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1 Introduction

The Committee Parameters (Langejan et al. (2014)) advises to use the KNW-
model (after Koijen et al. (2010)) to generate a representative scenario set for
feasibility studies of pension funds. The scenario set enables a stochastic analysis
of such feasibility studies. The underlying KNW-model is based on an affine
factor model for the term structure. Stock returns, bond returns, interest rates,
and inflation depend on observed factors and two latent factors. As such, the
model contains relations between key financial risk factors of pension funds.
CPB’s task is to estimate the model on Dutch data and, if appropriate, to
calibrate some parameters in order to fit the recommendations of the Committee
Parameters. Draper (2014) describes the current methods for this estimation and
calibration.

The calibration aims to adjust the Ultimate Forward Rate (UFR) and certain
long-term expectations and covariances of the variables in the model. However,
this calibration process introduces some arbitrariness. More specifically, the
resulting parameter set may deviate substantially from the maximum likelihood
set, even when taking the restrictions of the calibration into account. Instead
of calibrating the model, we show how to impose restrictions in a continuous-
time affine term structure model. In this way, the parameters correspond to the
optimum of a constrained maximum likelihood estimation. The results suggest
that the method in Draper (2014) provides suboptimal parameter estimates.

The main result of this paper is the derivation of closed-form expressions for
the long-term (unconditional) expectations, covariances, and the term structure.
∗I am grateful to Nick Draper and Bas Werker for discussing several issues, and Albert van

der Horst and Marcel Lever for helpful comments. I would also like to thank DNB for sharing
their parameter set.
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The expressions are required for the constrained likelihood optimization, and
replace simulations for a long-run analysis of parameter sets. Our results apply
to a wide range of continuous-time affine term strucure models with the Markov
property, including the models in Dai and Singleton (2002) and Koijen et al.
(2010).

The model is outlined in Section 2. Section 3 provides expressions for the
mean and covariance of possibly transformed variables in a VAR(1)-model. Sec-
tion 4 presents closed-form expressions for some characteristics of the term struc-
ture in terms of the parameters. The estimation results are in Section 5. We
draw conclusions in Section 6.

2 The model1

Affine term structure models are very common in the literature (see e.g., Dai and
Singleton (2002), Koijen et al. (2010), and Gürkaynak and Wright (2012)). We
outline a generalized version of the model in Koijen et al. (2010)2, though our
results apply to the VAR(1)-representation of any continuous-time affine term
structure model.

As key determinants of pension risk, we consider inflation dΠ/Π, the stock
return dS/S, the bond portfolio return dPB(τ)/PB(τ) with a constant maturity
τ , and the term structure y(τ). The assumed dynamics are3

Unobserved states dXt = −KXtdt+ dZ̃t (1)
Instant. expected inflation πt = δ0π + δ′1πXt (2)

Price index process
dΠt

Πt
= πtdt+ σ′ΠdZt (3)

Instant. nom. interest rate Rt(0) = δ0R + δ′1RXt (4)

Stock return process
dSt
St

= (Rt(0) + ηS) dt+ σ′SdZt (5)

Bond return process
dPBt (τ)

PBt (τ)
=
(
Rt(0) +B(τ)′Λ̃t

)
dt+B(τ)′dZ̃t (6)

Prices of risk Λt = Λ0 + Λ1Xt (7)

1Koijen et al. (2010) and Draper (2014) contain further details and references on the deriva-
tions in this section.

2This model is based on assumptions and derivations in Duffie and Kan (1996) and Duffee
(2002).

3The assumptions are identical to Koijen et al. (2010), except that (i) here, the number of
state variables is k instead of two, and (ii) we add the implied dynamics of a bond portfolio
with constant duration as introduced in Draper (2014).
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Stochastic discount factor
dφt
φt

= −Rt(0)dt− Λ′tdZt (8)

where dZ ∼ N(0(k+2)×1, I(k+2)×(k+2)), and

K ∈ Rk×k σΠ, σS ,Λ0 ∈ Rk+2 dZ̃t =
[
Ik×k 0k×2

]
dZt

δ1π, δ1R ∈ Rk Λ1 ∈ R(k+2)×k Λ̃t =
[
Ik×k 0k×2

]
Λt

To ensure identification of X and Z, Koijen et al. (2010) impose

(i) σΠ(k+2) = 0: This excludes rotations (e.g., a switch) of the last two com-
ponents of Z.

(ii) K is a lower triangular matrix: This excludes rotations (e.g., a switch) of
the components of X, and thus of the first k components of Z.

More implicit identification restrictions are the absence of a drift term in (1)
which excludes a translation of X, and the unit standard deviations of dZ which
excludes a scaling of X. To exclude that −X gives the same fit as X, an
additional identification restriction should be imposed on the sign of X or on
the sign of certain parameters. Of course, none of the identification restrictions
changes any of the dynamics of the non-state variables, or any of the expressions
we derive.

Using stochastic calculus, the aggregate model is a multivariate Ornstein-
Uhlenbeck process:

dΥt = (Θ0 + Θ1Υt)dt+ σΥdZt (9)

where

Υt =


Xt

log Πt

logSt
logPB(τ)

 σΥ =


Ik×k 0k×3

σ′Π
σ′S

B(τ)′ 01×3



Θ0 =


0k×1

δ0π − 1
2σ
′
ΠσΠ

δ0R + ηS − 1
2σ
′
SσS

δ0R +B(τ)′Λ̃0 − 1
2B(τ)′B(τ)

 Θ1 =


−K 0k×3

δ′1π 01×3

δ′1R 01×3

δ′1R +B(τ)′Λ̃1 01×3


Λ̃0 =

[
Ik×k 0k×2

]
Λ0 Λ̃1 =

[
Ik×k 0k×2

]
Λ1

After discretization with step length h, a VAR(1)-model emerges from (9):

Yt = γ + ΓYt−h + εt εt ∼ N(0, V ) (10)

3



where Yt =
[
Xt ∆ log Πt ∆ logSt ∆ logPB(τ)

]′ is a random vector, and4

γ = UFU−1Θ0 Γ = U exp (Dh)U−1 V = UWU ′ (11)

with F a diagonal matrix, Θ1 = UDU−1, and

Fii = hα(Diih)

α(x) =

{
(exp (x)− 1)/x x 6= 0

1 x = 0

Wij =
[
U−1σY

(
U−1σY

)′]
ij
hα ([Dii +Djj ]h)

The random vector Y is stationary if X is stationary, or equivalently, K is
positive definite in (1).

The flexible step length h is useful if estimation and simulation have a dif-
ferent frequency. Without loss of generality, we restrict the analysis to the case
h = 1.

Using (8) and a no arbitrage argument, the term structure of nominal contin-
uously compounded (i.e., nominal log) yields yt is affine in the k state variables:

yt(τ) = −1

τ

(
A(τ) +B(τ)′Xt

)
+ ξτ,t (12)

with τ the term to maturity, and ξτ,t ∼ N(0, στ ) an independent measurement
error. The maximum likelihood estimate corresponds to the maximal loglike-
lihood sum of the disturbances εt in (10) and the measurement errors ξτ,t in
(12).

The functions A : τ → R, and B : τ → Rk satisfy

A(τ) =

ˆ τ

0
Ȧ(s)ds A(0) = 0 (13)

B(τ) = M−1 [exp (−Mτ)− Ik×k] δ1R B(0) = 0k×1 (14)

Ȧ(τ) = −δ0R − Λ̃′0B(τ) +
1

2
B(τ)′B(τ) Ȧ(0) = −δ0R (15)

Ḃ(τ) = −δ1R −MB(τ) Ḃ(0) = −δ1R (16)

where M =
(
K + Λ̃1

)′
and ẋ denotes the derivative of the function x. Define

b0 := lim
τ→∞

B(τ) = −M−1δ1R.

4As in Dai and Singleton (2002), Sangvinatsos and Wachter (2005), Koijen et al. (2010),
the expressions in (11) are for diagonalizable Θ1. Though this class is dense in the class of
complex matrices, Appendix A derives the expressions for the general case. This extension
seems to be unknown in the literature.
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We assume a positive definite M in (16) which ensures a finite b0.
The Ultimate Forward Rate (UFRlog) is the cross-sectional limτ→∞ E[yt (τ)].

Since X is stationary and limτ→∞B(τ)/τ = 0, we find for each t

UFRlog = lim
τ→∞

−A(τ)

τ
= lim

τ→∞
−Ȧ(τ) = δ0R +

(
Λ̃0 −

1

2
b0

)′
b0. (17)

The UFR as an annually compounded rate of return is given by

UFR = exp (UFRlog)− 1. (18)

Equation (12) implies that only measurement error ξτ,t can explain time variation
in the observed UFR:

lim
τ→∞

yt (τ) = UFRlog + lim
τ→∞

ξτ,t

Since E[Xt] = E[ξτ,t] = 0 if t → ∞, the unconditional expected term structure
is determined by5

R(τ) := lim
t→∞

E[yt (τ)] = −A(τ)

τ
. (19)

The dynamics in the price of risk in (7) are completely determined by the k
prices in Λ̃. To see this, (i) inflation, (ii) the stock return, and (iii) the bond
return depend on the state variables in X as well as variable-specific shocks.
None of these three variables affects the dynamics of priced risk:

(i) The price of unexpected inflation risk has no risk premium in (3) because
the price of unexpected inflation risk cannot be identified on the basis of
data on the nominal side of the economy alone. We follow Koijen et al.
(2010) by assuming that the price of unexpected inflation risk equals zero.

(ii) The equity premium in (5) is assumed to be fixed at ηS , and thus time
independent.

(iii) The risk premium of the bond price in (6) is derived from the affine term
structure yt(τ) in (12).

5To keep our derivations manageable, we consider the term structure of continuously com-
pounded yields. Otherwise, we need to consider yields following a lognormal distribution with
long-run expectation

lim
t→∞

E[exp (yt(τ))] = exp
(
−τ−1A(τ) + τ−2B(τ)′Var (X)B(τ)

)
.

The additional term from the variance would complicate the analysis unnecessarily.
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Hence, the dynamics in the price of risk are implied by the dynamics of the k
linearly independent risks in Λ̃. The bottom two risks in Λ that are absent in Λ̃
follow from the restriction on the equity premium (σ′SΛ0 = ηS and σ′SΛ1 = 01×k),
and the absence of priced unexpected inflation risk (Λ0(k+1) = Λ1(k+1,1) = . . . =
Λ1(k+1,k) = 0). Therefore, the parameters that determine the price of risk are in
Λ̃0 and Λ̃1.

It is straightforward to augment Y in (10) with additional bond portfolios
having different maturities (augment Θ0, Θ1, and σΥ in (9)), or with yields from
(12) (augment γ, Γ, and V directly in (10)). Adding bond portfolios or yields
to Y does not add any new parameter to the VAR(1)-model. In any case, the
model we estimate contains the same number of parameters.

In the next section, we derive the mean and covariance of Y in (10). Closed-
form expressions for some characteristics of R(τ) in (19) are in Section 4.

3 Mean and covariance6

We derive expressions for the mean vector and covariance matrix of the variables
Y in the VAR(1)-model in (10). Such expressions are needed for the implemen-
tation of certain constraints in an optimization procedure. In addition, they are
helpful for informative purposes on the long-run behaviour of the model. The ex-
pressions are unconditional on realizations of Y which means that the expressions
are long-run expectations. The random vector Y may contain any stationary
series: inflation, GDP growth, returns (possibly continuously compounded), a
latent stationary factor, etc. We derive arithmetic means and variances of the
annually compounded returns Ỹ = exp(Y ) − 1. We end this section with an
expression for the geometric mean of Y .

Without loss of generality, we consider a step length of one period, h = 1.
Induction on (10) gives

Yt = γ + Γ (γ + ΓYt−2 + εt−1) + εt

= Γt−1Y0 +
t−1∑
s=0

Γs (γ + εt−s)

It follows from the stationarity of Y that the eigenvalues of Γ are within the unit
circle of the complex plane. Accordingly, Γt−1Y0 → 0 as t→∞, and for some µ
and Σ,

Yt → Y ∗ ∼ N(µ,Σ) (20)
Y ∗ ∼ γ + ΓY ∗ + ε (21)

6The main derivations in this section are based on Cochrane (2005).
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Using (21):

µ = (I − Γ)−1 γ (22)
Σ = ΓΣΓ′ + V (23)

vec(Σ) = (Γ⊗ Γ) vec(Σ) + vec(V )

This leads to an explicit expression for the elements in Σ:7

vec(Σ) = (I − Γ⊗ Γ)−1 vec(V ) (24)

Next, we consider the annually compounded rates of return Ỹt = exp(Yt)−1
where Y is a vector of annually compounded returns. Let DΣ represent the
diagonal matrix with the diagonal elements of Σ. Using well-known properties
of the lognormal distribution and (20), we find as t→∞,

E
[
Ỹt

]
→ exp

(
µ+

1

2
DΣ

)
− 1 (25)

Var
[
Ỹt

]
→ exp (DΣ − 1) exp (2µ+DΣ) (26)

Equations (25)-(26) refer to the limiting distribution of continuously compounded
returns over a single period t. Expressions for the cumulative mean arithmetic
return 1

t

∑t
s=1 Ỹs easily follow from the central limit theorem.

The geometric mean return Y G
t is a cumulative return that depends as follows

on the mean realized continuously compounded return Ȳt := 1
t

∑t
s=1 Ys:

1 + Y G
t =

(
t∏

s=1

(
1 + Ỹs

))1/t

=

(
t∏

s=1

exp (Ys)

)1/t

= exp

(
1

t

t∑
s=1

Ys

)
= exp

(
Ȳt
)

Thus, the gross return 1 + Y G
t follows a lognormal distribution LN (µ,DΣ/t)

with

E
[
1 + Y G

t

]
= exp

(
µ+

DΣ

2t

)
7Equation (24) differs from the incorrect equation (54) in Draper (2014), which is based on

(A4) on p.253 in Banerjee et al. (1993). This equation is inappropriate here since it contains
cross-covariances. In fact, our (23) is similar to (A3) in Banerjee et al. (1993).
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Var
[
1 + Y G

t

]
=

(
exp

(
DΣ

t

)
− 1

)
exp

(
2µ+

DΣ

t

)
As such, Y G

t converges to a degenerate distribution Y G with full probability
mass at

E
[
Y G
]

= exp (µ)− 1. (27)

When optimizing parameter sets in the stationary model (10), the expressions
in (22), (24)–(27) enable us to restrict the unconditional, i.e., long-run, means
and covariances of the variables.

4 Restrictions on the term structure

In Section 3, the time series model in (10) led to relatively straightforward
expressions for the mean and covariance of the variables in Y . In this section, we
derive more complicated, though closed-form, expressions for the cross-sectional
expressions of some characteristics of the unconditional, i.e. long-run, term
structure, R(τ) in (19).

Referring to the functions A(τ) and B(τ) in (13) and (14), Duffee (2002,
p.408) states: ‘The functions A(τ) and B(τ) can be calculated numerically by
solving a series of ordinary differential equations (ODEs).’ Compared to nu-
merical evaluations, the closed-form expressions we derive below are superior
in terms of speed and accuracy. In a similar setting, Dai and Singleton (2002)
also derive closed-form expressions for A(τ) and B(τ). Nonetheless, their result
contains a matrix exponential and the trace of a complicated matrix product.
As a consequence, the link to the underlying parameters is less obvious in their
expressions.

Let us start with a straightforward restriction. Since the price of unexpected
inflation risk equals zero (see p.5), the long-run instantaneous real interest rate
is the difference between the long-run nominal interest rate δ0R in (4) and the
long-run instantaneous inflation δ0π in (2):

δ0r = δ0R − δ0π. (28)

A nonnegative long-run instantaneous real interest rate is thus equivalent to
δ0R ≥ δ0π.

It is straightforward from (13)–(16) that

Ä(τ) =
(
B(τ)− Λ̃0

)′
Ḃ(τ) Ä(0) = Λ̃′0δ1R (29)

B̈(τ) = −MḂ(τ) B̈(0) = Mδ1R (30)
...
A(τ) =

(
B(τ)− Λ̃0

)′
B̈(τ) + Ḃ(τ)′Ḃ(τ)

...
A(0) =

(
−M ′Λ̃0 + δ1R

)′
δ1R (31)
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We must have limτ→∞ |B(τ)| < ∞ to ensure limτ→∞ P(|yt(τ)| <∞) = 1. This
corresponds to positive eigenvalues of M . Equivalently, the leading principal
minors are positive

|Mi| > 0 i = 1, . . . , k (32)

where Mi is the upper-left i× i sub-matrix.
Expressions for the term structure R(τ) at τ = 0 follow most easily from a

Taylor series expansion of the integrand Ȧ(s) in (13) around τ = 0:

R(τ) = −1

τ
A(τ)

= −1

τ

ˆ τ

0
Ȧ(s)ds

= −1

τ

ˆ τ

0

(
Ȧ(0) + Ä(0)s+

1

2

...
A(0)s2 +O(s3)

)
ds

=
1

τ

ˆ τ

0

(
δ0R − Λ̃′0δ1Rs−

1

2

(
−M ′Λ̃0 + δ1R

)′
δ1Rs

2 +O(s3)

)
ds

= δ0R −
1

2
Λ̃′0δ1Rτ +

1

6

(
M ′Λ̃0 − δ1R

)′
δ1Rτ

2 +O(τ3)

Therefore,

R(0) = δ0R (33)

Ṙ(0) = −1

2
Λ̃′0δ1R (34)

R̈(0) =
1

3

(
M ′Λ̃0 − δ1R

)′
δ1R (35)

Next, we find closed-form expressions for A(τ), Ȧ(τ), and B(τ) and R(τ)
with τ > 0. In Appendix B, we show that we can discard M with complex
eigenvalues because the corresponding term structure has components with an
oscillating pattern. In addition, we assume thatM is diagonalizable since (i) this
simplifies derivations significantly, (ii) we did not encounter non-diagonalizable
(defective) M in the likelihood optimization when optimizing over K and Λ̃1,
and (iii) the class of defective matrices has measure zero in the class of matrices.
Nonetheless, the Jordan matrix decomposition can extend the results to defective
matrices.

LetDλ denote a diagonal matrix with diagonal elements of the vector λ. For a
diagonalizable matrixM with eigenvalue vector λ and eigenvalue decomposition
M = V DλV

−1:

M−1 exp (−Mτ) δ1R = M−1V Dexp(−λτ)V
−1δ1R

= V D−1
λ Dexp(−λτ)V

−1δ1R
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=
k∑
i=1

bie
−λiτ

where

V =
[
v1 . . . vk

]
V −1 =

v
−1
1
...

v−1
k

 bi =
1

λi

(
viv
−1
i

)
δ1R i = 1, . . . , k (36)

This gives for (14) the analytical expression

B(τ) = b0 +
k∑
i=1

bie
−λiτ (37)

where b0 = −M−1δ1R. By substituting (37) in (15), we may find

Ȧ(τ) =

(
1

2
B(τ)− Λ̃0

)′
B(τ)− δ0R

=

(
1

2

[
b0 +

k∑
i=1

bie
−λiτ

]
− Λ̃0

)′(
b0 +

k∑
i=1

bie
−λiτ

)
− δ0R

=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R +

(
b0 − Λ̃0

)′ k∑
i=1

bie
−λiτ +

1

2

k∑
i=1

e−λiτb′i

k∑
j=1

bje
−λjτ

= a
(1)
0 +

k∑
i=1

a(1)
i e−λiτ +

k∑
j=1

a
(1)
ij e
−(λi+λj)τ

 (38)

where for i, j ∈ {1, . . . , k}

a
(1)
0 =

(
1

2
b0 − Λ̃0

)′
b0 − δ0R a

(1)
i =

(
b0 − Λ̃0

)′
bi a

(1)
ij =

1

2
b′ibj

By integrating (38) and using A(0) = 0 (see (13)),

A(τ) = a
(1)
0 τ +

k∑
i=1

a(1)
i

λi

(
1− e−λiτ

)
+

k∑
j=1

a
(1)
ij

λi + λj

(
1− e−(λi+λj)τ

)
= a0 + a

(1)
0 τ +

k∑
i=1

aie−λiτ +

k∑
j=1

aije
−(λi+λj)τ

 (39)
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where for i, j ∈ {1, . . . , k}

a0 =

k∑
i=1

a(1)
i

λi
+

k∑
j=1

a
(1)
ij

λi + λj

 ai = −
a

(1)
i

λi
aij = −

a
(1)
ij

λi + λj

Substitution of (39) in (19) gives for the unconditional term structure:8

R(τ) = −a(1)
0 −

1

τ

a0 +
k∑
i=1

aie−λiτ +
k∑
j=1

aije
−(λi+λj)τ


 (40)

The slope of the unconditional term structure is:

Ṙ(τ) = −1

τ

R(τ) + a
(1)
0 +

k∑
i=1

a(1)
i e−λiτ +

k∑
j=1

a
(1)
ij e
−(λi+λj)τ


 (41)

The expressions in (40) and (41) enable us to restrict the level and the slope of
the term structure at certain τ .

To facilitate an easier optimization of the likelihood function, we optimize
over M =

(
K + Λ̃1

)′
instead of Λ̃1. Then, we can impose that M has k distinct

positive eigenvalues and each eigenvector vi of M has a positive first entry. The
optimal (continuous) likelihood function is unaffected when matrices with iden-
tical real eigenvalues are excluded because the class of matrices with k distinct
real eigenvalues λi and vi(1) 6= 0 is dense in the class of matrices with real eigen-
values. Similarly, the sign restriction does not restrict the optimal likelihood
since vi and −vi are both eigenvectors of M .

Therefore, an appropriate k-dimensional matrix M has a unique representa-
tion M = V DλV

−1 with (i = 1, . . . , k)

0 < λ1 < . . . < λk V =
[
v1 . . . vk

]
vi(1) > 0 ‖vi‖ = 1

To deal with the inequality constraints on λi, the auxiliary parameters λ̃i =
log (λi − λi−1) with λ0 = 0 are useful in the optimization since each λ̃i is unre-
stricted and λj =

∑j
i=1 exp

(
λ̃i

)
. The vectors vi represent directions, which are

efficiently captured by a polar coordinate system.
For the two-dimensional case (k = 2), one can verify that distinct real eigen-

values are equivalent to the condition

tr (M)2 > 4 det (M) (42)

8Indeed, UFRlog := limτ→∞R(τ) = −a(1)
0 = δ0R +

(
Λ̃0 − 1

2
b0

)′
b0 which corresponds to

(17).
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5 Estimation results

We estimate the model in Section 2 with k = 2 and certain restrictions on the
variables. The optimal parameter set is compared with other parameter sets: the
estimated set in Draper (2014), and two calibrations of this set. We use the same
time series in Van den Goorbergh et al. (2011) to facilitate a fair comparison
with Draper (2014). This dataset contains quarterly time series for inflation,
stock returns, and swap yields with maturities of 3 months, 1, 2, 3, 5, and 10
years. We have updated this dataset with 2014 data.9

We follow Draper (2014) by deriving the latent state variables in Xt from
the two-year and five-year yields. More specifically, we assume that both yields
yt(2) and yt(5) are measured without error (ξ2,t = ξ5,t ≡ 0) such that the state
vector Xt ∈ R2 at each time t follows uniquely from (12):10[

−2yt (2)
−5yt (5)

]
=

[
A(2)
A(5)

]
+

[
B(2)′

B(5)′

]
Xt

where A(τ) ∈ R is the intercept, and B(τ) ∈ R2 captures time variation in the
risk premiums.

The functions A and B depend on the model parameters. The optimal set of
these parameters maximizes the sum of the loglikelihoods of the observed series
in (10) and (12).11 That is, the likelihood of the time series of inflation, stock
returns, and the term structure. The likelihood of the term structure is based
on the measurement errors ξ̂τ,t (residuals) of the three-month, one-year, three-
year, and ten-year yields. Since the yields with 2 and 5 years to maturity are
measured without error, they completely determine the two-dimensional state
Xt at each time t. The state in turn determines in (10) the errors at the other
maturities.

Rather than optimizing the parameter set without any constraint and cal-
ibrating the model afterwards, we add the constraints in Table 1 to the op-
timization procedure. The constraints force us to reconsider the optimization
procedure of Goffe et al. (1994) as employed in Draper (2014). This procedure
iterates over potentially optimal sets of parameters, and should reduce the like-
lihood of finding a local, non-global, optimum. The latter is highly relevant for

9I thank Peter Vlaar for providing the dataset. A detailed data description is in Appendix
C.

10This differs from the Kalman procedure described in Appendix C of Koijen et al. (2010).
However, Table 5 in their paper shows a zero measurement error for the one-year and five-year
interest rates. As such, Koijen et al. (2010) employ a similar procedure as in Draper (2014).

11When feasible, Duffee and Stanton (2012) advocate a maximum likelihood approach in
favor of the efficient method of moments due to the finite-sample properties of the estimators.
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Table 1: Restrictions, ts = term structure
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our large scale optimization with 23 parameters.12

As the method of Goffe et al. (1994) cannot deal with restrictions, we rewrote
both variable restrictions of the equality form a′x = b (long-run inflation at 2%,
and UFR at 4.2%) in such a way that one parameter is uniquely determined
by the other parameters. The substitutions ensure that one free parameter
is dropped for each restriction. The remaining parameter set is without any
restriction of the equality form a′x = b. A candidate parameter set x which
violates any of the restrictions in the inequality form a′x ≤ b or a′x ≥ b is
simply discarded.

In addition to the substitutions introduced above, we supplement the op-
timization algorithm of Goffe et al. (1994) with a constrained interior point
optimization routine.

Table 2 presents the estimates and the loglikelihood of four different param-
eter sets:

(i) the maximum likelihood estimate in Draper (2014), which is based on the
sample 1973-2013.

(ii) the calibrated parameter set in Draper (2014).

(iii) the calibrated parameter set of DNB based on Draper (2014), and em-
ployed for the 2015Q2 feasibility study for Dutch pension funds.

(iv) our maximum likelihood estimate using the full sample 1973-2014 subject
to the restrictions in Table 1.

Taking account of the wide standard errors of the estimates (i) and (iv),
the different parameter estimates are close to each other.13 Nonetheless, the
parameter sets differ in a number of ways. The constraint of a nonnegative real
interest rate at τ = 0 is binding for estimate (iv) since δ0r = δ0R−π0 = 0 in (28).
The other parameter estimates correspond to a strictly positive instantaneous
real interest rate. Notably, the likelihood LL2013 of our optimal estimate (iv)
exceeds the loglikelihood of the estimate (i) from Draper (2014). This is surpris-
ing as our sample includes 2014 while LL2013 is based on the sample 1973-2013.
Apparently, the optimization algorithm in Draper (2014) found a local optimum.

Table 3 reports the UFR and the long-run statistics of each parameter set. It
turns out that the relatively small difference in parameters have a large impact

12Koijen et al. (2010) do not refer to a specific optimization procedure, though the same
large number of parameters is estimated.

13The standard errors of (i) slightly differ from Draper (2014) because that paper approxi-
mates the derivatives numerically with a relative step length of 0.01. Our smaller relative step
length of 10−6 gives more accurate estimates.
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(i) (ii) (iii) (iv)
Par Estimate Std. error Estimate Estimate Estimate Std. error
Instantaneous expected inflation πt = δ0π + δ′1πXt

δ0π 1.81% (3.19%) 1.98% 2.00% 1.98% (4.05%)
δ1π(1) -0.63% (0.12%) -0.63% -0.63% -0.60% (0.20%)
δ1π(2) 0.14% (0.41%) 0.14% 0.14% 0.27% (0.41%)

Instantaneous nominal interest rate Rt(0) = δ0R + δ′1RXt + ηt(0)

δ0R 2.40% (6.94%) 2.40% 2.40% 1.98% (10.40%)
δ1R(1) -1.48% (0.35%) -1.48% -1.48% -1.44% (0.38%)
δ1R(2) 0.53% (0.96%) 0.53% 0.53% 0.56% (0.97%)

State variables nominal term structure dXt = −KXtdt+ Σ′XdZt
K(1,1) 7.63% (14.63%) 7.63% 7.63% 6.15% (17.06%)
K(2,1) -19.00% (20.71%) -19.00% -19.00% -22.23% (20.13%)
K(2,2) 35.25% (19.54%) 35.25% 35.25% 31.90% (21.85%)

Realized inflation process dΠt
Πt

= πtdt+ σ′ΠdZt
σΠ(1) 0.02% (0.07%) 0.02% 0.02% 0.02% (0.08%)
σΠ(2)(10−4) -0.568 (6.30) -0.568 -0.568 -1.93 (6.47)
σΠ(3) 0.61% (0.04%) 0.61% 0.61% 0.61% (0.04%)

Stock return process dSt
St

= (Rt(0) + ηS)dt+ σ′SdZt
ηS 4.52% (3.68%) 6.57% 4.52% 4.20% (3.77%)
σS(1) -0.53% (1.44%) -0.53% -0.53% -0.54% (1.44%)
σS(2) -0.76% (1.53%) -0.76% -0.76% -0.78% (1.54%)
σS(3) -2.11% (1.51%) -2.11% -2.11% -2.23% (1.46%)
σS(4) 16.59% (0.96%) 17.69% 16.59% 16.39% (0.93%)

Prices of risk Λt = Λ0 + Λ1Xt

Λ0(1) 0.403 (0.337) 0.242 0.280 0.187 (0.513)
Λ0(2) 0.039 (0.294) 0.039 0.027 0.137 (0.624)
Λ1(1,1) 0.149 (0.231) 0.149 0.149 0.142 (0.184)
Λ1(1,2) -0.381 (0.052) -0.381 -0.381 -0.355 (0.037)
Λ1(2,1) 0.089 (0.178) 0.089 0.089 0.144 (0.192)
Λ1(2,2) -0.083 (0.233) -0.083 -0.083 -0.100 (0.211)
LL2013 6525.6 6450.7 6471.0 6549.2
LL2014 6696.7 6619.6 6640.5 6720.4

Table 2: Parameters and standard errors of (i) max. likelihood estimate 2013 in Draper
(2014), (ii) calibrated estimate in Draper (2014), (iii) calibrated DNB parameter set, and (iv)
max. likelihood estimate 2014 with the restrictions in Table 1. Standard errors are determined
using the outer product gradient estimator of the likelihood function, which is only feasible at
a max. likelihood estimate. The parameter symbols are identical to Koijen et al. (2010). LLy
refers to the loglikelihood with the sample ending at year y.
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Figure 1: Nominal term structure of the parameter sets with the corresponding levels
of UFRlog. (i) max. likelihood estimate 2013 in Draper (2014), (ii) calibrated estimate
in Draper (2014), (iii) calibrated DNB parameter set, and (iv) max. likelihood estimate
2014.

on (a) the equity risk premium, as measured by RS − R(0), and (b) the term
structure, as measured by UFRlog, R(τ), and RB(τ) with τ > 0.

First, the equity premium is mainly explained by differences in ηS − δ0R.
By (4) and (5), a high ηS results in a high E

[
RS
]
in estimate (ii). In estimate

(iv), a low ηS and a low δ0R imply a low E
[
RS
]
and a low E[R(0)], respectively.

Second, following (33) and (34), the relatively large differences in the estimates
of δ0R and Λ0 explain differences in levels, slopes and curvatures of the term
structure. This translates into large differences of the UFR, R(τ), and B(τ),
particularly for large τ . The long-run standard deviations (volatilities) of the
different parameter estimates are remarkably similar.

Figure 1 shows the four term structures together with the corresponding
asymptotic level, UFRlog. The latter is appropriate here since R(τ) is also a
continuously compounded yield (see (12) and (19)). The term structure of the
parameter sets (ii) and (iii) starts to exceed the corresponding UFR around
τ = 20 and τ = 30, respectively. This indicates a decreasing term structure at
some (large) maturity τ , which is at odds with the empirical evidence of a higher
risk premium at longer horizons.14 Nonetheless, the overshooting remains small
in both cases.

14This is not to say that in practice, the forward rate may decrease for large maturities.
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(i) (ii) (iii) (iv)
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(18)UFR 6.43% 3.80% 4.18% 4.20%
ar
it
hm

et
ic

m
ea
n

(25)

π 1.84% 2.01% 2.03% 2.01%
RS 7.22% 9.44% 7.22% 6.44%
R(0) 2.48% 2.48% 2.48% 2.05%
RB(5) 4.48% 3.70% 3.86% 3.17%

ar
it
hm

et
ic

st
.d
ev

(26)

π 1.59% 1.59% 1.59% 1.45%
RS 18.43% 20.01% 18.43% 18.10%
R(0) 3.29% 3.29% 3.29% 3.29%
RB(5) 5.96% 5.91% 5.92% 6.16%

ge
om

et
ri
c

m
ea
n

(27)

π 1.83% 2.00% 2.02% 2.00%
RS 5.67% 7.65% 5.67% 4.93%
R(0) 2.43% 2.43% 2.43% 2.00%
R(5) 3.50% 3.06% 3.16% 2.50%
R(30) 5.36% 3.96% 4.20% 3.86%
RB(5) 4.31% 3.53% 3.69% 2.99%
RB(30) 6.33% 4.22% 4.54% 4.55%

co
nt
in
uo

us
ly

co
m
po

un
de
d
re
tu
rn
s (17)UFRlog 6.23% 3.73% 4.09% 4.11%

m
ea
n

(22)

π 1.81% 1.98% 2.00% 1.98%
RS 5.51% 7.37% 5.51% 4.81%
R(0) 2.40% 2.40% 2.40% 1.98%
RB(5) 4.22% 3.47% 3.63% 2.94%

st
.d
ev

(v
ol
at
ili
ty
)

(24)

π 1.56% 1.56% 1.56% 1.42%
RS 17.06% 18.14% 17.06% 16.89%
R(0) 3.21% 3.21% 3.21% 3.22%
RB(5) 5.70% 5.70% 5.70% 5.97%

Table 3: Long-run statistics of inflation π, stock return RS , nominal interest rate R(τ),
and bond portfolio return RB(τ). The bond portfolios have a constant maturity. The
parameter sets are as follows: (i) max. likelihood estimate 2013 in Draper (2014), (ii)
calibrated estimate in Draper (2014), (iii) calibrated DNB parameter set, and (iv) max.
likelihood estimate 2014 with the restrictions in Table 1.
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6 Conclusions

This paper provides closed-form expressions for certain characteristics of the
VAR(1)-representation of a continuous-time affine term structure model such
as the models in Dai and Singleton (2002) and Koijen et al. (2010). We pro-
vide analytical expressions for the long-run, i.e., unconditional, expectations and
variances of inflation, stock returns, bond portfolio returns, and nominal yields.
In addition, we derived closed-form expressions for some other characteristics of
the term structure.

The analytical expressions are useful in the following ways. First, the ex-
pressions are essential when maximizing a likelihood function with constraints
on long-run expectations or covariances. The analytical expressions obviates
calibrations which necessarily involve some arbitrariness. Second, the analytical
expressions enable an ex-post analysis of different parameter sets in terms of
long-run values for expectations, covariances, and the term structure, without
any need for simulation.

To illustrate our results, we estimated a parameter set with an additional
year of data, and improved the optimization method. While our optimal param-
eter set is very similar to previous sets in terms of long-run standard deviations,
it differs substantially in the long-run expectation and the term structure. This
indicates that a thorough long-run analysis is crucial when evaluating a param-
eter set for a long-run scenario analysis.

Appendix

A Discretization

We discretize the multivariate Ornstein-Uhlenbeck process in (9). The expres-
sions in (11) refer to the case with diagonalizable Θ1. Here, we find expressions
that hold for any Θ1, including non-diagonalizable (defective) Θ1. This may
happen when K(1,1) = K(2,2) in K. To the best of our knowledge, this extension
is unknown in the literature.

By applying Ito’s lemma to the process f(t,Υt) = e−Θ1tΥt in (9), one may
find

d (exp (−Θ1t) Υt) = exp (−Θ1t) (Θ0dt+ σΥdZt) .

Therefore,

exp (−Θ1t) Υt

= exp (−Θ1 (t− h)) Υt−h +

ˆ t

u=t−h
d (exp (−Θ1u) Υu)
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=

ˆ h−t

v=−t
exp (Θ1v) Θ0dv + exp (Θ1 (h− t)) Υt−h +

ˆ h−t

v=−t
exp (Θ1v)σΥdZu

Some rewriting gives

Υt = [exp (Θ1h)− I] Θ−1
1 Θ0 + exp (Θ1h) Υt−h +

ˆ h

v=0
exp (Θ1v)σΥdZv (43)

It follows from the Jordan matrix decomposition Θ1 = UJU−1 that for (10):

γ = U [exp (Jh)− I] J−1U−1Θ0 (44)

Γ = U exp (Jh)U−1 (45)

Next, we derive the disturbance covariance V from the integral in (43). We have
for an nb × nb Jordan block Jb of an n× n Jordan matrix J

exp (Jb) = eλb
∑nb−1

d=0 M̃ (d) Jb =


λb 1

λb
. . .
. . . 1

λb


where each M̃ (d) is an nb × nb Toeplitz matrix with entries

M̃
(d)
ij =

{
1

(j−i)! if j = i+ d

0 else

This extends to the Jordan matrix J as

exp (J) = exp (D)
∑nB

d=0M
(d) (46)

where D is a diagonal matrix with the same diagonal as J , nB = maxb (nb)− 1,
and each M (d) is an n× n matrix with entries

M
(d)
ij =

{
1
k! if j = i+ d and (i, j) is in a Jordan block of J

0 else

Applying (46) to the Jordan matrix decomposition Θ1 = UJU−1 gives for the
disturbance covariance in (43):

V =

ˆ h

v=0
exp (Θ1v)σΥσ

′
Υ exp

(
Θ′1v

)
dv

=

ˆ h

v=0
U exp (Jv)U−1σΥ

(
U−1σΥ

)′
exp

(
J ′v
)

dvU ′
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= U

ˆ h

v=0
exp (Dv)

(
nB∑
a=0

M (a)

)
U−1σΥ

(
U−1σΥ

)′( nB∑
b=0

M (b)

)′
exp (Dv) dvU ′

= UWU ′ (47)

where

W =

nB∑
a=0

nB∑
b=0

W (a,b)

W (a,b) =

ˆ h

v=0
exp (Dv)M (a,b) exp (Dv) dv

M (a,b) = M (a)U−1σΥ

(
M (b)U−1σΥ

)′
The entries of W (a,b) are

W
(a,b)
ij =

{
M

(a,b)
ij h if Dii +Djj = 0

M
(a,b)
ij (Dii +Djj)

−1 [exp ([Dii +Djj ]h)− In×n] else

A diagonalizable matrix corresponds to J = D and nB = 0. Then, the expres-
sions for γ, Γ and V in (11) coincide with (44), (45) and (47), respectively.

B Complex eigenvalues

Things are slightly different if M ∈ Rk×k has complex eigenvalues. We consider
k = 2 and M with eigenvalues λ1 = a + bi and λ2 = a − bi (b 6= 0 and
a, b ∈ R). We show that although the complex terms cancel out, the term
structure R(τ) contains an oscillating component which is undesirable from an
empirical perspective. It is easy to extend the analysis to k > 2.

To rule out an oscillating term structure, we restrict the estimation of M
to real eigenvalues. This restriction is important as for instance in the two-
dimensional case the complex eigenvalue set {(a+ bi, a− bi) : a, b ∈ R} has the
same measure as the real eigenvalue set {(a, b) : a, b ∈ R}.

Letting Mvj = λjvj (j = 1, 2) gives Re(Mv1) = Re(Mv2), Im(Mv1) =
−Im(Mv2) and V −1V = I2×2. Hence, we may write for p,q,u,v ∈ R2

v1 = u + vi v−1
1 = p′ + q′i

v2 = u− vi v−1
2 = p′ − q′i.

This implies for the vector b1 in (36)

b1 =
1

λ1

(
v1v

−1
1

)
δ1R
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=
1

a+ bi
(u + vi)

(
p′ + q′i

)
δ1R

=
a− bi
a2 + b2

(
up′ − vq′ +

(
uq′ + vp′

)
i
)
δ1R

=
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b+

{
−
(
up′ − vq′

)
b+

(
uq′ + vp′

)
a
}
i
] δ1R

a2 + b2

= f + gi

where

f =
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b
] δ1R

a2 + b2

g =
[
−
(
up′ − vq′

)
b+

(
uq′ + vp′

)
a
] δ1R

a2 + b2

Considering vj = u± vi, v−1
j = p′ ± q′i, and λj = a± bi for j = 1, 2, only b, q,

and v have different signs for b1 and b2. Therefore,

b2 =
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b+

((
up′ − vq′

)
b−

(
uq′ + vp′

)
a
)
i
] δ1R

a2 + b2

= f − gi

This gives

b1e
−λ1τ + b2e

−λ2τ = e−aτ
[
(f + gi) e−bτi + (f − gi) ebτi

]
= e−aτ [(f + gi) (cos (bτ)− i sin (bτ)) + (f − gi) (cos (bτ) + i sin (bτ))]

= 2e−aτ [f cos (bτ) + g sin (bτ)]

Equation (37) becomes

B(τ) = b0 + 2e−aτ [f cos (bτ) + g sin (bτ)] (48)

where b0 = −M−1δ1R. That is, B(τ) is a real-valued oscillating function around
exp(−aτ).

Substituting (48) into (15) gives after some algebra,

Ȧ(τ) = −
(
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)′
Λ0

+
1

2

(
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)′ (
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)
− δ0R

=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ (f cos (bτ) + g sin (bτ))

+ 2e−2aτ
(
f ′f cos2 (bτ) + 2f ′g cos (bτ) sin (bτ) + g′g sin2 (bτ)

)
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=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ (f cos (bτ) + g sin (bτ))

+ 2e−2aτ

(
f ′f

2
[1 + cos (2bτ)] + f ′g sin (2bτ) +

g′g

2
[1− cos (2bτ)]

)
=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ [f cos (bτ) + g sin (bτ)]

+ e−2aτ
[
f ′f + g′g +

(
f ′f − g′g

)
cos (2bτ) + 2f ′g sin (2bτ)

]
Therefore,

Ȧ(τ) = a
(1)
0 +

5∑
j=1

a
(1c)
j hj(τ) (49)

where

a
(1)
0 =

(
1

2
b0 − Λ̃0

)′
b0 − δ0R

a
(1c)
1 = 2

(
b0 − Λ̃0

)′
f h1 (τ) = exp (−at) cos (bτ)

a
(1c)
2 = 2

(
b0 − Λ̃0

)′
g h2 (τ) = exp (−at) sin (bτ)

a
(1c)
3 = f ′f + g′g h3 (τ) = exp (−2at)

a
(1c)
4 = f ′f − g′g h4 (τ) = exp (−2at) cos (2bτ)

a
(1c)
5 = 2f ′g h5 (τ) = exp (−2at) sin (2bτ)

BecauseM is positive definite, we have without loss of generality a, b > 0. Using
the identities15

ˆ τ

t=0
exp (−at) cos (bt) dt =

a

a2 + b2
+

exp (−aτ)

a2 + b2
[b sin (bτ)− a cos (bτ)]

ˆ τ

t=0
exp (−at) sin (bt) dt =

b

a2 + b2
− exp (−aτ)

a2 + b2
[a sin (bτ) + b cos (bτ)]

and integrating (49) leads to another real-valued oscillating function:

A(τ) = a
(1)
0 τ +

5∑
j=1

a
(1c)
j kj(τ) (50)

where

k1 (τ) =
1

a2 + b2
[a+ exp (−aτ) (b sin (bτ)− a cos (bτ))]

15Both equations are easily verified by differentiating both hand sides and requiring that the
expressions are zero at τ = 0.
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k2 (τ) =
1

a2 + b2
[b− exp (−aτ) (a sin (bτ) + b cos (bτ))]

k3 (τ) =
1

2a
(1− exp (−2aτ))

k4 (τ) =
1

2 (a2 + b2)
[a+ exp (−2aτ) (b sin (2bτ)− a cos (2bτ))]

k5 (τ) =
1

2 (a2 + b2)
[b− exp (−2aτ) (a sin (2bτ) + b cos (2bτ))]

Again A(0) = 0 as kj(0) = 0 for j ∈ {1, . . . , 5}. We obtain from (50) an explicit
expression for the unconditional term structure R(τ) = −A(τ)/τ :

R(τ) = −a(1)
0 −

1

τ

5∑
j=1

a
(1c)
j kj(τ) (51)

with derivative

Ṙ(τ) = −1

τ

R(τ) + a
(1)
0 +

5∑
j=1

a
(1c)
j k̇j(τ)

 (52)

The expressions in (51) and (52) are more complicated than (40) and (41) which
represent the case of two (possibly distinct) real eigenvalues. More important,
the term structure R(τ) in (51) exhibits oscillations in τ if b 6= 0. This motivates
us to restrict the estimation of M to matrices with real positive eigenvalues.

As as example, Figure 2 shows the implied term structure for

M =

[
− 1

10 1
−1

4
1
5

]
δ0R = 0.025 δ1R = 1

100

[
1
1

]
Λ̃0 = 1

5

[
1
1

]
(53)

The eigenvalues of M are 0.05± 0.477i and the term structure does indeed have
an oscillating pattern.

C Data

Following Draper (2014) we use the following time series from Van den Goor-
bergh et al. (2011):

• Inflation: From 1999 on, the Harmonized Index of Consumer Prices for the
euro area from the European Central Bank data website16 is used. Before
then, German (Western German until 1990) consumer price index figures
published by the International Financial Statistics of the International
Monetary Fund are included.

16http://sdw.ecb.europa.eu
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Figure 2: Oscillating term structure with parameters as in (53). The matrix M has
complex eigenvalues.

• Yields: Six yields are used in estimation: yields with a three-month, one-
year, two-year, three-year, five-year, and ten-year maturity.

– Short nominal yields: three-month money market rates are taken
from the Bundesbank.17 For the period 1973:I to 1990:II, end-of-
quarter money market rates reported by Frankfurt banks are taken,
whereas thereafter three-month Frankfurt Interbank Offered Rates
are included.

– Long nominal yields: From 1987:IV on, zero-coupon rates are con-
structed from swap rates published by De Nederlandsche Bank.18 For
the period 1973:I to 1987:III, zero coupon yields with maturities of
one to 15 years (from the Bundesbank website) based on government
bonds were used as well (15-year rates start in June 1986). No ad-
justments were made to correct for possible differences in the credit
risk of swaps, on the one hand, and German bonds, on the other. The
biggest difference in yield between the two term structures (for the
two-year yield) in 1987:IV was only 12 basis points.

• Stock returns: MSCI index from FactSet. Returns are in euros (Deutschmark
before 1999) and hedged for US dollar exposure.

17www.bundesbank.de
18www.dnb.nl
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