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Abstract in English 

It is well-known that co-payments in health insurance may increase social welfare by reducing 

moral hazard. Considerably less is known about the form co-payment schemes should ideally 

take. This paper investigates what co-payment rate and co-payment maximum characterize the 

optimal scheme, i.e. the scheme that achieves the highest level of social welfare, within the 

class of two-part co-payment schemes of which the second part features a zero rate. It also 

quantifies the welfare losses that correspond with sub-optimal co-payment schemes. 

The paper uses a model with optimizing households that are risk-averse, exercise price-

elastic demand and are aware of the kinks in their budget constraints. Numerical simulations 

with this model indicate that the optimal scheme combines a 80% rate with a maximum of 

about 600 euro. Sensitivity analysis shows that the maximum varies a lot with changes in basic 

parameters; the 80% value for the optimal co-payment rate is quite robust, though. The welfare 

losses that correspond to alternative co-payment schemes are generally quite small.  

 

Abstract in Dutch 

Het is bekend dat eigen betalingen in zorgverzekeringen welvaartsverhogend kunnen zijn omdat 

ze het oneigenlijk gebruik van zorgvoorzieningen beperken (moral hazard). Over de ideale 

vormgeving van eigen betalingen bestaat veel minder duidelijkheid. Dit onderzoek richt zich op 

de vormgeving van het optimale systeem van eigen betalingen binnen de groep van systemen 

die zich karakteriseren door één bijbetalingsvoet en bijbetalingsmaximum. Ook worden de 

welvaartsverliezen van niet-optimale systemen gekwantificeerd. 

Het onderzoek gebruikt een model met optimaliserende huishoudens die risico-avers zijn, 

prijsgevoelig en bewust van de vorm van hun budgetrestrictie. Numerieke simulaties met het 

model geven aan dat het optimale systeem van eigen betalingen een voet van 80% combineert 

met een maximum van 600 euro per verzekerde. Het maximum is vrij gevoelig voor keuzes van 

modelparameters; de optimale bijbetalingsvoet is echter vrij robuust. Welvaartsverliezen van 

niet-optimale systemen zijn relatief klein.  

 

Keywords: Moral Hazard, Deductibles, Co-payments 

JEL codes: D60, H21, I18 
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1 Introduction1 

Health insurance schemes are widespread. The unpredictable nature of medical consumption in 

a number of respects (timing, frequency, intensity, costs) makes it unthinkable that medical 

consumption would go uninsured (Arrow (1963)). Ideally, health insurance would take the form 

of payments that are only conditional on the health status of the insured (Blomqvist (1997)). 

Then, under certain conditions the first-best solution would be attainable. However, information 

on the health status of the insured is private, if it is available at all. This explains why health 

insurance typically takes the form of payments that are conditional on health expenditure. As a 

result, health insurance implies a moral hazard distortion
2
 and partial insurance will generally 

yield higher welfare than full insurance (Pauly (1968)). 

Indeed, many insurance schemes use co-payment elements. Often, co-payments take the 

form of proportional schemes, schemes which adopt a co-payment rate smaller than one 

(Robinson (2002)). Deductible schemes can also be found in a number of countries, in 

particular in the private insurance sector. But there are many other forms of co-payment 

schemes. Further, the classes of proportional schemes and deductible schemes are very 

heterogeneous, in terms of maxima and in terms of services for which co-payment is required, 

for example. 

Ideally, co-payment schemes are constructed such that they strike a balance between risk 

sharing and moral hazard. Hence, it is important to know what form co-payment schemes 

should ideally take. In particular, should we have co-payment rates somewhere between zero 

and one that are independent of the neediness of the insured? Should insurance schemes apply a 

co-payment maximum beyond which no further co-payments are required? Would it be optimal 

in general to apply more than one co-payment rate? Should co-payment rates be increasing or 

decreasing in the amount of health care spending? Quite surprisingly, though, these issues have 

rarely been discussed in the literature. 

This paper characterizes the form of the optimal co-payment scheme in the class of two-part 

co-payment schemes of which the second-part co-payment rate is zero. It adopts a social 

welfare function that is derived explicitly from the utility functions of households that are risk-

averse, price-responsive and aware of the nonlinearity of their budget constraints. Because of 

the nonlinearities in the model, we are unable to derive closed-form solutions. Therefore, we 

follow two approaches. First, we simplify the model to derive results on the basis of its 

analytical solution. Second, we solve the full model numerically. The numerical results reiterate 

 
1
 An earlier version of this paper has been presented at the 1997 European Workshop on Econometrics and Health 

Economics, at the 1997 NAKE Research day and at the 2005 IIPF Conference. Thanks are due to the participants at those 

meetings, to our discussants Kris de Jaegher and Erling Holmoy. Rob Waaijers processed individual income data to and 

generated a distribution of patient income. Further, we thank Eddy van Doorslaer, Bas Jacobs and three referees for useful 

suggestions.  Any remaining errors are the responsibility of the authors. 
2
 Actually, there are several types of moral hazard (see Zweifel and Manning (2000) for an overview). We restrict ourselves 

to the ex post type of moral hazard, which is the type that is most discussed in the literature. 
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the results from the analytical approach, but add an indication of the numerical configuration of 

the optimal co-payment scheme, of the differences across co-payment schemes and of the 

welfare losses that correspond to sub-optimal schemes. 

There is some earlier literature on the optimal form of co-payment schemes. Arrow (1963) 

and Raviv (1979) discussed the optimality of deductibles, but neglected the price-

responsiveness of health services demand. Feldstein (1973) and Feldman and Dowd (1991) did 

account for moral hazard considerations, but assumed that the budget constraints of households 

are linear. Keeler et al. (1977) and Ellis (1986) explored health care demand in case of a 

nonlinear budget constraint. The former of these two articles touched upon the optimality of 

different co-payment schemes. Unlike our analysis however, it did not connect the social 

welfare function with the utility function from which health care demand is derived. This 

renders it difficult to assess on a consistent basis the welfare implications of different co-

payment schemes. 

The analysis by Manning and Marquis (1996) made an improvement precisely on this point. 

Their analysis of the optimal trade-off between risk pooling and moral hazard is based on 

estimates of risk aversion and the price elasticity of demand, which ultimately are based on one 

model of  household behaviour - a model that explains both the demand for health care and that 

for health insurance. However, they were unable to find plausible estimates of the optimal stop 

loss with the data they used. According to the authors, this may be due to rather imprecise 

estimates of the risk aversion of households. 

Blomqvist (1997) characterizes on a general level the form of the optimal non-linear co-

payment scheme. His analysis applies the theory of optimal taxation along the lines of Mirrlees 

(1971) to the problem of optimal health insurance without imposing any restrictions on the form 

of this scheme. Our approach is more limited as we restrict the analysis to schemes with two 

linear segments of which the second segment features a zero rate. The reason for doing so is 

that in reality co-payment schemes often feature a small number of segments only, resembling 

more our two-part scheme than Blomqvist’s continuous scheme.
3
 

The structure of our paper is as follows. Section 2 sets up a general model of health care 

demand with a kinked budget constraint. Section 3 presents a simple version of this model in 

which medical need obeys a two-spike distribution function. This version specifies a Ramsey 

rule for the optimal co-payment scheme and finds that deductibles can never be optimal. 

Section 4 adopts a more detailed version of the model using a more realistic distribution of 

medical need. An analytical solution can then no longer be obtained and we have to rely on 

numerical simulations. Section 5 describes how we have calibrated this version of the model on 

data for the Netherlands. The simulations in section 6 reiterate the result suggested by the 

Ramsey rule: within the class of co-payments schemes we consider a deductible scheme is 

 
3
 It is an interesting question how to explain this phenomenon. One possible explanation may relate to administration costs. 

The costs of running a co-payment scheme may be strongly increasing in the complexity of the scheme. 
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suboptimal. We calculate that the co-payment rate that corresponds with the optimal co-

payment scheme is in the order of 80%. Section 7 explores the sensitivity of our conclusions to 

changes in an number of important parameters. Section 8 contains concluding remarks.
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2 A model of health care consumption 

The representative patient
4
 has quadratic preferences for the consumption of health care, 

denoted z, and that of other, non-medical services, denoted c. Using u to denote direct utility, 

the consumer’s direct utility function can be written as follows: 

0,0,

2

2
12

2
1

≥>

−+−=

zmc

mzc zzccu

εεε

εεε

 (2.1) 

We postulate the quadratic form for the relation between utility and medical consumption 

mainly for two reasons. First, to ensure that the demand for medical services is always finite, 

i.e. also in the case of a zero out-of-pocket price
5
. Second, for analytical tractability. The 

quadratic form allows us to express expected utility as a function of the first and second 

moments of variables. This allows us to derive the optimal co-payment structure by means of 

calculation rather than stochastic simulation. 

In addition, the quadratic form has some attractive properties. It implies that the price 

elasticity of health care demand decreases if the health status of the patient worsens. Such a 

relationship is not only intuitive, it is also backed by empirical evidence (Wedig (1988)). 

Furthermore, this price elasticity is increasing in the co-payment rate, again a feature for which 

there is empirical evidence (Rosett and Huang (1973), Phelps and Newhouse (1974), Newhouse 

and the Insurance Experiment Group (1993)). 

Equation (2.1) shows that we adopt the quadratic form also for the relation between utility 

and the consumption of non-medical services, but to avoid that the marginal utility of 

non-medical products becomes non-positive, we impose that cε  is not “too high”
6
. 

The parameter zε  differs between patients. This reflects patient heterogeneity in terms of 

their need of health care (the marginal utility of medical consumption equals zmz εε − ). 

Underlying is a state-dependent health production function in which the value of medical care is 

a decreasing function of the health status of the patient: the worse the health of a patient, the 

more beneficial will be medical intervention. The other parameters in equation (2.1) are the 

same for all consumers. For brevity, we do not index zε  explicitly. 

The corresponding budget constraint is piecewise linear. We distinguish two linear pieces: 

 

 
4
 Throughout the paper, we will talk about patients for simplicity, although, as we will see below, it may be the case that a 

patient decides not to consume any medical care. 
5
 The standard utility function with positive marginal utility everywhere does not yield an interior solution in case the out-of-

pocket price is zero. 
6
 With the budget constraint given below, it can be derived that this implies that  εc < 1/(y-p). 
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tbmztzbpyc
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−−−−=

≤≤−−=

 (2.2) 

where y denotes the consumer's gross income and p denotes the health insurance premium. 1b  

and 2b  are co-payment rates and t is the producer price of medical services, so tb1 and tb2  

stand for out-of-pocket prices. m  refers to the maximum of co-payments that are collected 

using rate 1b . 

The household problem is to maximize (2.1), subject to (2.2). This problem is complicated 

due to the endogeneity of the kink in the budget constraint, i.e. the household’s choice for z 

defines the out-of-pocket price of his marginal unit of medical consumption. This makes it 

impossible to derive an analytical solution for the optimal co-payment rate and maximum 

without further simplification. 

To make any progress, the next section simplifies the model by assuming that zε  can take 

only two values: 
1z

ε and 
2zε . Effectively, this reduces the model to one with two types of 

consumers who face linear budget constraints with different slopes. Within this simplified 

setting, we are able to show that deductibles will never be part of the optimal co-payment 

scheme. 

Subsequent sections elaborate the full model numerically, assuming that consumers are 

defined by their value of zε , which is drawn from a mixture of three distributions (two 

lognormal distributions and a mass point at zero). All consumers then face the same nonlinear 

budget constraint. Yet, the result that deductibles are sub-optimal is also found in this version of 

the model. 

Before continuing, we make some additional comments about the interpretation of the 

model: about the resolution of uncertainty before patients make their consumption decision, 

about the role of risk sharing, about the impossibility for the health insurance industry to 

implement the first-best solution and about the absence of income heterogeneity. 

As to the first point, our model assumes that health consumption decisions are made under 

certainty. This does certainly not hold true for all health demand decisions. The relevance of 

this assumption may be restricted however for two reasons. First, uncertainty about the future 

health status can affect the price of health care only for those who have not filled their co-

payment maximum yet. Second, autocorrelation in medical shocks at the individual level 

reduces uncertainty for part of the patient population. The chronically ill are an obvious 

example. Feenberg and Skinner (1994) indicate that this type of autocorrelation is far from 

negligible. 

The second point to make is that the model is about risk sharing, not distribution. Ex post, 

i.e. after the realization of health shocks, patients differ in their health status, their demand for 
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health care, their consumption of non-medical services and their utility. The health insurance 

scheme then redistributes across patients. Ex ante however, patients are unknown whether they 

will be hit by a health shock and, if so, how intense this shock will be. Ex ante, therefore, all 

patients are equal. On an ex ante basis, thus, the insurance scheme implements risk sharing. As 

we assess the welfare implications of co-payment schemes on the basis of (ex ante) expected 

utility, it is risk sharing that, in addition to moral hazard, determines the welfare attached to 

different co-payment schemes. 

We assume that only physicians can observe the health status of patients. They share this 

information with the patient but not with the insurer. Looking at the health care demand 

equation however, the health care demand exercised by patients reveals information about their 

health status. Still, this does not mean that the information on health status is public. There are a 

number of other factors that drive health care demand and that make identification of the health 

status of the patient impossible. We have chosen not to model these other factors explicitly as 

this would add little to our analysis. 

Our model could easily be extended to one with heterogeneity across patients in terms of 

income. We have not done so in order to focus on moral hazard and risk, without having to 

bother about the issue of distribution. In an integral assessment of the effects of a typical co-

payment scheme, such an extension would probably be very useful, however. 
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3 A simplified version 

This section presents a simplified version of the model in the previous section. In particular, it 

specifies the frequency distribution for zε as a two-point mass distribution with mass points 

1z
ε and 

2zε , with 
2zε > 

1z
ε  > t . As we will see, the last inequality ensures that in both states 

of nature patients consume a non-zero amount of medical care ( 0, 21 >zz ). The two values of 

zε correspond with the two parts of the budget constraint. In addition, the two values deviate 

sufficiently from the value of zε that corresponds with the kink in the budget constraint. To 

assess the precise implications of this must wait till the next section. In addition, this section 

puts cε  at zero. In this case the utility function is linear in non-medical consumption and the 

income elasticity of health care demand equals zero. 

2

2
1 zzcu mz εε −+=  (3.1) 

Together, these assumptions imply that different co-payment rates apply to patients who are 

relatively healthy ( zε  = 
1z

ε ) and to patients who are relatively sick ( zε =
2zε ). In particular, 

the co-payment rate 1b  applies to patients with zε  = 
1z

ε and 2b  applies to patients that have 

zε  = 
2zε . The budget constraints for the simplified version of our model thus read as follows: 

2

1

1
2

1

zz

zz

tb

m
ztbmpyc

tzbpyc

εε

εε

=





−−−−=

=−−=

 (3.2) 

Optimization of (3.1) under the budget constraints in (3.2) gives us the equations for health care 

consumption: 

m

z

m

z

tb
z

tb
z

ε

ε

ε

ε

2

1

2
2

1
1

+−
=

+−
=

 (3.3) 

Inserting the demand for health care into the corresponding budget constraint (3.2) gives the 

demand for non-medical products. Substitution of the two types of demand into (3.1) gives us 

the indirect utility functions that expresses the maximum attainable utility as a function of the 

relevant co-payment rate: 
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where v denotes indirect utility. 

If we now normalize the size of the population to one and use E1 and E2 to denote the 

frequency of the respective population mass points, social welfare, to be denoted V, can be 

defined as follows: 

2211 vEvEV +=  (3.5) 

Health insurance premiums are levied in order to finance the health care subsidies. Under the 

assumption of zero profits, the expression for health insurance premiums is straightforward: 

( ) ( ) ( ) 











−−+−+−=
tb

m
ztb
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m
tbEztbEp

1
22

1
12111 111  (3.6) 

The optimal co-payment structure now follows from the maximization of the social welfare 

function, subject to the constraint that the amount of health insurance premiums is exogenously 

given. Note that both V and p are functions of three policy instruments, namely 1b , 2b  and m . 

Without loss of generality, we can let m  be a function of 1b  and 2b  by specifying m  as 

)/( 211 bbRb − , with R  an arbitrary but positive constant. This makes V and  p functions of two 

policy variables, 1b  and 2b . The point of maximum social welfare for a given amount of health 

insurance premiums now derives from ( ) ( ) ( ) ( )2121 bpbpbVbV ∂∂∂∂=∂∂∂∂ . We can 

elaborate this condition into the following expression: 

t

b

t

b

t

tb

t

tb

zzzz −

−
=

−

−
⇒

−

−
=

−

−

2121

)1()1()1()1( 2121

εεεε
 (3.7) 

Equation (3.7) states that the two co-payment rates are positively related. If we focus upon the 

case where the least healthy group is not subject to any co-payments, i.e. 02 =b , expression 

(3.7) demonstrates that the optimal co-payment rate for the most healthy group of consumers is 

strictly positive and smaller than one (recall that 
2zε > 

1z
ε > t). Hence, a co-payment scheme 

that features a deductible and zero co-payments for expenditure beyond the deductible cannot 

be optimal. Note that the size of the two groups is irrelevant, as is the amount of health 
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insurance premiums (aggregate health insurance subsidies) for the form of the optimal co-

payment structure. 

Obviously, formula (3.7) could also have been obtained by directly applying the Ramsey 

rule for optimal commodity taxation. Sandmo (1987) shows that in case of two commodities 

that share the same producer price and that feature zero uncompensated cross-price elasticities, 

the following version of the Ramsey rule applies: 

2211 ατατ =  (3.8) 

where iτ  i=1,2 is the subsidy rate on product i, i.e. the subsidy on product i in terms of the 

corresponding consumer price and iα i=1,2 is the absolute value of the uncompensated own-

price elasticity of demand for commodity i. Formally, ( )
ii cci ttt /−=τ with 

ict commodity i’s 

consumer price and t the common producer price. The co-payment rate ib i=1,2 is defined as 

tt
ic / . Hence, equation (3.8) can also be formulated in terms of co-payment rates: 
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−
 (3.9) 

To elaborate this, use equation (3.3) to derive the following expressions for the (absolute value 

of the) price elasticity of the demand for medical services: 
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Substitution of these expressions into the Ramsey rule (3.9) yields the following expression: 

 

tb

b

tb

b

zz 1

2

1

1

11

11

−

−
=

−

−

εε
 (3.11) 

It can be easily derived that this is equivalent to expression (3.7).
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4 A more realistic model 

This section elaborates the full-fledged version of the model. We proceed in three steps 

(subsections 4.1, 4.2 and 4.3). We replace the two-spike distribution function of the parameter 

zε with a continuous distribution function. In contrast with the model in the previous section, 

the version in this section no longer imposes cε = 0 and puts 
2

b = 0  from the start. The kinked 

nature of the budget constraint is preserved. 

4.1 Optimization 

We start to replace the two-spike distribution function of the parameter zε with a continuous 

distribution function. An important consequence of a continuous distribution function is that the 

level of medical spending that distinguishes the population groups now becomes endogenous. 

As we will see, the kink implies a bend (and discontinuity) in the health care demand equation. 

The condition that health care demand is nonnegative produces a second type of bend. The 

description of the solution procedure can therefore be split into three parts. The first two parts 

explain how the two bends are handled. The third part is necessary to rank the two bends. We 

start to describe the first part that describes the role of the first bend. 

Part 1 optimization procedure 

The kink in the budget constraint implies that for low levels of demand, the consumer pays a 

positive out-of-pocket price for his health care consumption, whereas he pays nothing for his 

consumption of services for high levels of demand. 

 

( )

( )tbmzmpyc

tbmztzbpyc

1

11 0

≥−−=

≤≤−−=

 (4.1) 

 

The problem of the consumer is to maximize (2.1) under the constraint given by (4.1). The 

solution concept can be illustrated most clearly by considering it a three-step procedure 

(discussed also in Hausman (1985)). 

The first two steps involve the solving of two hypothetical optimization problems, whereas 

the third step compares the utility levels of the two solutions. In the first step, the budget 

constraint in (4.1) is replaced by the following hypothetical downward-sloping linear constraint: 

tzbpyc 1−−=  (4.2) 
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Note that this constraint extrapolates the first part of budget constraint (2.2) for levels of z  

higher than ( )tbm 1 . 

Optimization of (2.1) under this constraint produces the following expression for health care 

demand: 

( ) ( )21
2

1

1
1

))(1(

tbtb

pytb
z

cm

z

cm

c

εε

ε

εε

ε

+
+

+

−−−
=  (4.3) 

where the subscript 1 indicates that (4.3) is the solution to the first hypothetical optimization 

problem. Inserting the demand for health care in (4.3) into the corresponding budget constraint 

(4.2) gives the demand for non-medical products. Substitution of the two types of demand into 

(2.1) gives the indirect utility level that corresponds to the first hypothetical optimization 

problem, 1v . 

The second step is analogous to the first one, replacing the budget constraint by a horizontal 

line: 

mpyc −−=  (4.4) 

 

 

The corresponding expression for health care consumption reads as follows: 

 

m

zz
ε

ε
=2  (4.5) 

Substitution of (4.5) and (4.4) into (2.1) gives the level of indirect utility that corresponds with 

the second hypothetical optimization problem, 2v . 

The third step of the solution procedure involves the comparison of the indirect-utility levels 

that correspond to the two hypothetical optimization problems. The optimization problem that 

yields the highest level of utility is the solution to the consumer's problem. 

As noted above, we consider the population to be heterogeneous in the need for health care. 

In particular, we assume the value of zε , which measures the utility of health care services 

relative to the utility of non-medical services, to take different values for different consumers. 

As Keeler et al. (1977) have shown, the non-convexity of the budget line implies that there is a 

particular value for zε , say *
zε , that has the feature that for all *

zz εε > , the consumer prefers 

the solution obtained in the second step above the solution obtained in the first step of the 

solution procedure and vice versa for *
zz εε < . For *

zz εε = , the consumer is indifferent 

between the two solutions (see Appendix A for the proof of this proposition and the elaboration 

of *
zε ). 
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This setup has an interesting implication for the health demand curve, which we define here as 

the demand for medical consumption as a function of the health care parameter zε . This 

demand curve is increasing in a piecewise linear way. A discontinuity occurs at *
zz εε = . This 

reflects the discontinuous jump in the price and marginal utility of health care that occurs when 

the consumer reaches his co-payment maximum. Hence, there is a range of values for z which 

no patient chooses to consume. The discrete fall in the out-of-pocket price that occurs when zε  

passes the point *
zε  implies a discrete increase in health care consumption. Also interesting is 

that the right-hand side of the demand curve is steeper than the left-hand part. Intuitively, the 

consumer is more responsive to a change in his need for medical services when he faces a zero 

out-of-pocket price. 

Part 2 optimization procedure 

As said, the health care demand curve has a second bend, which is due to the non-negativeness 

of health care demand. Unlike the co-payment maximum, the non-negativeness of health care 

demand does not produce a discontinuity in the demand function however. Rather, it specifies 

another critical value for zε , say **
zε , below which health care demand is zero. The calculation 

of **
zε  proceeds exactly in the same way as that of *

zε . See Appendix A for further details. 

We summarize the results obtained thus far by presenting the equations for health care 

demand and indirect utility. 
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where *
zε  and **

zε  are defined in appendix A. 
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Part 3 optimization procedure 

In general, ***
zz εε > , i.e. small values of zε  produce zero health care demand, medium values 

produce demand with co-payments below the maximum, and large values imply a level of 

health care demand the marginal unit of which is fully paid by the insurer. However, it can be 

shown that for sufficiently low values of the co-payment maximum m, the reverse case will 

occur: ***
zz εε < . Then, one either does not consume medical services or consumes so much that 

the maximum amount of co-payments is to be paid. In this case, the critical values *
zε  and **

zε  

are no longer relevant. Instead, a third critical value for zε , say ***
zε , divides the demand 

function into two sections. The value for ***
zε  can be derived in a similar way as the critical 

values *
zε  and **

zε . Hence, expressions (4.6) and (4.7) apply only if ***
zz εε >

 
. If ***

zz εε < , 

demand and indirect utility are described by the following two equations: 

***

***0

zz
m

z

zz

z

z

εε
ε

ε

εε

≥=

≤=

 (4.8) 
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 (4.9) 

where ***
zε  is defined in appendix A. 

Appendix A also derives the critical value for the co-payment maximum, denoted *m , that 

specifies whether ***
zz εε <  (and equations (4.6) and (4.7) apply), or whether ***

zz εε >  (and 

equations (4.8) and (4.9) hold true).  

4.2 Optimal co-payment policies 

As indicated above, the continuous distribution for zε  is a mixture of three distributions (two 

lognormal distributions and a mass point at zero). In particular, we explore a variant of the so 

called four-part model as applied by Duan et al. (1983) for the US and Van Vliet en Van der 

Burg (1996) for the Netherlands.  

In its standard form, the four-part model describes the distribution of health care costs across 

individuals. In practice it appears that there are large numbers of people who do not consume 

health services in the period of analysis, that there are similarly large numbers of people who 

consume health services, but do not use any inpatient services, and that there are substantial 

differences between the health expenditure distributions of people who only incurred outpatient 
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costs and those of people who have also been admitted to hospital. Furthermore, both latter 

distributions can reasonably well be described using a lognormal specification. The four-part 

approach combines these findings. First, it assumes that there is a non-zero probability that 

people will have zero health care costs.  Secondly, it defines a non-zero probability that people 

who face positive costs will only consume outpatient services and a non-zero probability that 

their medical consumption includes inpatient services as well. Thirdly, it assumes that the 

health care spending of persons in groups E and I can be described by two separate lognormal 

distribution functions.  

Our approach is based upon this four-part model, but relates it to medical need rather than to 

health care expenditure. It assumes that there is a given non-zero probability 0π of having zero 

medical need. There is a also given non-zero probability Eπ  that a positive need is a draw from 

a distribution that describes need without inpatient services. Finally, there is a known non-zero 

probability Eππ −= 11 that the need for health care is a draw from the distribution of need that 

also includes inpatient services. Obviously, it holds that  1)1()1( 000 =−+−+ IE πππππ . The 

non-zero medical needs of patients for medical services excluding inpatient services (denoted as 

group E) and for medical services including inpatient services (denoted as group I) are 

described by two separate lognormal distribution functions. 

The demand for health care within the two groups obeys equations (4.6) and (4.8) in the 

previous section. It will be clear that when need is zero, demand for health care services is also 

zero. The opposite is generally not true, however. As we will see, patients may decide not to 

consume medical services in case of a positive need (this happens for those who have **
zz εε ≤  

(in case equation (4.6) applies) or ***
zz εε ≤ (in case equation (4.8) applies)). This implies that 

the probability of incurring zero costs is endogenous and may exceed the exogenous probability 

of zero need, 0π . 

Summing up, our version of the four-part model implies that there is a non-zero probability 

(1-π0)πE that ( ) ( )2,~ln EEz N σµε , Emm ,εε =  and Ett = , a non-zero probability (1-π0)πI that 

( ) ( )2
,~ln IIz N σµε , Imm ,εε =  and Itt = , and a nonzero probability π0 that zε  equals zero 

(the values of mε  and t  are irrelevant in case 0=zε ). 

This setup implies the following expression for aggregate indirect utility, which serves as 

our measure of social welfare: 

( ) IIEEc VVpypyV ππππεπ )1()1()()( 00
2

2
1

0 −+−+−−−=
 (4.10) 

with: 
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Here, G(.) denotes the distribution function of zε . The three conditional expectation variables   

.)(vE  in equations (4.10) and (4.11) are derived from equations (4.7) and (4.9). 

The structure of the expression for health insurance premiums resembles that of the 

expression for indirect utility: 

IIEE ppp ππππ )1()1( 00 −+−=

 (4.12) 

with: 
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  (4.13) 

The three conditional expectation variables ( ).|zE  in equations (4.12) and (4.13) can be 

derived from the expressions in equations (4.6) and (4.8).  

After substitution of the equation for health insurance premiums into the indirect utility 

function, V, we are left with an expression for social welfare that is a function of two policy 

instruments, 1b  and m. The function is very complicated, as all critical values *
zε ,  **

zε , ***
zε  

and *m  are endogenous, and can not be solved analytically. Hence, we resort to numerical 

simulations. In particular, we make calculations for a large number of co-payment schemes that 
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differ along two dimensions: the co-payment rate and the co-payment maximum. The co-

payment scheme that corresponds with the highest level of social welfare can then be said to be 

optimal.
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5 Calibration of model parameters 

Before the year 2006, the Dutch public health insurance scheme was accessible only for those 

with income below a certain threshold; high incomes had to buy insurance on the private 

market. In 2006, the public insurance scheme was extended to the whole population and the 

distinction that had long characterized the Dutch market for health insurance came to an end. 

We calibrate our model on data for 2002, the year for which the most recent data are 

available. In that year, the public insurance scheme did not feature any co-payments. Absent co-

payments, it is impossible to calibrate the model. Hence, we calibrate the model on the 

population of privately insured, who traditionally have faced co-payments, particularly in the 

form of deductibles. At the end of the next section, we will say something about the 

implications of our model for the population of the former publicly insured. 

Our calibration procedure starts with a specification of the distribution function for zε . Van 

Vliet and Van der Burg (1996) have analyzed the properties of the distribution of health care 

expenditure of people with and without consumption of inpatient services, based on Dutch cross 

section data for 1991–1994. We use their estimates of the coefficients of variation of the 

lognormal distribution functions to obtain corresponding values for zε . From these values, it is 

easy to derive estimates of the standard deviations σE and  σI of the normal parts themselves. 

The probability of zero need for health care services, 0π , has been calibrated such that the 

calculation in the model of the probability of zero health expenditure matches the data. The 

value of the probability to consume inpatient health services, Iπ , has been approximated by the 

number of hospital admissions per insured patient with positive health care expenditure.
7
 

This leaves us with five parameters that remain to be identified: cε , Em,ε , Im,ε , Eµ and 

Iµ . These are calibrated simultaneously by using information on the coefficient of relative risk 

aversion (CRRA) for non-medical products, the level of average demand of those with and 

those without inpatient services and the insurance effect
8
 corresponding to the demand of these 

two groups. The services covered are pharmaceuticals and services delivered by general 

practitioners, dentists, physiotherapists and hospitals (inpatient and outpatient services).  

Services in groups E and I are different, so prices do not coincide either. We use the estimates 

of Van Vliet (1998) to compute the insurance effects for the groups with positive health care 

expenditure, both without hospital admissions (1.23, group E) and with both outpatient and 

inpatient expenditure (1.03, group I). Note that these estimates are in line with estimates in the 

RAND Health Insurance Experiment (Newhouse et al. (1993)). For the CRRA for non-medical 

products, we choose a value of 5. 

 
7
 This assumes that patients who used inpatient hospital services, had only one admission per year. This is probably not too 

far off from reality.  
8
  The insurance effect is defined as the ratio of the demand of a fully insured patient (with a zero co-payment maximum) 

and an uninsured patient.  
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Before we proceed, a caveat is in order. Whereas the empirical literature finds the four-part 

model to provide a fairly well description of health expenditures, we assume the four-part 

model characterizes zε , the parameter that we interpret as a measure of the need of health care. 

Were the two variables proportional to each other, the difference in interpretation would be 

trivial. However, this is not the case for two reasons. 

First, log-normality of the distribution functions for zε  means that the distribution function 

for z is not completely lognormal, according to our model. Indeed, our model implies that no 

patient will choose to consume medical services at an expenditure level that is sufficiently close 

to the co-payment maximum. This means that the cumulative distribution function of medical 

expenditure features a flat trajectory around the co-payment maximum. Second, the 

proportionality factor that translates zε  into z , zz ε∂∂ / , is different for the parts of the 

distribution function for z  below and above the co-payment maximum. 

In our application, these two issues appear not to be very relevant, though. The region of 

values of z that have frequency zero range from 2.20 to 4.42 in the case of group E for example, 

whereas average health care consumption in this group is much larger, namely 14.47. Next, the 

two proportionality factors referred to above differ less than one percent (0.40 and 0.398 

respectively). To explore this further, we will perform a sensitivity analysis in order to see the 

impact of alternative assumptions on the parameter values of the distribution functions for zε .  

We do not calibrate our model on estimates of the price elasticity of health care demand.  In 

our model, the price elasticity of demand is endogenous, depending among others on the value 

of zε (which measures the need for health care), the co-payment rate b and the maximum m. 

The unconditional average price elasticity for those who consume outpatient services only (E 

services) is − 0.39. The unconditional average price elasticity for those who consume both 

inpatient and outpatient services (I group) equals zero as in this case equation (4.8) applies (see 

section 4.1, Part 3 optimization procedure). The average of these two price elasticities equals  

−0.36, which is somewhat higher than the average estimate −0.20 of Newhouse et al. (1993). 

We did not calibrate on the income elasticity of health care demand either. This income 

elasticity is related to the CRRA for non-medical products. Having chosen a value for the latter, 

the income elasticity of health care demand follows endogenously from the model. The average 

income elasticity of health care demand is 1.35 for E-type services and 0.0 for I-type services. 

The reason for the zero income elasticity is the same as the reason for the zero price elasticity: a 

negligible part of the patients that consume inpatient services has expenditure that qualifies for 

less than the maximum of co-payments. On average, we calculate an income elasticity of 1.24. 

This value for the aggregate income elasticity is close to estimates that analyze health care 

demand on a macroeconomic level (Gerdtham et al. (1992) find an aggregate income elasticity 
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of 1.27).
9
 Finally, our value for the CRRA for health care that can be derived from the 

calibration is 4.5 which deviates little from the value of 5 used by Ellis (1986).
10

 

 

Table 5.1 Validation of model parameters: data 

     Privately insured     Publicly insured 

       

 Group E Group I Total Group E Group I Total 

       
Probability of zero expenditure (%)   23.1   17.9 

Probability of positive expenditure on 

outpatient services only (%) 

   

70.7 

   

74.7 

Probability of positive expenditure on 

outpatient and inpatient services (%) 

   

6.2 

   

7.4 

Insurance effect 1.23 1.03  1.23 1.03  

CRRA, non-health products   5.0   5.0 

Income per patient (euro)   39,235   15,093 

Average demand health care services 14.5 24.9  21.3 29.7  

Producer price health care services (euro) 24.4 239.4  17.0 230.7  

Coefficient of variation health care costs 2.03 1.11  1.71 1.20  

Co-payment maximum (euro)   64.2   0.0 

Co-payment rate (%)   100   0.0 

 

Tables 5.1 and 5.2 summarize the calibration of our model. Parameter estimates for the publicly 

insured are also included, to be discussed below. A salient aspect of the calibration is the 

skewed nature of need and demand. If a person spends on health care, there is a chance of about 

1 to 10 that this spending includes inpatient hospital services. However, the average volume of 

health care consumption of inpatient services is about double that of outpatient services and the 

price of inpatient services is about ten times as large as the price of outpatient services. 

Combined, spending on inpatient services is larger than that on outpatient services. 

Also interesting is the group of persons that do not consume any health care. About a quarter 

of the population of privately insured has zero expenditure. Of this, only 2.5% has zero medical 

need. For the most part, people that choose to have zero spending are people with positive need 

 
9
 This value for the aggregate income elasticity of demand is much higher than usually found in microeconometric studies. 

However, we argue that estimates of the income elasticity found in macroeconometric studies are relevant here. Income 

elasticity estimates found in microeconometric studies apply to changes in income for an individual patient. The income 

elasticities found in macroeconometric studies apply to changes in income for the whole population of patients. The co-

payment schemes in our study differ in the amount of insurance premiums and this in the disposable income of all patients. 

In addition, we should point out that the income elasticity of health care demand and the coefficient of relative risk aversion 

with respect to non-medical produts are intimately related. An income elasticity of the order of magnitude found in 

microeconometric studies would imply a value for the CRRA well below unity (0.09), which must be considered highly 

unrealistic. 
10

 A number of studies (e.g. Manning and Marquis (1996)) report estimates of the coefficient of absolute risk aversion. These 

data are difficult to use in our study, as their value is not unit-independent. 
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for outpatient services that is so small that the benefits from medical intervention are less than 

the costs involved. 

Table 5.2 Validation of model parameters: results 

      Privately insured      Publicly insured 

 Group E Group I Total Group E Group I Total 

       
Probability of zero need (%)

 
  2.5   8.6 

Probability of positive need for E-type 

services (%)
 

   

89.5 

   

82.4 

Probability of positive need for I-type 

services (%)
 

   

8.0 

   

9.0 

cε    2.42 10− 5
   7.16 10− 5

 

mε  2.5 140.2  0.8 200.4  

µ  2.3 7.6  2.8 8.2  

σ  1.28 0.90  1.17 0.94  

Average need per patient (E(εz )/εm) 15.3 24.9  23.6 29.7  

 

To identify model parameters for formerly publicly insured patients, we assume that insurance 

effects of privately insured patients also apply to this group. Also, the value of CRRA for non-

health commodities and services is assumed to be the same for the two groups of insured. As 

Table 5.1 shows, income is considerably smaller, but average health care demand is larger. This 

is due to a larger need for medical services (Table 5.2) and a zero price (Table 5.1).
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6 Numerical calculations 

The approach we adopt to find out which co-payment scheme is optimal in the full-fledged 

model is to search numerically for the combination of policy instruments (b, m) that maximizes 

social welfare, as defined in equation (4.10). If the value of b that corresponds with optimal co-

payment policies equals one, a deductible scheme can be said to be optimal. 

Tables 6.1 to 6.5 present calculations for a number of combinations of b and m. In 

particular, they display effects for 11 different values for b (running from 0% to 100% in steps 

of 10%) and 12 different values for m (running from euro 0 to euro 2000 in steps of euro 200 

plus infinity). Table 6.1 displays the effects upon )(zE , the average level of medical 

consumption. The cells with a zero co-payment rate and a non-zero co-payment maximum are 

left blank; the same applies to the cells with positive co-payment rate and zero co-payment 

maximum. In both cases, there is full insurance and the figure for (b = 0, m = 0) applies. 

 

Table 6.1 Expected volume of health care consumption of privately insured patients 

Rate (%)          Co-payment maximum (euro) 

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ∞ 
             
0 14.9            

10  14.8 14.8 14.8 14.7 14.7 14.7 14.7 14.7 14.7 14.7  

20  14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6  

30  14.5 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4  

40  14.4 14.3 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2  

50  14.3 14.1 14.1 14.0 14.0 14.0 14.0 14.0 14.0 14.0  

60  14.2 14.0 13.9 13.9 13.9 13.9 13.9 13.8 13.8 13.8  

70  14.1 13.9 13.8 13.8 13.7 13.7 13.7 13.7 13.7 13.7  

80  14.1 13.8 13.7 13.6 13.6 13.6 13.6 13.5 13.5 13.5  

90  14.0 13.7 13.6 13.5 13.5 13.4 13.4 13.4 13.4 13.4  

100  14.0 13.7 13.5 13.4 13.3 13.3 13.3 13.3 13.2 13.2 13.2 

 

As might be expected, )(zE  is declining in both the co-payment rate and the co-payment 

maximum. The impact of variations in the co-payment rate seems strongest. Looking at the 

corner columns and rows, the parameters interact strongly, however. Hence, it is difficult to 

calculate the exact contribution of the two parameters. Moving from full insurance (b = m  = 0) 

to zero insurance (b = 100, m =∞11
) reduces average medical consumption by about 11.5 

percent. This effect is not trivial, although smaller than expected. It is clearly far below the 

 
11

 Approximated by 10
8
 euro. 
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almost 50% reduction of expenditures that can be calculated on the basis of the Health 

Insurance Expreiment (Zweifel and Manning (2000)).  

Table 6.2 gives the effects upon )(cE , the average level of non-medical consumption. Here 

also, the qualitative effects are intuitive. The higher the rate or the maximum of co-payments, 

the higher is average non-medical consumption. The reason is that any reduction in average 

health care consumption allows for a cut in health insurance premiums. 

On the whole, the effects are pretty small. Going from full insurance to no insurance would 

raise average non-medical consumption with a meagre 0.2%. The reason is clear: the effects on 

average medical consumption are small and the spending on non-medical consumption dwarfs 

that on medical consumption. 

Table 6.2 Expected volume of non-medical consumption of privately insured patients 

Rate (%)          Co-payment maximum (euro) 

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ∞ 
             
0 32,076            

10  32,081 32,081 32,081 32,081 32,081 32,082 32,082 32,082 32,082 32,082  

20  32,085 32,086 32,086 32,086 32,086 32,086 32,087 32,087 32,087 32,087  

30  32,088 32,090 32,090 32,091 32,091 32,091 32,091 32,091 32,092 32,092  

40  32,091 32,093 32,094 32,095 32,095 32,095 32,096 32,096 32,096 32,096  

50  32,093 32,096 32,098 32,098 32,099 32,099 32,100 32,100 32,100 32,101  

60  32,095 32,099 32,101 32,102 32,103 32,103 32,104 32,104 32,104 32,105  

70  32,096 32,102 32,104 32,105 32,106 32,107 32,107 32,108 32,108 32,109  

80  32,097 32,104 32,107 32,108 32,110 32,110 32,111 32,111 32,112 32,112  

90  32,098 32,106 32,109 32,111 32,113 32,114 32,114 32,115 32,115 32,116  

100  32,099 32,107 32,112 32,114 32,115 32,117 32,117 32,118 32,119 32,119 32,129 

 

The impact of insurance can be highlighted by computing the implicit transfers from patients in 

the E group (patients that consume only outpatient services) to those in the I group (patients that 

consume also inpatient services). These implicit transfers are defined as the premium actually 

paid minus the hypothetical amount that patients in the E group would pay if the I group would 

be excluded from health insurance. The implicit transfers are at maximum in case of full 

insurance. The amount of 536 euro per E patient corresponds to 6,168 euro per patient in the I 

group (89.4% of the population falls into the E group, 9% into the I group, 2.6% has zero need). 

The latter amount is about 15% of the average patient income, 39,235 euro, which is sizeable. 

In general, implicit transfers are decreasing, both in terms of the co-payment rate and in 

terms of the co-payment maximum. Obviously, downsizing insurance decreases implicit 

transfers. For small values of the co-payment rate, implicit transfers are an increasing function 

of the co-payment rate, however. This has to do with the differential price elasticity of the 

demand for inpatient and outpatient care. An increase of the co-payment rate does not have a 
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big effect on medical consumption of I-type services, whereas patients in the I group share in 

the fall in insurance premiums that is due to lower medical consumption by patients in the E 

group. Hence, implicit transfers from the E group to the I group increase upon an increase in co-

payment rates. 

In the limit case (b=100%, m= ∞)  implicit transfers are zero. Interestingly, with a co-

payment maximum as high as 2000 euro, the implicit transfer per patient of E-type services is 

still 414 euro. This again reflects that the consumption of I-type services is very price-inelastic. 

Table 6.3 Average implicit income transfers from E to I patients per patient in group E 

Rate (%)          Co-payment maximum (euro) 

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ∞ 
             
0 536            

10  524 513 506 500 496 493 491 490 488 487  

20  526 512 500 490 482 475 469 464 460 456  

30  528 514 500 488 477 467 458 451 444 438  

40  529 515 501 488 476 464 453 444 435 427  

50  530 517 503 489 476 463 451 440 430 421  

60  530 518 504 490 477 464 451 439 428 417  

70  531 519 506 492 478 464 451 439 426 415  

80  531 520 507 493 479 465 452 439 426 414  

90  531 521 508 494 480 466 453 439 426 414  

100  532 521 509 495 482 468 454 440 427 414 0 

 

Table 6.4 Social welfare of privately insured patients 

Rate(%)            Co-payment maximum (euro) 

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ∞ 
             
0 965.9            

10  975.5 975.3 974.8 974.3 973.8 973.3 972.9 972.5 972.1 971.8  

20  982.6 982.8 981.9 980.7 979.4 978.0 976.7 975.5 974.2 973.1  

30  987.6 988.8 987.8 986.1 984.1 982.0 979.8 977.6 975.4 973.3  

40  990.9 993.4 992.5 990.6 988.0 985.2 982.2 979.2 976.0 972.9  

50  992.8 996.5 996.0 994.0 991.1 987.7 984.0 980.1 976.2 972.1  

60  993.6 998.5 998.4 996.3 993.2 989.3 985.1 980.5 975.8 970.9  

70  993.7 999.4 999.7 997.6 994.3 990.2 985.4 980.3 974.8 969.2  

80  993.1 999.4 1000.0 998.0 994.6 990.1 985.0 979.3 973.3 966.9  

90  992.1 998.7 999.5 997.6 994.0 989.4 983.9 977.7 971.1 964.2  

100  990.8 997.4 998.3 996.4 992.7 987.8 982.0 975.5 968.4 960.9 0.0 
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Table 6.4 displays social welfare. For reasons of presentation only, values in the table are linear 

transformations of computed welfare. It turns out that the (b, m) combination of  (80%, 600 

euro) yields the highest level of social welfare (displayed boldly in Table 6.4). That the optimal 

co-payment rate and co-payment maximum have intermediate values, reflects the trade-off 

between the welfare loss from the moral hazard distortion and the welfare gain from risk 

reduction that health insurance brings about. ),( mb  combinations to the upper left of the 

optimum (denoted as )ˆ,ˆ( mb ) imply lower social welfare as they feature too much moral hazard. 

Similarly, ),( mb  combinations to the lower right of )ˆ,ˆ( mb  imply lower social welfare as they 

correspond with too little risk sharing. 

As a tool to produce an accurate estimate of the optimal co-payment scheme, the search 

procedure that produced table 6.4 is too global: we have to resort to a finer grid search to find 

the globally optimal co-payment scheme. Therefore, we declined the step sizes of b and m  to 

2% and 100 euro respectively and arrived at ( b = 78%, m =530) as the optimal co-payment 

scheme. The corresponding level of social welfare equals 1,000.2. A further reduction of the 

step size of b  and m  produced negligible changes (differences in expected utility less than 10
−3

 

%). A further refinement of the search procedure is therefore not necessary. 

Full insurance dominates no insurance. This result differs strongly with that in Manning and 

Marquis (1996). That analysis found the case without any insurance to dominate the case of full 

insurance. The income elasticities used in the two studies may offer an explanation. Manning 

and Marquis (1996) use an income elasticity of 0.22, which is considerable smaller than ours 

and would imply a much lower CRRA for non-medical products than we have used. In addition, 

that analysis assumes the price elasticity of medical consumption to be a constant, whereas ours 

decreases with a deterioration of the health status of the patient. Moreover, in general one may 

expect large differences for extreme cases like full insurance and no insurance, since calculation 

of the welfare levels of these cases relies on an extrapolation of parameter values far beyond the 

range of data that were used to estimate them. 

For a meaningful comparison of welfare effects, we resort to the corresponding 

compensating variations. These are defined as follows. Formally, if we express social welfare as 

a function of the rate and maximum of co-payments and the level of patient income, say 

),,( ymbV , we calculate the compensating variation for full insurance, FIy~ , from the condition 

),ˆ,ˆ()~,0,0( ymbVyyV FI =+ . Similarly, we calculate the compensating variation for zero 

insurance, ZIy~ , from ),ˆ,ˆ()~,40000%,100( ymbVyyV ZI =+ .
12

 The generalization to the 

definition of compensating variation as a function of the rate and maximum that define a typical 

co-payment scheme is obvious then. 

 
12

  If m exceeds 40000 euro per person, the condition 1)
~

( <−+ pyy ZIcε is violated (see also footnote 5). Hence, we cannot 

calculate a compensating variation for the case without any insurance. The reason is that utility is quadratic in income. 

Hence, there is an upper limit to the utility gain that a compensating variation of income can achieve,. If the differential utility 

with the optimum ( )ˆ,ˆ( mb ) is too large (as it is for the case of zero insurance), there is no value for the compensating 

variation that would bridge the utility differential. 
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Table 6.5 repeats Table 6.4, but now displaying compensating variations rather than social 

welfare levels. Full insurance is seen to imply a utility loss of only 18 euro per person, 

equivalent to an income drop of less than 0.1 percent. The compensating amount in case of zero 

insurance amounts to 419 euro per patient. This corresponds to 1.1% of average income per 

patient. This is extremely little. 

As noted earlier, until January 1 2006 there were two insurance schemes in the Netherlands, 

a set of private insurance schemes and a public insurance scheme. Using the values in Table 5.1 

and 5.2, it is possible to evaluate the optimal insurance scheme for publicly insured patients. 

The optimum turns out to be (68%, 320 euro), which is rather close to the outcome for the 

privately insured (78%, 530 euro). On average, we arrive at an optimum of (72%, 380 euro) for 

all insured patients. 

Table 6.5 Compensating variations for different (b,m) combinations, privately insured  (euro) 

Rate (%)          Co-payment maximum (euro) 

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 40000 

             
0 18.23            

10  13.13 13.23 13.48 13.76 14.04 14.29 14.52 14.73 14.91 15.07  

20  9.32 9.22 9.70 10.35 11.05 11.76 12.47 13.14 13.79 14.41  

30  6.63 5.99 6.53 7.43 8.51 9.65 10.83 12.01 13.17 14.32  

40  4.87 3.55 4.00 5.05 6.41 7.92 9.52 11.17 12.84 14.51  

50  3.85 1.86 2.12 3.23 4.79 6.60 8.57 10.64 12.77 14.93  

60  3.40 0.82 0.86 1.98 3.67 5.72 8.00 10.44 12.98 15.60  

70  3.39 0.34 0.18 1.26 3.05 5.28 7.82 10.58 13.50 16.53  

80  3.70 0.33 0.00 1.05 2.90 5.28 8.04 11.08 14.33 17.73  

90  4.23 0.72 0.27 1.29 3.20 5.71 8.65 11.93 15.47 19.21  

100  4.93 1.42 0.92 1.94 3.90 6.53 9.64 13.14 16.94 20.99 418.76 
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7 Sensitivity analysis 

How robust are our results with respect to perturbations in important parameters? Three of them 

relate directly to the moral hazard and risk reduction components of expected utility. These are 

zε , mε and the CRRA.  The last parameter is directly linked to the parameter cε . We vary the 

values of mε , the CRRA and the variance of ln( zε ) between 25% and 175% of their 

benchmark values, in steps of 25%. Changes in the variance of ln( zε ) are equivalent to changes 

in the coefficient of variation of the distribution of zε itself. We adopt step sizes in the co-

payment rate of 10% and 200 euro in the co-payment maximum, like in Table 6.4. Tables 7.1, 

7.2 and 7.3 contain the results: the optimal co-payment rate and the co-payment maximum. The 

last row displays compensating variations relating to the optimum in each column and the 

corresponding situation of full insurance. Note that in Tables 7.1 and 7.3 we vary the 

parameters for both the E and I group simultaneously. Finally, in Table 7.4 we report the results 

for changes in average patient income. Here we have chosen a different range in order not to 

violate the restriction on income εc (y-p) < 1 (see also note 5). 

Table 7.1 Optimal (b,m) combinations and compensating income variations for different values of the 

standard deviation of ln( zε ) 

        Standard deviation of ln( zε )  

E group 0.32 0.64 0.96 1.28 (base) 1.60 1.92 2.24 

        
I group 0.23 0.45 0.68 0.90 (base) 1.12 1.34 1.57 

        

Co-payment rate (%) 90% 80% 80% 80% 70% 70% 60% 

Maximum (euro) 800 800 600 600 400 200 200 

Compensating variation 24.56 22.04 20.00 18.23 15.86 12.67 9.94 

 

Table 7.2 Optimal (b,m) combinations and compensating income variations for different values of the 

CRRA 

        CRRA 

 1.25 2.50 3.75 5.00 6.25 7.50 8.75 

        
Co-payment rate (%) 80% 80% 80% 80% 80% 80% 80% 

Maximum (euro) 800 600 600 600 400 400 400 

Compensating variation 39.96 28.25 22.11 18.23 15.56 13.86 12.55 
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Table 7.3 Optimal (b,m) combinations and compensating income variations for different values of mε , 

both E and I group 

 
      mε  

        
E group 0.62 1.25 1.87 2.49 (base) 3.11 3.74 4.36 

I group 35.04 70.08 105.12 140.16 (base) 175.20 210.24 245.28 

Co-payment rate (%) 70% 80% 80% 80% 80% 80% 80% 

Maximum (euro) 600 600 600 600 600 400 400 

Compensating variation 62.08 35.41 24.31 18.23 14.39 11.88 10.11 

 

Table 7.4 Optimal (b,m) combinations and compensating income variations for different values of average 

patient income 

     Average income per patient (euro) 

 19618 23541 27465 31388 35312 39235(base) 43159 

        
Co-payment rate (%) 80% 80% 80% 80% 80% 80% 80% 

Maximum (euro) 800 800 600 600 600 600 400 

Compensating variation 48.80 43.52 37.85 31.87 25.38 18.23 10.82 

 

Given the wide range in parameter values, the optimal co-payment rate is fairly stable. Its value 

varies between 70% and 90%. This implies that our conclusion that b < 100% is quite robust. 

The optimal value of m is more sensitive, in particular with respect to downward changes in 

model parameters. When differences in health status between individuals decline, risk aversion 

is less important and the optimal co-payment maximum and compensating income amount 

increase. The same happens when the CRRA is reduced, as was to be expected. Table 7.2 

demonstrates that the impact of the CRRA parameter upon the optimal co-payment maximum is 

fairly large: the optimal co-payment maximum increases from 400 to 800 euro when CRRA 

drops from a value of 5 to a value of 1.25. Simulations of still lower values of the CRRA (not 

shown here) indicate even higher values for the co-payment maximum. The high sensitivity of 

the optimal co-payment maximum to the value of the coefficient of risk aversion was also noted 

by Manning and Marquis (1996). Finally, a fall in the value of mε  yields a lower price 

elasticity of health care demand and thus increases moral hazard. This also leads to higher 

values for the optimal co-payment maximum. The impact of this parameter is far less large than 

that of the parameter that measures risk aversion. Table 7.4 indicates that changes in average 

income have a small effect on the optimal co-payment rate and a large effect on the optimal co-

payment maximum.
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8 Concluding remarks 

The most important results from our analysis are the following: i) within the class of co-

payment systems studied, a deductible scheme is suboptimal ii) the optimal co-payment scheme 

features a co-payment rate of about 80% and iii) the optimal co-payment scheme features a co-

payment maximum of about 600 euro. The robustness of these three results is quite different. 

The sub-optimality of deductible schemes is quite robust. As shown, it holds true both in a 

stylized world in which it derives from the Ramsey rule of optimal commodity taxation and in a 

world that includes much more realism. However, the other two results depend on the numerical 

setting that we adopted and are therefore less general. Although the optimal co-payment rate is 

roughly stable at about 80%, the sensitivity analysis that we performed made clear that the 

results regarding to co-payment maximum rely rather heavily on the degree of risk aversion, 

which is a parameter of which estimates have large confidence intervals. 

Three factors warn against immediate application of our results by policymakers. First, our 

calculations did not include administrative costs, which can be different for deductible schemes 

than for alternative co-payment systems. Second, preferences for policymakers need not 

coincide with those of households. In particular, we think the risk aversion of policymakers may 

be higher than that of households. Thirdly, a caveat is that we did not explore the consequences 

of other types of utility functions. This underlines that our results cannot be more than 

indicative of the answers that a more comprehensive analysis would produce. 
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Appendix A Critical values for the health care need  

   parameter 

The proof of the proposition that there is a particular value for zε , *
zε  that has the feature that  

i) for *
zz εε >  ( *

zz εε < ), the consumer prefers the solution obtained in the second (first) step 

above the solution obtained in the first (second) step of the solution procedure and ii) for 

*
zz εε = , the consumer is indifferent between the two solutions, is as follows. First, note that 

1v and 2v , the indirect utilities corresponding to the two hypothetical optimization problems, 

can be viewed as functions of zε . To stress this relationship, denote these functions as ( )zv ε1  

and ( )zv ε2 . Next, define the difference between the two functions, ( )zv ε21− , as 

( ) ( )zz vv εε 21 − . Given  the specification of the utility function in (2.1) and the optimal 

solutions in (4.7) and (4.9), the function ( )zv ε21−  is quadratic in zε . Solving ( ) 021 =− zv ε  

yields two solutions for zε , of which one is positive.
 
Call this solution *

zε . It can be derived 

that ( )zv ε21−  is decreasing in zε for all zε > 0. Hence. ( ) 021 >− zv ε  for 0 < *
zz εε <  and 

( ) 021 <− zv ε  for *
zz εε > . 

The general expression for the equation ( ) 021 =− zv ε  reads as follows: 
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The positive root of (A.1) obeys: 
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As the maximum of expression (A.1) is achieved for 
a

b
z

ν

ν
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2

−
= , equation (A.1) is decreasing  

in zε whenever  
a

b
z

ν

ν
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2
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The procedure we adopt to derive expressions for **
zε and ***

zε is similar to the one we use 

to derive *
zε . The derivation of the expression for *

zε  uses the indirect utility functions 

corresponding to the two hypothetical optimization problems mentioned in the text ( 1v and 2v , 

or v  for **
zz εε ≤ and v for ***

zzz εεε ≤≤  in equation (4.7) respectively). The derivation of 
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**
zε combines 1v  with the indirect utility function that corresponds with the corner solution 

0=zε . Similarly, the derivation of ***
zε combines 2v with the indirect utility function that 

relates to the corner solution 0=zε . The results are as follows: 

bz υε =**  (A.4) 
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As mentioned in the text. the sign of ***
zz εε − determines whether the health care demand 

function consists of three or two pieces. The sign of ***
zz εε − in turn is determined by the 

relation between the co-payment maximum m  , and a critical value for this co-payment 

maximum, say *m . If *mm > , health care demand is described by (4.6); if *mm < , equation 

(4.8) describes health care demand. The expression for *m  follows from elaborating the 

condition ***
zz εε =  ( ***

zε= ). This yields the following: 
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Appendix B Moments of the lognormal distribution 

A stochastic variable x is said to be log-normally distributed if its logarithm, ln x, has a normal 

distribution with parameters, say, µ and σ. The density function g(.) of x obeys: 

 





 −−

=
2

2

2

)(ln
exp

2

1
)(

σ

µ

πσ

x

x
xg  (B.1) 

And it follows that: 
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where F(.) denotes the standard normal distribution function. 

From equation (B.2) it also follows that the mathematical expectation of x, E(x), obeys: 
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Using this expression we calculate the (conditional) moments of g. 

The conditional n-th moment equals: 
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The corresponding conditional expectation per capita of the group to which this expectation 

applies, is slightly different: 
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It is the definition in (B.5) that is relevant for our model.  
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From (B.4) and (B.5), it follows that the conditional absolute expectation and the conditional 

expectation per capita equal 
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And the second-order moments equal 
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The unconditional variance can be obtained from (B.3) and (B.4): 
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From equation (B.6), the following expression for the coefficient of variation (the ratio of 

standard deviation and expected value) of a log-normally distributed variable can be derived: 

( )1)exp( 2 −= σvC  (B.11) 

So, the coefficient of variation of the lognormal distribution of a variable x only depends on the 

variance of ln x. 
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