right)
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Third, the forecast of the target for It is calculated using the parameters from the

long-term equation.

As individual VAR coefficients are not particularly informative, we illustrate the per-

formance of the VAR forecast with forecast figures for the three determinants of investment

demand and the investment demand target itself.6

4.4 Short-term estimation: PAC

The PAC model is estimated as an ECM equation that is extended with one complex

expectations term (“zt”). This term is calculated from the forecast of the target variable

and the other estimated parameters. Estimation is therefore iterative: zt is calculated

with given parameters and added as a time-varying offset for the estimation of an updated

set of parameters.7 This proceeds until convergence.

The base specification of the PAC equation is

∆It = γ1 (It − I⋆t ) + γ2∆Yt + zt

Our specification search (documented in separate notes) resulted in a PAC of degreem = 1,

i.e. without autoregressive terms.

6These are “quasi forecasts” because the parameters have been estimated using the whole sample, not

only the part that was known at the moment the forecast starts.
7The expectations term, zt can be expressed as

zt =

∞∑
s=0

fs∆pi⋆t+s

The expected changes in the target, ∆pi⋆t+s, are calculated by the VAR, the associated weights are functions

of the estimated γ’s. E.g. for m = 1 we have fs = γ1 [(1− γ1)β]
s ,where β is an exogenous discount factor.
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Figure 7: Forecasts of the VAR variables Investment demand
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Table 2 shows the estimation results. To put the results in perspective, we also add

the pure ECM estimation (without the zt term).

The following figures show the fit and the residuals in the short run.
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Figure 8: Short-run: fit (left) and residuals (right)
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Table 2: Investment demand short-term

PAC 5/21 ECM 5/21

γ1 −0.126∗∗∗ −0.141∗∗∗

(0.045) (0.045)

∆Yt (γ2) 1.847∗∗∗ 2.241∗∗∗

(0.407) (0.405)

R2 0.234 0.302

Adj. R2 0.218 0.287

Num. obs. 94 95

RMSE*100 3.910 3.936

ADF p < 0.010 < 0.010

KPSS p 0.359 0.132

LB(1) p 0.059 0.090

LB(4) p 0.051 0.083

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



5 Consumption

An error correction specification is estimated for consumption with quarterly data of the

period 1996q1-2019q4. We estimate the ECM in two steps; results for the long-run and

short-run equation are reported in Section 5.1 and 5.2, respectively.

5.1 Long-run equation

5.1.1 Derivation

We estimate a Muellbauer-type consumption function. This equation contains elements of

a life-cycle model where consumption depends on income growth expectations. It differs

from traditional Euler equations in particular due to deviations from the strong assump-

tions about agents’ rationality and expectations formation (Aron et al., 2012).

The derivation of the long-run target consumption equation is described in Aron et al.

(2012). Real aggregate consumption c∗t (including durables and imputed rents) is first

specified as linear in net wealth (Wt−1) and so-called permanent non-property income

(ypt ):
8

c∗t = ϕtWt−1 + ωty
p
t (2)

Parameters are not constant if the propensities to consume out of wealth and the per-

manent income growth are age-specific and the distribution of income and wealth across

age groups is changing. Non-constant parameters also result when the real interest rate

is not constant. We simplify by assuming that the parameters are constant. Next, we

divide by real disposable non-property income ydnp, defined as the sum of labour earnings,

transfers, pensions, minus income taxes and social premiums paid by households, deflated

by consumer prices (real disposable property income ydp is defined as after-tax income

from wealth). Log-approximating gives:

ln c∗t = α0 + ln ydnpt + γ
Wt−1

ydnpt

+ α1 ln

(
ypt

ydnpt

)
(3)

where γ = ϕ/ω and α0 = lnω.9

Our work differs from the studies by Muellbauer and co-authors (listed in Table 3) in

two main respects.10 First, they disaggregate wealth into net liquid, illiquid and housing

8Wealth is lagged because it is measured at the end of the period. We exclude property income from

the income measure to avoid double counting of financial wealth.

9Taking the log of
c∗t

y
dnp
t

= ω

[
ϕ
ω

Wt−1

y
dnp
t

+ 1 +
yP
t −y

dnp
t

y
dnp
t

]
gives equation (3), using that ln(1 + x) ≈ x and

(yP − y)/y ≈ ln(yP /y).
10Detailed results are given in Ascione et al. (2019).
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assets, allowing for different marginal propensities to consume out of the respective asset

types. In an early stage of the project, we did not find evidence of different marginal

propensities and decided to continue with aggregate net wealth. We plan to redo this

analysis with recent data. Second, Muellbauer et al. allow for time-varying coefficients,

by including interacting effects with an index measuring credit market liberalization. How-

ever, we did not find evidence that coefficients vary with conditions on credit markets.

The described consumption equation is estimated for several countries. Table 3 re-

ports the long-run coefficients for different studies. We observe that there are quite some

differences between countries. For example, credit conditions have had quite an impact

on the consumption equation in the UK and the US, but this is not the case in Germany

and Japan.

Table 3: Long-run estimation results in the literature

Author (year) Version Country ln yp/ydnp HA/ydnp IFA//ydnp NLA/ydnp CCI

Aron et al. (2012) 3
UK

0.485*** 0.047*** 0.026*** 0.126***

5 0.201*** 0.043*** 0.022*** 0.114*** 0.050***

3
US

0.710*** 0.044** 0.049 0.086**

5 0.588*** 0.084*** 0.011*** 0.153*** 0.146***

3
Japan

0.471*** 0.0034 0.039 0.064***

4 0.460*** 0.063***

Geiger et al. (2016) 1
Germany

0.346 (t=8.6) -0.070 (t=-3.4) 0.016 0.095 (t=3.8) 0.025 (t=1.2)

2 0.364 (t=8.2) -0.069 (t=-3.4) 0.016 0.088 (t=3.2) 0.025

Muellbauer and Williams (2011) 1
Australia

0.20 0.0606*** 0.0219** 0.1588*** 0.1902***

2 0.20 0.0646*** 0.0194* 0.1683*** 0.1875***

Muellbauer (2010) 1
UK

0.546 (t=4.7) 0.055 (t=11.5) 0.024 (t=0.024) 0.110 (t=6.5) 0.044 (t=4.4)

2 0.727 (t=5.8) 0.046 (t=0.046) 0.026 (t=7.8) 0.095 (t=5.7) 0.036 (t=3.3)

Muellbauer et al. (2015) 2
Canada

1.187 (t=3.6) -0.026 (t=-1.0) 0.039 (t=2.4) -0.038 (t=-0.5)

4 0.695 (t=0.695) -0.147 (t=-1.8) 0.024 (t=2.9) 0.07 0.194 (t=3.6)

Williams (2010) 6
Australia

0.1419*** 0.0011*

9 0.0624** 0.0055*** 0.0043 0.0172***

Chauvin and Muellbauer (2018) 1
France

0.38 (t=2.3) -0.108 (t=-4.2 0.020 (t=3.7) 0.096 (t=5.7) 0.036 (t=6.7)

2 0.75 (t= 5.6) 0.070 (t=3.6) 0.020 (t=3.0) 0.100 (t=3.5)

Notes: Statistical significance at the 10%, 5%, and 1% levels is denoted by ∗,∗∗, and ∗ ∗ ∗.
NLA equals liquid assets minus debt (both private and housing debt); IFA is illiquid financial assets; HA is housing wealth and CCI is credit conditions index

5.1.2 Permanent income

Before estimating the consumption equation, calculation of permanent income is required

(yp). The deviation between permanent income and current income is calculated by dis-

counting future income over the time horizon k at a quarterly discount factor β:

Et ln

(
ypt

ydnpt

)
≈

Et
∑k

s=1 β
s−1 ln

(
ydnpt+s/y

dnp
t

)
∑k

s=1 β
s−1

(4)
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Under the assumption of perfect foresight, we use actual realizations for future values of

ydnpt+s . We use k = 12 (quarters) and β = 0.95. We choose a discount rate of η = 0.05 per

quarter as in Williams (2010), Muellbauer and Williams (2011) and Aron et al. (2012).

Figure 9 shows the resulting series of permanent income.

Instead of using actual values in the regressions (i.e. perfect foresight), we prefer to use

predicted values of the deviation of permanent to current income (using backward-looking

expectations). Notice that goodness of fit is not the ultimate aim of the forecasting equa-

tion. As pointed out by Chauvin and Muellbauer (2018) ”households are bound to make

serious forecast errors: (...) the aim is to capture what their views might have been given

the kind of information to which households would have ready access”. Based on the most

promising income forecasting equations in Muellbauer-type consumption functions (see

e.g. Muellbauer et al. (2015); Aron et al. (2012); Muellbauer and Williams (2011);Geiger

et al. (2016)), we decided upon explaining the log ratio of permanent income to current in-

come by a constant, contemporaneous log non-property income, one lag of income growth,

consumer confidence, and the log of the ratio of the oil price and the consumer price.

Results of the income forecasting equation are presented in Table 4 and Figure 9.

Figure 9: Ratio of permanent income and fitted values ln(yp/ydnp)
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Table 4: Predicting ratio permanent income ln yp/ydnp

Constant 1.064∗∗∗

(0.135)

ln ydnp −0.191∗∗∗

(0.027)

∆ ln ydnp(−1) −0.472∗∗

(0.207)

Consumer confidence 0.000∗∗∗

(0.000)

ln(Po/Pc) 0.010∗

(0.006)

R2 0.640

Adj. R2 0.622

Num. obs. 86

RMSE*100 1.805

ADF p < 0.010

KPSS p 0.696

LB(1) p 0.000

LB(4) p 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



5.1.3 Estimation results long-run equation

Estimation results of equation (3) are given in the first column of Table 5 (using the

predicted values of permanent income from the income forecasting equation). We find

an implausibly large marginal propensity to consume out of net wealth. Looking at the

data, we need to account for two developments. First, the ratio c/ydnp initially falls

before getting rather stable (Figure 11a). A break at 2004q3 is supported by a breakpoint

analysis of the residuals of (3). This development corresponds to an increasing share of

non-property income in total income during the first years (Figure 10a). We account for

this by extending the long-run equation with the ratio ydnp/(ydnp + ydp).11

Second, we find in several housing-related series a turning point around 2014q1 (relative

housing price; housing wealth, loan-to-value ratio). In particular, we observe in Figure

10b a strong recovery of the (housing) wealth ratio, while the consumption ratio remained

stable during this period.12 A break in the residuals of (3) around 2014 is not supported

by a breakpoint analysis. The best option to deal with this break seems to be including a

dummy for the period 2014q1-2019q4.13 We estimate the extended long-run specification:

ln
c∗t

ydnpt

= β0 + β1 ln
ypt

ydnpt

+ β2
Wt−1

ydnpt

+ β3
ydnpt

ydnpt + ydpt
+ β4d per2t (5)

The second column of Table 5 shows that estimation results improve:

• The coefficient of permanent income is β1 = 0.82. Table 3 reports estimates of 0.96

for the US, 0.75 for France and 0.11 for Australia.

• The coefficient of net wealth β2 = 0.05 equals the marginal long-run propensity to

consume out of net wealth when c/ydnp = 1.14 Table 3 shows estimates ranging from

0.03 in the UK to 0.08 in Canada.15

11Following the theoretical derivation, non-property income is the appropriate concept in the consump-

tion function. In view of the poor empirical performance, total disposable income is used instead in some

studies. We choose to add the share of non-property income as control variable.
12CBS reports that the net income from housing became positive in 2015; see https://www.cbs.nl/n

l-nl/nieuws/2020/52/vermogens-van-huishoudens-leveren-steeds-meer-inkomen.
13Inspired by CPB research on the relationship between housing wealth and consumption (see Ji et al.

2019), we included interaction terms with housing variables. From CBS-statistics, we calculated the

fraction of households for which the value of the mortgage exceeded the value of their house for the period

2006-2015 (https://www.cbs.nl/nl-nl/cijfers/detail/81702NED). This statistic is strongly correlated

with the macro loan-to-value ratio, i.e. total mortgages/gross housing value. As we were not able to find

significant interaction terms with this ratio, we excluded these from the specification.
14dct/dWt = ct/y

dnp
t β2.

15See also the overview for the 4 large euro area countries in de Bondt et al. (2020).
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• The initial rise in the non-property income share has a depressing effect on consump-

tion (β3 = −0.77).

Fitted values and residuals are given in Figure 11.

Figure 10: The share of non-property income ydnp/(ydnp + ydp) and the wealth ratio
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Figure 11: Fitted values and residuals of LR equation ln(c/ydnp)
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Table 5: Estimation results long-run consumption (1996q1-2019q4)

Model 1 Model 2

Constant −0.303∗∗∗ 0.559∗∗∗

(0.033) (0.084)

ln yp/ydnp 2.374∗∗∗ 0.816∗∗∗

(0.126) (0.170)

W−1/y
dnp 0.069∗∗∗ 0.045∗∗∗

(0.007) (0.006)

ydnp/(ydnp + ydp) −0.767∗∗∗

(0.073)

Dummy 2014q1-2019q4 −0.020∗∗∗

(0.005)

R2 0.871 0.943

Adj. R2 0.866 0.941

Num. obs. 95 95

RMSE*100 2.621 1.744

ADF p < 0.010 < 0.010

KPSS p 0.035 0.336

LB(1) p 0.000 0.000

LB(4) p 0.000 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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5.2 Short-run equation

Dynamics are modeled within an ECM-framework:

∆ ln ct =ρ ln
ct−1

c∗t−1

+ γ1

2∑
j=0

γ1,j∆ ln ydnpt−j + γ2∆ ln ydpt + γ3d per1t∆ ln rht
W hd

t−1

ydnpt−1

+

γ4∆
pht
pct

+ γ5
ln lms

t − ln lms
t−4

4
+ γ6d crisist + γ7d 2006q1 + ϵt (6)

Explanation of the variables:

• The error correction term is given by the (lagged) residual of the long-run equation.

• We include the weighted average growth rate of non-property real income. The

weights are estimated, under the restriction that the sum of the three weights equals

1. These variables capture consumption responses by credit-constrained (or hand-

to-mouth) households.

• We only include the current growth of property income, since lagged growth rates

were insignificant.

• The interest rate on new mortgages rh, weighted with the ratio of the mortgages to

non-property income; d per1 denotes the quarters before 2014q1.

• The change in the relative housing price.

• We include the average change (over the last 4 quarters) in the employment (in

hours) of the market sector as confidence indicator.16

• We include the crisis-dummy to capture the quarters 2009q1/q2 and the 2006q1-

dummy to capture a change in the measurement of the consumption of health care.

The first column of Table 6 shows results of an unrestricted estimation of equation (6).

Besides insignificant effects of non-property income, it gives an implausibly large effect

of changes in the relative housing prices (γ4 = 0.34). Therefore, we decided to fix this

coefficient at 0.15 (inspired by Berben et al. 2018). As a result, the error correction

coefficient (ρ) dropped to an insignificant, small value. Hence, we imposed ρ = −0.1. The

preferred specification is presented in the second column:

16We experimented to include instead the change in the unemployment rate as an indicator of uncertainty.

However, the large estimated coefficient (−1.1) resulted in implausibly large changes of consumption growth

in model simulations.
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• The effect of the average growth of non-property income (γ1) is significant and small.

The current growth rate gets the largest weight (γ10).

• Growth of non-property income has a larger effect on consumption growth than

growth of property income. An average increase of non-property income of 1 euro

increases real consumption by 0.12 euro in the same quarter, compared to 0.03 euro

for an 1 euro increase in property income.17

• An increase in the (weighted) interest rate on mortgages has a negative effect on

consumption growth before 2014q1 (γ3). The effect is not significant after 2014q1.

• We find that an increase of the average employment growth with 1% point increases

the growth of consumption with 0.5% in the same quarter.

Fitted values and residuals are given in Figure 12.

Figure 12: Fitted values and residuals of SR equation ∆ ln c

2000 2005 2010 2015 2020

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

obs
fit

2000 2005 2010 2015 2020

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

17Based on ∆c = 0.129c/ydnp∆ydnp and ∆c = 0.002c/ydp∆ydp; evaluated at 2019q4-values and neglect-

ing the error correction adjustment.

30



31

Table 6: Estimation results short-run consumption

Model 1 Model 2

ln(c/c∗)−1 −0.091∗∗∗ −0.100

(0.033)∑
j γ1j∆ ln ydnp−j 0.068 0.129∗∗

(0.053) (0.054)

∆ ln ydnp 0.408 0.401∗∗

(0.292) (0.160)

∆ ln ydnp−1 0.334 0.292∗∗

(0.251) (0.141)

∆ ln ydp 0.002∗∗∗ 0.002∗∗

(0.001) (0.001)

d per1∆ ln rh(W hd/ydnp)−1 −0.072∗∗∗ −0.073∗∗∗

(0.023) (0.025)

∆(ph/pc) 0.337∗∗∗ 0.150

(0.051)

(ln lms
t − ln lms

t−4)/4 0.231∗ 0.482∗∗∗

(0.120) (0.109)

Dummy crisis −0.016∗∗∗ −0.017∗∗∗

(0.005) (0.005)

Dummy 2006q1 −0.010∗∗∗ −0.010∗∗∗

(0.003) (0.004)

R2 0.580 0.495

Adj. R2 0.565 0.478

Num. obs. 92 92

RMSE*100 0.428 0.468

ADF p < 0.010 < 0.010

KPSS p 0.142 0.014

LB(1) p 0.805 0.249

LB(4) p 0.659 0.192

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



6 Exports

We discuss the estimation of equations of three types of exports: exports of domestically

produced goods and services, re-exports and exports of energy. We distinguish re-exports

from other exports in view of its large share in total exports and its low share of value

added compared to exported goods and services that are domestically produced. There-

fore, increasing re-exports has a much smaller impact on gdp and a larger impact on

imports than increasing domestically produced exports. We treat energy exports sepa-

rately to account for the strongly fluctuating energy prices. The remaining exports, i.e.

of domestically produced non-energy goods and services, make up the largest fraction of

total exports.

6.1 Domestically produced exports of goods and services

6.1.1 Long-run

Specification We consider three determinants of domestically produced non-energy ex-

ports (bd): world trade (mw), output of the market sector (yms) and the relative price:(pbd/pw):

ln bd∗t = β0 + β1 lnm
w
t + (1− β1) ln y

ms
t + β2 ln(p

bd
t /pwt ) (7)

First, target exports depend on the exogenous relevant world trade. An increase in the

foreign demand for domestically produced goods and services will have a positive effect

on exports. Second, the expansion of exports is subject to capacity restrictions. Capacity

is proxied by the current output of the market sector. Effects of a positive demand shock

are limited by supply factors as labour supply and structural productivity growth. In

addition, supply shocks that increase (decrease) potential output will permanently increase

(decrease) the export volume. In view of long-run homogeneity, exports, world trade and

output need to have a common growth rate on the balanced growth path. Therefore, we

impose that the coefficients of yms and mw add up to one. This specifications nests two

extremes:

• β1 = 0: no permanent effects of a world trade shock, since output converges to its

potential level.

• β1 = 1: maximal permanent effects of a world trade shock due to changes in the

terms of trade.

Third, the relative price, or the terms of trade, equals the ratio between the export price

and the exogenous world market price of goods and services. An increase in the relative

price reflects a deterioration of external competitiveness, which depresses exports.

32



Estimation results Estimation results of equation (7) are given in column LR1 in

Table 7.18 We could not find valid instruments and therefore we prefer the OLS-results.

We find a dominating effect of world trade (0.66) compared to output of the market sector

(0.34).19 The elasticity of the relative price (rp) is significant but is considered too small

for the Netherlands (−0.54). Imbs and Mejean (2017) show that estimation on aggregate

data, as we do, results in lower elasticities than estimation on bilateral sectoral trade data,

due to a heterogeneity bias. Imbs and Mejean (2010) report an overview of trade elasticity

estimations of a broad range of countries (but without the Netherlands).20 The estimated

price elasticities of exports of European countries range from -1.5 in Germany to -4 in

Spain. We fix in column LR2 the long-run price elasticity at the lower bound of -1.5. As

a result, the long-run effect of world trade increases, while the error correction coefficient

is insignificant and small (-0.03).

We now have to deal with another problem. An analysis of the residuals of LR2 shows

a structural break at 2007q1. This is clearly illustrated by plotting the ratio of the export

volume and world trade (bd/mw) in Figure 13. After a sharp decline, this ratio develops

more stable in the last years. A break in the trend of this series is identified in 2005q3. We

estimate the export equation on the subsample 2006q1-2019q4 to account for this break.21

We end up with the coefficients reported in the column LR3; fitted values and residuals

are given in Figure 14.22

18After we have smoothed peaks in the export volume in 2000q4 and 2015q1.
19When freely estimated, the restriction that the coefficients of mw and yms add up to one is rejected.
20Large trade elasticities are also reported in the Appendix of Freeman et al. (2022). The target elasticity

in the Delfi-model of DNB equals −1.77, estimated on the larger sample 1980q1-2016q4 (Berben et al.,

2018).
21Estimating on the sample starting in 2007q1 hardly affects the estimated coefficients.
22The restriction that the coefficients of mw and yms add up to one is not rejected.
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Figure 13: Ratio of exports of goods & services to relevant world trade (bd/mw)
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Figure 14: Fitted values and residuals of long-run equation ln bd
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Table 7: Estimation results exports of goods & services

LR 1a LR 2a LR 3b SR 3b

constant 3.691∗∗∗ 5.324∗∗∗ 4.256∗∗∗

(0.168) (0.235) (0.483)

lnmw 0.658∗∗∗ 0.914∗∗∗ 0.745∗∗∗

(0.026) (0.036) (0.076)

ln rpd −0.540∗∗∗ −1.500 −1.500

(0.064)

ln(bd−1/b
d∗
−1) −0.068

(0.051)

∆ lnmw 0.663∗∗∗

(0.117)

∆ ln rpd −0.132

(0.079)

R2 0.975 0.912 0.881 0.284

Adj. R2 0.974 0.910 0.874 0.241

Num. obs. 96 96 56 55

RMSE*100 3.395 6.291 4.942 1.567

ADF p < 0.010 < 0.010 < 0.010 < 0.010

KPSS p 0.080 0.563 0.796 0.678

LB(1) p 0.000 0.000 0.000 0.074

LB(4) p 0.000 0.000 0.000 0.476

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

a Sample 1997q1-2019q4; b 2006q1-2019q4.



6.1.2 Short-run

The specification of the ECM is:

∆ ln bdt = ρ ln(bdt−1/b
d∗
t−1) + γ1∆ lnmw

t + γ2∆ ln(pbdt /pwt ) + ϵt (8)

The error correction term equals the lagged residual of the long-run equation (LR3).23

Results are given in the last column of Table 7. We find a significant world trade effect

but a insignificant error correction coefficient and price effect in the short run. The

corresponding fit is presented in Figure 15.

Figure 15: Fitted values and residuals of short-run ∆ ln bd

2006 2008 2010 2012 2014 2016 2018 2020

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04

obs
fitted

2006 2008 2010 2012 2014 2016 2018 2020

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

0.
04

23Estimation might suffer from an endogeneity problem of the relative price. We experimented on the

full sample by instrumenting the growth rate of the domestic export price by the growth rate of effective

labour costs, and the growth rate of the energy price. Following the diagnostic tests, the hypothesis of

weak instruments is rejected; OLS is not consistent and the hypothesis of valid instruments is not rejected.

IV-estimation results in a small, insignificant price elasticity, without affecting much the value of the other

coefficients. We decided to use the OLS-coefficients.
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6.2 Re-exports

We estimate the same specifications (7) and (8), where the volume and price are replaced

by br and pr, respectively.24

Estimation results are given in Table 8. We find for long-run equation LR1 a world

trade elasticity that is significantly large than one (meaning that the output elasticity

is negative) and a significant price elasticity. However, inspection of the residuals shows

breaks at 2005q3 and 2013q4. This is supported by the ratio of the volume of re-exports

to world trade in Figure 16. We observe a strong increase of this ratio during the first

years; then a stabilisation in a second sub-period, followed by a continuation of a rising

trend during the last years. A breakpoint analysis results in trend breaks in 2006q1 and

2013q2. In this case, we account in column LR2 for the two (latter) breaks by extending

the equation with two period dummies and three period-specific time trends. As a result,

the world trade coefficient becomes not significantly different from one, but this is going

at the expense of a smaller price elasticity. We impose the restriction β1 = 1 since it

seems plausible that capacity restrictions are less binding for re-exports. As expected,

this restriction hardly affects the other coefficients in the final LR3. The fit is presented

in Figure 17.

The results of the corresponding short-run equation are given in the last column. We

find a significant, large error correction coefficient, a strong response to changes in world

trade and an inelastic response to price changes (p = 9.6%). Fitted values and residuals

are presented in Figure 18.

Figure 16: Ratio of re-exports to world trade (br/mw)
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24We do not use an IV estimator, since endogeneity is less a problem for this type of exports.
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Table 8: Estimation results re-exports (1996q1-2019q4)

LR 1 LR 2 LR 3 SR 3

constant 8.063∗∗∗ 5.696∗∗∗ 4.981∗∗∗

(0.307) (0.809) (0.020)

lnmw 1.427∗∗∗ 1.104∗∗∗ 1.000

(0.048) (0.118)

ln rpr −0.915∗∗∗ −0.474∗∗∗ −0.465∗∗∗

(0.091) (0.070) (0.069)

dummy period 2 0.363∗∗∗ 0.381∗∗∗

(0.042) (0.037)

dummy period 3 −0.063 −0.039

(0.065) (0.059)

trend 1 0.007∗∗∗ 0.008∗∗∗

(0.001) (0.001)

trend 2 −0.001 −0.000

(0.001) (0.001)

trend 3 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001)

ln(br−1/b
r∗
−1) −0.330∗∗∗

(0.084)

∆ lnmw 1.435∗∗∗

(0.112)

∆ ln rpr −0.160∗

(0.095)

R2 0.989 0.997 0.997 0.592

Adj. R2 0.989 0.997 0.997 0.579

Num. obs. 96 96 96 95

RMSE*100 4.755 2.535 2.546 1.969

ADF p 0.056 < 0.010 < 0.010 < 0.010

KPSS p 0.078 0.901 0.917 0.402

LB(1) p 0.000 0.000 0.000 0.794

LB(4) p 0.000 0.000 0.000 0.812

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1; the 3 sub-periods are determined by the breaks 2006q1 and 2013q2.



Figure 17: Fitted values and residuals of long-run equation ln br
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Figure 18: Fitted values and residuals of short-run equation ∆ ln br
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6.3 Exports of energy

Since the export price of energy hardly deviates from the world market price of energy,

the energy price is expressed relative to the world price of goods and services to keep the

equation homogenous in prices (ln rpe = ln(pbe/pw)). The relative price is not significant

in long-run equation LR1 in Table 9 and is therefore dropped in LR2. The price elasticity

is small and significant in the accompanying short-run equation SR2. The effect of world

trade is large both in the long run and short run. The corresponding fitted values and

residuals are given in Figures 19-20.

Table 9: Estimation results energy exports (1996q1-2019q4)

LR 1 LR 2 SR 2

constant 2.561∗∗∗ 2.165∗∗∗

(0.598) (0.392)

lnmw 0.768∗∗∗ 0.706∗∗∗

(0.092) (0.060)

ln rpe −0.037

(0.042)

ln(be−1/b
e∗
−1) −0.128∗∗∗

(0.039)

∆ lnmw 0.849∗∗∗

(0.234)

∆ ln rpe −0.115∗∗

(0.056)

R2 0.830 0.829 0.177

Adj. R2 0.825 0.823 0.150

Num. obs. 96 96 95

RMSE*100 10.400 10.443 3.888

ADF p 0.021 0.017 < 0.010

KPSS p 0.180 0.162 0.311

LB(1) p 0.000 0.000 0.182

LB(4) p 0.000 0.000 0.175

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Figure 19: Fitted values and residuals of long-run equation ln be
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Figure 20: Fitted values and residuals of short-run equation ∆ ln be
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7 Imports

We discuss the estimation of equations of three types of imports: import of (non-energy)

goods and services, imports for re-exports and import of energy.

7.1 Imports of goods and services

Imports depend on a measure of effective import demand (mvd) and the relative import

price.25 Effective import demand is defined as a weighted sum of consumption, investment

(of market and non-market sectors), government spending (on goods & services and trans-

fers in kind) and exports of domestically produced goods and services, where the weights

are average import intensities of the demand categories:

mvdt = 0.43ct + 0.58ims
t + 0.18(iplt + ikwt + iwo

t ) + 0.19(gsnt + gmt ) + 0.41bdt (9)

The relative price is a weighted average of the relative import price of the demand cate-

gories:

rpmd
t =

pmd
t

mvdt

(
0.43ct
pct

+
0.58ims

t

pims
t

+
0.18iplt

piplt

+
0.18ikwt
pikwt

+
0.18iwo

t

piwo
t

+
0.19(gsnt + gmt )

pgt
+

0.41bdt
pbdt

)
(10)

We impose the homogeneity restriction that the coefficient of mvd equals one in the target

equation.26 The restricted long-run equation is:

lnmd∗
t = β0 + lnmvdt + β2 ln rp

md
t (11)

Estimation results in column LR1 in Table 10 show a significant price elasticity. However,

the error correction coefficient in the accompanying short-run equation SR1 is small and

insignificant. When we perform a breakpoint analysis of the residuals of LR1, we find a

break in 2010q4. Figure 21a shows a rising trend in the observed ratio of imports. Figure

21b suggests that the break is related to a fall in the relative import price during the first

years, followed by a more stable development after the break.

Therefore, we allow that both the constant term and price elasticity in the target

equation differ in quarters before and after 2010q4. The import equations are now specified

as:

lnmd∗
t = β0 + lnmvdt + (β2 + β3per2t) ln rp

md
t + β4per2t (12)

∆ lnmd
t = ρ ln(md

t−1/m
d∗
t−1) + γ1∆ lnmvdt + γ2∆ ln rpmd

t + ϵt (13)

25We have smoothed peaks in the import volume in 1996q4, 2015q1 and 2015q2.
26When we estimate the equation freely, the coefficient of mvd is significantly larger than one (β1 =

1.67(0.03)), while the price elasticity is significantly positive (β2 = 0.57(0.09)).
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Figure 21: Ratio of imports of goods & services to effective demand (md/mvd) and the

relative price (rpmd)
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with per2 = 1 starting in 2010q4. We find in column LR2 that the price elasticity is

significantly larger in the second period (β2 + β3 = −1.6). The resulting error coefficient

in SR2 is now larger and significant. The short-run response to effective demand is elastic

and the price elasticity is insignificant. Long-run and short-run fitted values and residuals

are given in Figures 22-23, respectively.
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Table 10: Import equation Goods and Services (1996q1-2019q4)

LR 1 SR 1 LR 2 SR 2

constant −0.347∗∗∗ −0.402∗∗∗

(0.007) (0.005)

lnmv 1.000 1.000

ln rpmd −1.056∗∗∗ −0.550∗∗∗

(0.135) (0.073)

ln rpmd ∗ per2 −1.079∗∗∗

(0.315)

per2 0.115∗∗∗

(0.007)

ln(md
−1/m

d∗
−1) −0.034 −0.157∗∗∗

(0.025) (0.049)

∆ lnmv 1.436∗∗∗ 1.426∗∗∗

(0.106) (0.101)

∆ ln rpmd −0.042 −0.089

(0.097) (0.095)

R2 0.920 0.619 0.981 0.650

Adj. R2 0.918 0.607 0.981 0.639

Num. obs. 96 95 96 95

RMSE*100 5.632 1.322 2.731 1.267

ADF p 0.244 < 0.010 < 0.010 < 0.010

KPSS p < 0.001 0.106 0.212 0.329

LB(1) p 0.000 0.021 0.000 0.057

LB(4) p 0.000 0.015 0.000 0.026

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. per2 = 1 in 2010q4-2019q4



Figure 22: Fitted values and residuals of long-run equation lnmd
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Figure 23: Fitted values and residuals of short-run equation ∆ lnmd
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7.2 Imports for re-exports

We cannot estimate equations for these imports since quarterly data are not available.

Target imports (excluding energy) are linked to re-exports using the average import in-

tensity: mr∗
t = 0.9brt . We fix the error coefficient ad-hoc at 0.3 and the short-run elasticity

of br at its long-run value:

∆ lnmr
t = −0.3 ln(mr

t−1/m
r∗
t−1) + 0.9∆ ln brt + ϵt (14)

7.3 Imports of energy

We do not estimate the target equation of energy imports. Target energy import is defined

as the sum of the energy use in the production of six categories (mainly energy export be),

fixing the intensities at average values:27

me∗
t = 0.027ct + 0.012ims

t + 0.004(gsnt + gmt ) + 0.038bdt + 0.725bet (15)

The implied fitted values and residuals are presented in Figure 24.

The short-run equation is specified as:

∆ lnme
t = ρ ln(me

t−1/m
e∗
t−1) + γ1∆ ln bet (16)

The estimation results in Table 11 show a large adjustment speed and a positive response

to the growth in energy exports. The fitted values and residuals are given in Figure 25.

Figure 24: Fitted values and residuals of long-run equation lnme
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27We have smoothed a peak in the import volume in 1996Q4.
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Table 11: Short-run import equation energy (1996q1-2019q4)

ln(me
−1/m

e∗
−1) −0.304∗∗∗

(0.066)

∆ ln be 0.366∗∗∗

(0.072)

R2 0.352

Adj. R2 0.338

Num. obs. 95

RMSE*100 2.985

ADF p < 0.010

KPSS p 0.287

LB(1) p 0.004

LB(4) p 0.027

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Figure 25: Fitted values and residuals of short-run equation ∆ lnme
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8 Wages

We estimate a wage equation for the market sector, using the polynomical adjustment cost

(PAC) approach of Tinsley (2002). This approach is prominently featured in the FRB/US

model (Brayton et al 2000) and in ECB-BASE (Angelini et al. 2019).

The PAC approach results in an extension of the error correction specification. Esti-

mation of the wage equation proceeds in three steps:

1. Long-run (co-integration) relationship estimated by OLS.

2. Forecasting relationships for the determinants of wages estimated in a VAR model

with a limited number of core variables.

3. Short-run relationship estimated as an error-correction model with extensions for

expectation effects and auxiliary contemporaneous effects. In this step, we estimate

a separate short-run relationship for the wages of employees, for which we do allow

for expectation effects, and for the incomes of self-employed, for which we use the

simple error-correction model instead of a PAC.

The wage equation is estimated with quarterly data for the period 1996q1-2019q4.

Results for the long-run relationship, the VAR and the short-run wage equations are

reported in Section 8.1, 8.2 and 8.3, respectively.

8.1 Long-run equation

The target labour income share depends linearly on unemployment, the replacement rate

and the tax wedge.28 Wages grow one-to-one with labour productivity (hl) and the pro-

ducer price level (py), since the model needs to converge to a constant labour income

share in the long run. We have experimented with non-linear versions of the wage equa-

tion, including non-linearity at the zero lower bound of the unemployment rate and an

interaction term between the replacement rate and unemployment. The resulting esti-

mates either prove almost linear or implausible. Besides, we have also experimented with

a Phillips-curve wage equation, which did not lead to an improvement of the results. We

estimate the long-run specification:

ln pl∗,ms
t = β0 + lnhlt + ln pyt + β1ut + β2 ln t

w
t + β3 ln rrt + β4D09q2 + β5S05q4−11q3 (17)

The dependent variable in the long-run wage equation is the (log) nominal wage cost

per hour (pl∗,ms). This wage cost includes the income of both employees and self-employed,

28The tax wedge is defined as the ratio between the nominal labour cost and the nominal net wage. The

replacement rate equals the ratio between the net unemployment benefit and the net wage.
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and no distinction is made between contract wages and incidental wages. For the calcula-

tion of wage costs per hour and labour productivity per hour, a filtered series for the ratio

of hours per person is used.29

Looking at the data, we need to account for two developments. First, a dummy for the

second quarter of 2009 (D09q2) is included in the specification, to account for the large drop

in productivity due to the credit crisis. Second, we observe in Figure 26 that the labour

income share has not been constant over time. Since the other variables in this model

cannot explain the development of the labour income share, a step dummy is included for

the middle of the sample period (S05q4−11q3). The step dummy gives a temporary decrease

in the constant between 2005q4 and 2011q3.

Figure 26: Labour income share (1996q1-2019q4)
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The coefficients of the replacement rate (rr) and the tax wedge (tw) cannot be robustly

estimated. The replacement rate falls linearly during the sample period, as shown in Figure

27, such that free estimation would result in this coefficient picking up all other possible

explanations for the decline in the labour income share. For that reason, the elasticity

with respect to the replacement rate and tax wedge are fixed according to the empirical

literature that exploits the variation over countries (see Folmer, 2009).

The coefficient of the unemployment rate (u) is significantly estimated at -1.075, which

29The main reason for doing this is to avoid spurious correlation between wage costs per hour and labour

productivity per hour.
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Figure 27: Replacement rate and tax wedge (1996q1-2019q4)
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is smaller than in Saffier 2.1. This is supported by recent findings on a decreasing impact

of unemployment on wages and on wage growth falling behind with economic growth (see

for example Bonam et al., 2018).

Table 12 shows the estimation results for the long-run wage equation. The coefficients

for the producer price, labour productivity, replacement rate and tax wedge are given for

completeness, but are calibrated rather than estimated. Fitted values (left) and residuals

of the long-run equation are given in Figure 28.

Figure 28: Fitted values and residuals of LR equation
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Table 12: Estimation results long-run wage equation (1996q1-2019q4)

OLS

constant (β0) −0.569∗∗∗

(0.007)

lnhlt 1

ln pyt 1

u (β1) −1.075∗∗∗

(0.137)

ln twt (β2) 0.25

ln rrt (β3) 0.2

D09q2 (β4) 0.051∗∗∗

(0.016)

S05q4−11q3 (β5) −0.051∗∗∗

(0.004)

R2 0.992

Adj. R2 0.992

Num. obs. 96

RMSE*100 1.561

ADF p < 0.010

KPSS p 0.002

LB(1) p 0.000

LB(4) p 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



8.2 VAR

The VAR explaining the wage expectations is built up in three steps. First, the core VAR

in the five variables yt = GAP NL, CPI NL, RK EA, GAP EA and CPI EA is set up.

This is documented in Section 2.

Second, three explanatory variables (xt = hlt, p
y
t , ut) are forecast on the basis of the

”Dutch” variables in the core VAR and an autoregressive term:30

∆xt = γ0 + γ1∆GAP NLt−1 + γ2∆CPI NLt−1 + γ3∆RK EAt−1 + β4∆xt−1 (18)

Third, the forecast of the target for pl,ms
t is calculated using the parameters from the

long-run equation.

As individual VAR coefficients are not particularly informative, we illustrate the per-

formance of the VAR forecast with forecast figures for the three determinants of the wage

cost and the wage cost itself.31

30Note that the VAR is estimated with data until 2016q4.
31These are ”quasi forecasts” because the parameters have been estimated using the whole sample, not

only the part that was known at the moment the forecast starts.
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Figure 29: VAR forecasts, Wage equation
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8.3 Short-run equation

The dynamics of wages of employees and self-employed are modeled and estimated sepa-

rately. The wage cost of employees responds very differently to unemployment, produc-

tivity growth and consumer price inflation. To estimate the separate dynamic equations,

we first calculate the long-run wage for employees and self-employed from the uniform

long-run wage. In the sample, wages per hour of employees are on average 9% higher than

the uniform target wage. The long-run wage of employees is hence given by:

ple∗,ms
t = 1.09pl∗,ms

t (19)

Similarly, the long-run wage of self-employed is on average 68% of the uniform wage:

pls∗,ms
t = 0.68pl∗,ms

t (20)

8.3.1 Short-run equation for employees (PAC)

For the dynamics of employee wages, the PAC model is estimated as an ECM equation that

is extended with an expectations term zt. This term is calculated from the forecast of the

target variable and the other estimated parameters. Estimation is therefore iterative; zt is

calculated with given parameters and added as a time-varying offset for the estimation of

an updated set of parameters.32 This proceeds until convergence. Our PAC specification

has degree m = 1, that is, without autoregressive terms.

The basic PAC specification is extended with auxiliary variables to improve the data

fit. Next to the error correction term and the expectations term, the growth rates of labour

productivity, consumer prices and the employee and employer tax wedge are included. The

estimated PAC specification is:

∆ ln ple,ms
t = α0 ln

ple,ms
t−1

1.09pl∗,ms
t−1

+ α1∆ ln pct + α2∆ lnhlt + α3∆tww
t + α4∆twl

t + zt + ϵt (21)

Employee wage costs respond significantly to current changes in the tax wedge of

employers (α3). We could not find a plausible estimate of the effect of changes in the tax

wedge of employees. The coefficient is fixed at the same value as in the long run, such

that the incidence of tax rates in the short run is the same as in the long run.

32The expectations term, zt, can be expressed as

zt =

∞∑
s=0

fs∆ple∗,ms
t+s

The expected changes in the target, ∆ple∗,ms
t+s , are calculated by the VAR, the associated weights are

functions of the estimated α’s in the dynamic equation.
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Table 13 shows the estimation results. The coefficient for employee tax wedge is given

for completeness, but is calibrated rather than estimated.

Table 13: Estimation results dynamic wage equation employees (1996q1-2019q4)

PAC

ln(ple,ms
−1 /ple∗,ms

01 ) (α0) −0.109∗∗∗

(0.038)

∆ ln pc (α1) 0.207∗

(0.121)

∆ lnhl (α2) 0.153∗
(0.086)

∆ ln tww (α3) 0.611∗∗

(0.270)

∆ ln twl (α4) 0.25

R2 0.613

Adj. R2 0.595

Num. obs. 93

RMSE*100 0.618

ADF p < 0.010

KPSS p 0.198

LB(1) p 0.401

LB(4) p 0.587

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Fitted values (left) and residuals of the dynamic equation for employee wages are given

in Figure 30.

Figure 30: Fitted values and residuals of dynamic equation for employees
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8.3.2 Short-run equation for self-employed (ECM)

The growth rate of labour income of self-employed is modeled as a ECM specification

with an autoregressive term. We did not find strong evidence in favour of effects of

expectations and tax rate changes. The estimated error correction coefficient (α0) is small

and insignificant. The growth rate of the income of self-employed is strongly correlated

with wage growth in the previous quarter.

∆ ln pls,ms
t = α0 ln

pls,ms
t−1

0.68pl∗,ms
t−1

+ α1∆ ln pls,ms
t−1 (22)

Table 14 shows the estimation results. Fitted values (left) and residuals of the dynamic

equation for wages of self-employed are given in Figure 31.
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Table 14: Estimation results dynamic wage equation self-employed (1996q1-2019q4)

PAC

ln(pls,ms
−1 /pls∗,ms

01 ) (α0) −0.014

(0.010)

∆ ln pls,ms
−1 (α1) 0.918∗∗∗

(0.047)

R2 0.813

Adj. R2 0.808

Num. obs. 94

RMSE*100 0.532

ADF p < 0.010

KPSS p 0.350

LB(1) p 0.000

LB(4) p 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Figure 31: Fitted values and residuals of dynamic equation for self-employed
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9 Prices

We estimate three core equations for prices of use categories: consumption of private

households, investment and exports (excluding energy and re-exports). In order to capture

the effect of expectations, we set up our estimation in the polynomial adjustment cost

(PAC) approach of Tinsley (2002), which is prominently featured in the FRB/US model

(Brayton et al., 2000) and in ECB-BASE (Angelini et al, 2019).

The PAC approach results in an extended error-correction type of estimation equations.

Estimation proceeds in three steps:

1. Long-term (co-integration) relationship estimated by OLS.

2. Forecasting relationships for the determinants of the prices of interest estimated in

a VAR model with a limited number of core variables.

3. Short-term relationship estimated as an error-correction model with extensions ac-

counting for expectation effects and auxiliary contemporaneous effects.

In the first step we estimate the long-term relationships of the three prices as a system,

using input prices, structural labour productivity and a linear trend for the macro mark-up

as explanatory variables (Section 9.2).

In the second step (Section 9.3), we estimate a VAR system based on interest rates,

inflation rates and the output gap, which provides us with forecasts for the prices of

interest (see Zimic and Marcelatti, 2017, for the general approach and Section 2, for the

implementation in Saffier 3.0).

In the third step (Section 9.4), we estimate the core PAC equations, using short-term

price and productivity changes and expected target changes as regressors.

The short-term coefficients used in Saffier 3.0 of Bettendorf et al. (2021) are docu-

mented in Table 19. Error correction terms for the consumption and export prices are

moderate and much lower than for investment. Short-term coefficients of the input prices

are in most cases in a reasonable range, but must occasionally be restricted to be non-

negative. The effect of productivity is always negative, as expected. Many short-term

coefficients are not significantly different from zero. This suggests scope for the improve-

ment of the estimation set-up. However, in our extensive specification search (see the

bullet items in Section 9.4) we were not able to find estimation equations with a better

performance.
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9.1 Data

• pit: log price index by use category (i = C, I,B), excluding indirect taxes

• pLet : log productivity-corrected wage

• pKt : log user cost of capital

• pMt : log import price index

• pEt : log energy price index

• ht: log index of structural labour productivity

Estimation period is 1996q1-2019q4. We lose some observations at the start of the period

when lags are involved.

9.2 Long-term equations

Each price is modelled as a weighted sum of the input prices:

pit = α0
i + sLi p

Le
t + sKi pKt + sMi pMt + sEi p

E
t + α1

i ht + α2
i t

• α0
i is a constant that accounts for price and trend normalisations.

• sLi , s
K
i , sMi , sEi are empirical value shares calibrated from the consolidated production

matrix. We have tried to estimate these coefficients as well, but failed to get estimates

in a plausible range.33

• α1
i captures an effect of productivity increase (“Baumol” effect, different productivity

developments by sector).

• α2
i is supposed to capture an effect of the economy-wide mark-up rate. This has

increased over time, but is highly endogenous. Therefore we “instrument” it with a

time trend.

33We also tried to estimate equations in which pMt has a double role as both input price (via α3
i ) and as

competitors’ price (via 1− α3
i ):

pit = α0
i + α3

i

(
sLi p

Le
t + sKi pKt + sMi pMt + sEi p

E
t

)
+ (1− α3

i )p
M
t + α1

iht + α2
i t

However, the estimated values of α3
i were not in a plausible range.
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• The three long-term equations for pCt , pBt , pIt are estimated as a system with a

restriction on the α1
i parameters:

wC
h α

1
C + wB

h α
1
B + wI

hα
1
I = 0

where the wi
h weights are value shares in production.

Table 15 shows the long-term estimation results. Coefficients for the input prices are given

for completeness, but are calibrated rather than estimated.

The following graphs show the fit and the residuals of the long-term equations.

Table 15: Prices long-term

PC lt PB lt PI lt

const (α0) −0.873∗∗∗ −0.746∗∗∗ −1.147∗∗∗

(0.011) (0.012) (0.018)

prod (α1) 0.392∗∗∗ −0.334∗∗∗ −0.221

(0.046) (0.048)

mark-up (α2) −0.195 0.847∗∗∗ 0.355

(0.147) (0.159) (0.228)

PL 0.380 0.343 0.398

PK 0.158 0.194 0.097

PM 0.432 0.405 0.493

PE 0.030 0.058 0.012

R2 0.969 0.914 0.885

Adj. R2 0.969 0.912 0.883

Num. obs. 96 96 96

RMSE*100 1.720 2.116 2.232

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.471 0.384 0.870

LB(1) p 0.000 0.000 0.003

LB(4) p 0.000 0.000 0.000

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

9.3 VAR

The VAR explaining the price expectations is built up in three steps. First, the core VAR

in the five variables yt = GAP NL, CPI NL, RK EA, GAP EA and CPI EA is set up.
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Figure 32: Fit and residuals of the long-term price equations
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This is documented in Section 2.

Second, five explaining variables (xt = pLet , pKt , pMt , pEt , ht) are forecast on basis of

the “Dutch” variables in the core VAR and an autoregressive term:

∆xt = β0 + β1∆GAP NLt−1 + β2∆CPI NLt−1 + β3∆RK EAt−1 + β4∆xt−1

The constants in the four price equations are restricted so that the long-term growth rate

of all prices is the same. The constant in the labour productivity equation is restricted so

that the long-term growth rate is equal to the average growth in the sample.34

Third, the forecast of the targets for pCt , p
B
t , p

I
t is calculated using the parameters

from the long-term equations.

As individual VAR coefficients are not particularly informative, we illustrate the per-

formance of the VAR forecast with forecast figures for the five determinants and the three

prices to be explained.35

34Fixing the growth rate is not equivalent to fixing the parameter because of the autoregressive terms:

g = β0/ (1− β4).
35These are “quasi forecasts” because the parameters have been estimated using the whole sample, not

only the part that was known at the moment the forecast starts.
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Figure 33: Forecasts of the VAR variables Prices
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9.4 Short-term estimation: PAC

The PAC model is estimated as an ECM equation that is extended with one complex

expectations term (“zt”). This term is calculated from the forecast of the target variable

and the other estimated parameters. Estimation is therefore iterative: zt is calculated

with given parameters and added as a time-varying offset for the estimation of an updated

set of parameters.36 This proceeds until convergence.

The basic specification of the PAC equation is

∆pit = γ0 + γ1
(
pit − pi⋆t

)
+ γ2∆pLt + γ3∆pKt + γ4∆pMt + γ5∆pEt + γ6∆hrt + zt

Our specification search (documented in separate notes) resulted in the following choices:

• We estimates PACs of degree m = 1, i.e. without autoregressive terms.

• We use the raw wage pLt rather than the productivity-corrected wage.

• We use raw labour productivity hrt rather than structural (HP-filtered) productivity.

• We include a constant to capture the increasing trend in the mark-up.

• The equation for pCt is extended with a lagged term in the wage change: ∆pLt−1

• The equations for pCt and pBt are extended with dummy variables for the four quarters

of the crisis year 2009.

Table 16 shows the estimation results. To put the results in perspective, we also add tables

with pure ECM results (without the zt term) in Table 17 and PACs of degree m = 2 in

Table 18 (lagged difference of the dependent variable added as a regressor). Extending the

PAC to m = 2 does not improve the fit largely. The AR-coefficients themselves remain

insignificant and the other coefficients are robust. We therefore choose for the simpler

m = 1.

36The expectations term, zt can be expressed as

zt =

∞∑
s=0

fs∆pi⋆t+s

The expected changes in the target, ∆pi⋆t+i, are calculated by the VAR, the associated weights are functions

of the estimated γ’s. E.g. for m = 1 we have fs = γ1 [(1− γ1)β]
s ,where β is an exogenous discount factor.
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Figure 34: Fit and residuals of the short-term price equations
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Table 16: Prices short-term PAC unrestricted

PC st PB st PI st

γ0 0.001 0.000 −0.001

(0.001) (0.001) (0.003)

γ1 −0.063∗ −0.117∗∗ −0.693∗∗∗

(0.036) (0.053) (0.106)

∆pLt (γ2) 0.040 −0.100 0.265

(0.061) (0.108) (0.258)

∆pLt−1 0.141∗∗

(0.061)

∆pKt (γ3) 0.028 −0.002 0.020

(0.019) (0.035) (0.073)

∆pMt (γ4) −0.023 0.611∗∗∗ 0.133

(0.034) (0.059) (0.133)

∆pEt (γ5) 0.023∗∗∗ 0.020∗ 0.005

(0.007) (0.012) (0.028)

∆hr
t (γ6) −0.112 −0.105 −0.196

(0.079) (0.136) (0.269)

d 2009q1 −0.006 −0.030∗∗

d 2009q2 −0.020∗∗∗ −0.002

d 2009q3 0.000 0.016

d 2009q4 −0.001 −0.009

R2 0.550 0.702 0.425

Adj. R2 0.484 0.662 0.378

Num. obs. 94 94 94

RMSE*100 0.475 0.848 2.135

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.690 0.035 0.845

LB(1) p 0.696 0.160 0.864

LB(4) p 0.143 0.046 0.001

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



67

Table 17: Prices short-term ECM

PC st PB st PI st

γ0 0.002∗∗∗ 0.002 −0.002

(0.001) (0.001) (0.003)

γ1 −0.052 −0.103∗ −0.686∗∗∗

(0.037) (0.052) (0.105)

∆pLt (γ2) 0.069 −0.073 0.504∗

(0.062) (0.107) (0.256)

∆pLt−1 0.156∗∗

(0.061)

∆pKt (γ3) 0.039∗∗ 0.027 0.094

(0.020) (0.035) (0.073)

∆pMt (γ4) −0.008 0.653∗∗∗ 0.435∗∗∗

(0.034) (0.059) (0.132)

∆pEt (γ5) 0.027∗∗∗ 0.031∗∗∗ 0.016

(0.007) (0.012) (0.028)

∆hr
t (γ6) −0.095 −0.133 −0.212

(0.080) (0.135) (0.268)

d 2009q1 −0.006 −0.033∗∗

d 2009q2 −0.020∗∗∗ −0.000

d 2009q3 0.000 0.019∗

d 2009q4 −0.001 −0.007

R2 0.545 0.698 0.423

Adj. R2 0.479 0.659 0.377

Num. obs. 95 95 95

RMSE*100 0.481 0.847 2.129

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.284 0.193 0.623

LB(1) p 0.674 0.075 0.837

LB(4) p 0.131 0.050 0.001

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 18: Prices short-term PAC unrestricted, m = 2

PC st PB st PI st

γ0 0.001 0.000 −0.001

(0.001) (0.001) (0.003)

γ1 −0.066∗ −0.112∗∗ −0.687∗∗∗

(0.037) (0.052) (0.132)

∆pit−1 −0.074 −0.116 −0.008

(0.099) (0.072) (0.104)

∆pLt (γ2) 0.043 −0.093 0.268

(0.062) (0.107) (0.260)

∆pLt−1 0.145∗∗

(0.061)

∆pKt (γ3) 0.030 0.006 0.020

(0.020) (0.035) (0.074)

∆pMt (γ4) −0.021 0.579∗∗∗ 0.135

(0.034) (0.062) (0.134)

∆pEt (γ5) 0.023∗∗∗ 0.020∗ 0.004

(0.007) (0.012) (0.029)

∆hr
t (γ6) −0.102 −0.055 −0.196

(0.080) (0.139) (0.271)

d 2009q1 −0.007 −0.030∗∗

d 2009q2 −0.020∗∗∗ −0.004

d 2009q3 −0.001 0.013

d 2009q4 −0.001 −0.006

R2 0.554 0.710 0.425

Adj. R2 0.482 0.668 0.371

Num. obs. 94 94 94

RMSE*100 0.474 0.836 2.134

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.651 0.056 0.848

LB(1) p 0.868 0.493 0.851

LB(4) p 0.108 0.080 0.001

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1



9.5 Restrictions on short-term price coefficients

Negative effects of input prices on output prices do not make sense economically. Therefore

we restrict the short-term price coefficients to be positive. This applies to pM in the

consumption-price equation and to pL and pK in the export-price equation. As these

coefficients were only slightly and insignificantly negative in Table 16, the effect of the

restriction on the other parameters is small (see our preferred Table 19).
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Table 19: Prices short-term PAC restricted

PC st PB st PI st

γ0 0.001 −0.000 −0.001

(0.001) (0.001) (0.003)

γ1 −0.070∗ −0.124∗∗ −0.693∗∗∗

(0.035) (0.052) (0.106)

∆pLt (γ2) 0.032 0.265

(0.061) (0.258)

∆pLt−1 0.137∗∗

(0.060)

∆pKt (γ3) 0.027 0.020

(0.019) (0.073)

∆pMt (γ4) 0.603∗∗∗ 0.133

(0.058) (0.133)

∆pEt (γ5) 0.022∗∗∗ 0.018 0.005

(0.007) (0.011) (0.028)

∆hr
t (γ6) −0.107 −0.117 −0.196

(0.078) (0.125) (0.269)

d 2009q1 −0.008 −0.031∗∗

d 2009q2 −0.018∗∗∗ −0.003

d 2009q3 0.000 0.017∗

d 2009q4 −0.001 −0.007

R2 0.550 0.699 0.425

Adj. R2 0.490 0.667 0.378

Num. obs. 94 94 94

RMSE*100 0.477 0.853 2.135

ADF p < 0.010 < 0.010 < 0.010

KPSS p 0.650 0.061 0.845

LB(1) p 0.700 0.132 0.864

LB(4) p 0.120 0.028 0.001

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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