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Abstract

Pension funds are faced with multiple headwinds in the coming decades: demographic risk
from the continuing ageing process, wage risk from a lower productivity growth rate, and fi-
nancial risk from low real interest rates. We model the joint distribution of these risks for the
Netherlands by combining well-known models from the literature. The model’s aim is to be
a building block in evaluating a wide range of policy reforms on pension policy. Evaluations
are possible at an age-specific, at a cohort-specific or at an aggregate level, and for a short
run analysis as well as for a long run analysis of more than a few decades. Our results indi-
cate that migration policy is a key determinant of the population size in the Netherlands after
2060. The short run dependence between the key risks is low thereby suggesting the presence
of diversification benefits of the Dutch multi-pillar pension system.

1 Introduction

The ageing process, the low growth rates in productivity, and the low interest rate economy require
a consideration of risks related to pension funds and public expenditures on social security. We
therefore model demographic risk, productivity risk and financial risk with VAR(1) submodels,
and find a low dependence between the annual shocks in the three different models. The joint
distribution of the risk factors enables us to evaluate the long run effect of several policy measures
on Dutch social security. Examples include the implementation of a new pension scheme and its
transition process, or the optimal mix of pay-as-you-go (PAYG) and funded pension schemes.

Broer (2010) provides an extensive literature on the dependencies between the three key risk
factors. More recently, Aro and Pennanen (2014) price mortality linked derivatives by relating
mortality to several financial variables. Niu and Melenberg (2014) augment a mortality model with
GDP per capita.

The impact of each risk factor on the sustainability of a pension scheme depends on the type of
the scheme. Starting with demographic risk, most developed countries are confronted with declining
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population growth rates, and shrinking population sizes in the coming decades.1 As a consequence,
the number of retirees for each worker is expected to increase substantially during the next decades.
For this fraction, Van Duin and Stoeldraijer (2014) project an increase from 29 percent in 2014 to
39 percent in 2040 if the retirement age is adjusted to life expectancy, and even 51 percent without
this adjustment. Such demographic risk is of particular interest for a PAYG pension scheme because
it relies on intergenerational risk sharing.

Productivity risk makes future wages uncertain. This is particularly important in a defined
benefit (DB) PAYG scheme if the payments to retirees are corrected for wage inflation. Through
nominal wage rigidity, an adverse productivity shock has most impact on the replacement rates of
the current working population in this DB PAYG scheme. Suppose productivity growth is lower
than wage growth. Thus, the current working generation faces a relatively high contribution rate
to pay the wage indexed defined benefit of the old. In the long run, wages will adjust such that
the current working generation is faced with lower wages, and ultimately lower pension benefits
in this PAYG scheme. In a funded scheme, the current workers experience the direct effect of the
productivity shock. Due to this shock, the indexation of the pension benefits will be lower at some
point in time in a funded DB scheme. Therefore, the current retirees may also suffer from the
productivity shock. In a funded defined contribution (DC) scheme, retirees may also suffer through
their capital holdings provided capital returns are affected by the productivity shock.

Following the reasoning above, financial risk, e.g., risks in capital returns, has most impact on
the replacement rates in a funded DC scheme as it affects the pension benefits of all generations.
In a funded DB scheme, the response to financial shocks is smoothed by adjustments in pension
contribution rates or pension benefits. Private capital holdings amplify the effects to shareholders.

Though the risks are in isolation relevant for pensions, the dependencies between the risks may
amplify or mitigate certain effects. For instance, the joint effect of a low mortality, a wage growth
that exceeds productivity growth, and a low capital return is very problematic in a DB scheme,
particularly with wage indexing. Such risks are highly relevant for the Netherlands as the first pillar
is a DB PAYG scheme, and most schemes in the second pillar are most similar to a funded DB
scheme. Our results indicate a moderate instantaneous dependence between the risks.

To model the risks for the next decades, we outline an a-theoretical parsimonious VAR(1) model
for the Netherlands. Demographic risk is described in Section 2, wage-productivity risk in Section
3, and financial risk in Section 4. The joint model is estimated in Section 5. Section 6 discusses
potential improvements of the current model. Conclusions are in Section 7.

2 Demography

Demographic risk of pension policy consists of three components: risk in mortality, fertility, and
migration. First, mortality affects the spell that an individual receives a pension (longevity risk).
As such, a lower mortality is costly for the current working generation in a DB PAYG scheme. In

1See UN (2015) for world projections, EC (2014) for European projections, and Van Duin and Stoeldraijer (2014)
for Dutch projections.
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a funded DC scheme, the retirees pay the bill themselves by a reduction in their pension benefits.
Second, fertility is the key determinant for population growth, and hence the size of future

generations. A small future working generation is problematic for the future funding in a PAYG
scheme. In a funded DB scheme, a small working generation makes the pension system vulnerable
to capital shocks. More specifically, a large negative capital shock during the working age of a
small-sized generation requires a higher pension contribution to prevent cuts in pension benefits for
the more sizeable generation of retirees.

Finally, migration and other changes such as administrative corrections explain the remaining
changes in population size. This component mainly depends on foreign economic conditions and
political unrest, which makes it highly volatile.

We model each of the three demographic submodels with age-specific time series. Each sub-
models contains one or two factors that are common to all age groups. The mortality submodel is
discussed in Section 2.1, the fertility submodel is in Section 2.2, and the migration submodel ends
this section in Section 2.3.

2.1 Mortality

The model A huge literature on mortality models has developed since the seminal paper of Lee
and Carter (1992). Booth and Tickle (2008) contains an extensive literature review. Our mortality
model is an extension of Lee and Carter (1992) in the spirit of Li and Lee (2005).2 This extension
assumes that the mortality of one group converges to the mortality of a larger group. In our case,
Dutch mortality is assumed to converge towards the aggregate mortality of 13 European countries.3

The data is from the Human Mortality Database if available, otherwise from Eurostat.4 Data is
available from 1960 to 2013 for the ages 0 to 99.

Let x = 0, . . . , 99 and t = 0, . . . , T denote age and year, respectively. Define the mortality rate
mx,t = Dx,t/Ex,t where Dx,t is the number of deaths and the exposure Ex,t is the population of age
x during year t, computed following the protocol of the Human Mortality Database.5 We model
the mortality rate as

ln
(
mEU
x,t

)
= ax + bxKt + εEU

x,t (1)

ln
(
mNL
x,t

)
= ax + bxKt + βxkt + εNL

x,t (2)

where εEU
t ∼

(
0,ΣEU

)
and εNL

t ∼
(
0,ΣNL

)
are mutually independent disturbances with standard

deviation σEU
x and σNL

x , respectively. The superscripts EU and NL refer to the whole group and
the Netherlands, respectively.6

2Likewise, AG (2014) estimates the Li and Lee (2005) model on European data.
3The countries are Austria, Belgium, Germany, Denmark, Finland, France, Ireland, Iceland, Luxembourg, Nether-

lands, Norway, Sweden, and Switzerland.
4http://www.mortality.org and http://ec.europa.eu/eurostat/data/database.
5http://www.mortality.org/Public/Docs/MethodsProtocol.pdf
6In our Dutch sample, we did not find the cohort-specific mortality effects encountered in Renshaw and Haberman

(2006) for mortality data of England and Wales. In addition, the dependence between cohort-and-period effects is
difficult to simulate given incompletely observed cohorts.
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Li and Lee (2005) include an additional country-specific intercept term in (2). However, this
would represent a permanent age-specific difference between log mortality in the Netherlands and
log mortality in Europe. This additional intercept term is missing here as it would contrast with
our model assumption of convergence in mortality rates.7

Although it is straightforward to model gender-specific mortality, our unisex model aggregates
mortality data for males and females. The aggregation makes the common factors K and k less
sensitive to gender-specific characteristics, such as changes in smoking patterns. In addition, gender-
specific models require an assessment of dependencies between the two sexes. Indeed, we do not aim
to draw gender-specific policy results. Nevertheless, it is straightforward to extend our unisex model
to gender-specific populations. Aggregating two linear gender-specific mortality factors gives again
a linear mortality process provided the gender proportions in the total population are sufficiently
stable over different ages.

Estimation Following Li and Lee (2005), we employ six steps to estimate (1) and (2):

(i) The vector a contains the age-specific means of log EU mortality. Subtract ax from the
corresponding time series ln

(
mEU
x,t

)
.

(ii) The vector b and the time series K are from the first principal component of the time series
obtained in (i).8

(iii) The vector b and the time series K are normalized such that
∑

x bx = 1 (set K := b̃K and
b := b/b̃ where b̃ is the sum over the elements of the initial b).

(iv) Each Kt is adjusted such that it matches the life expectancy at birth in year t.9

(v) The covariance matrix of the residuals is ΣEU.

(vi) Apply (ii)–(iv) to the residuals of Dutch mortality in (2): ln
(
mNL
x,t

)
− ax − bxKt. This gives

the vector β, the time series k, and the covariance matrix ΣNL.

Fixing a in step (i) excludes a translation of K in (1), the scaling of b in (iii) excludes a scaling
of K. This identification scheme does not affect the goodness of fit nor the mortality predictions
because each product ax + bxKt remains the same in (1). The first principal component K explains
97.2% of the variation in ln

(
mEU
x,t

)
. As a consequence, the projected life expectancy in step (ii)

is still close to the true life expectancy. Indeed, skipping step (iv) has no significant effect on the
results. We choose to follow Li and Lee (2005) by performing this step. The monotonicity of life
expectancy in Kt and kt ensures that this step is fast.

7We also tested the model with a country-specific intercept in (2). Since Dutch mortality data is close to the
European average, a country-specific intercept has no significant impact on the projections of life expectancy and
population size.

8A singular value decomposition produces identical b and K if the mortality data is demeaned.
9We loosely refer to the period life expectancy as life expectancy. The period life expectancy in a certain period

is the life expectancy of an individual facing the mortality rates in that period.
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Figure 1: Estimation of (1) and (2). The intercepts a (top left), slopes b and β (second column),
the standard deviation σEU and σNL of the residuals (third column), and common time series K
and k (fourth column).

Figure 1 shows the estimation results. The age pattern in a shows the familiar mortality pattern.
Mortality is increasing with age after a few years of living, and relatively high for individuals around
twenty years old. The coefficients of b suggest that children benefited most from the decreasing
pattern in K in the top right plot. Though (log) mortality is high at old ages (see a), the standard
deviation of the residuals σEU is low for such ages (see third top plot). Therefore, the common
factor K models old-age mortality well. This is important as most persons die at such ages.

The coefficients of β in Figure 1 suggest that the common factor k does not model the Dutch
mortality deviation well for young children and persons around 50 years old. On the other hand, the
standard deviation σNL is relatively low for individuals of 50 years old, thereby indicating that the
common factor K models mortality quite well for this age group. The bottom right plot suggests
that it is reasonable to assume that k converges to zero,

Figure 2 depicts the autocorrelation function (ACF) and the partial autocorrelation function
(PACF) of K and k. Both ACFs show an exponential decay (left), while the PACFs have a cut-off
after lag one (right). The ACF and PACF of the differenced series have a cut-off immediately after
lag zero (not shown), which corresponds to white noise. Accordingly, the Box-Jenkins procedure
suggests an AR(1) model for both K and k. The time series dynamics are

Kt = c+Kt−1 + ηEU
t (3)
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Figure 2: Autocorrelation function (left) and partial autocorrelation function (right) of K (top) and
k (bottom).

kt = ρkt−1 + ηNL
t (4)

where ηEU
t ∼ N(0, σ2

K) and ηNL
t ∼ N(0, σ2

k) are mutually independent Gaussian disturbances. In
line with the standard literature, the common factor K follows a random walk in equation (3). In
contrast to Li and Lee (2005), equation (4) has no drift term. Omitting this term gives that mNL

x,t

converges towards mEU
x,t since we excluded an age-specific intercept in (2).10

We estimate the parameters c, ρ, σK and σk by applying OLS to (3) and (4). Our estimation
procedure ensures ρ < 1 (stationarity), and σK , σk > 0. Appendix A describes the implementation
of the restrictions in more detail. We take parameter uncertainty into account by sampling from the
asymptotic parameter distributions depicted in Figure 3. A negative c is consistent with declining
mortality rates. The standard deviation σK suggests that K may increase incidentally, in line with
the five years in our sample where K increases. The autocorrelation coefficient ρ of k is close to
0.9, thereby indicating a high persistence of Dutch shocks to mortality. The standard deviation σk
tends to be lower than σK , consistent with the view that the common factor is the most important
driver of variation in mortality rates.

High age mortality Mortality data exhibits a higher variance for high ages as mortality is more
scarce at such ages. Similar to Antonio (2012), AG (2014) and Ševčíková et al. (2015), we use
the regression method of Kannisto (1992) for high ages. This method linearly extrapolates the
(simulated) logit of the mortality rate mx,t:

µx,t = ln

(
mx,t

1−mx,t

)
(5)

10As a check, we added a drift term to (4), which did not change the results.
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Figure 3: Asymptotic marginal parameter distribution of c, σK , ρ, and σk in (3) and (4).

In a cross-sectional regression, the logit rates µx,t are regressed on the corresponding ages x =
80, . . . , 95:

µx,t = ãtx+ b̃t + ξ ξ ∼ N(0, σ̃2
t ) (6)

In each simulation, we estimate for each time period t the parameters ãt, b̃t, and σ̃t by an OLS
regression. Our dataset satisfies mx,t < 1 at these ages. The parameter estimates imply the
projection

µ̂x,t = âtx+ b̂t + ξ̂x,t x > 95

with each ξ̂x,t an independent draw from N(0, σ̂2
t ). The simulated mortality rate m̂x,t follows by

inverting the logit transformation (5) of µ̂x,t:

m̂x,t =
1

1 + exp (−µ̂x,t)

The following limitation applies to the method of Kannisto (1992). The mortality rate mx,t

declines faster over time for the lower ages in {80, . . . , 95}. The mortality projection extrapolates this
divergent pattern to µ̂x,t for more distant simulation horizons t. When the time horizon t increases,
the slope ât increases in the cross-sectional regression (6), while the intercept b̂t decreases. In most
of the simulations, the increase in ât dominates, which leads to a mortality rate that increases over
time for very high ages. A typical example is in Figure 4 where the projected logit mortality rate
µ̂x,t increases over time for ages x > 110. This limitation is solely a consequence of the extrapolation
method of Kannisto (1992), regardless of the underlying mortality model at lower ages. Though
the impact is relatively small for our current purposes, we stress that simulations over a horizon of
several hundreds of years could be severely affected by this limitation. For instance, mortality rates
may become close to one for ages above 110, while they converge to zero for lower ages.

Simulation The simulated mortality rates in a certain period generate a distribution of the period
life expectancy at birth. This is the life expectancy a new born faces under the mortality rates of
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Figure 4: Example simulation for logit mortality rate µ̂x,t (left) and mortality rate m̂x,t (right) for
ages x = 85, 90, 95, 100, 115, 120. The Kannisto (1992) procedure is applied to ages above 95.

that specific period. It differs from the cohort life expectancy which aims to anticipate future
developments in mortality. Though more relevant for an individual’s life expectancy, the cohort life
expectancy depends on highly uncertain probabilities in the more distant future. This paper focuses
on the more commonly used period life expectancy to show simulations of life expectancy. That
being said, policy implementations should be based on the more uncertain cohort life expectancy if
necessary.

An important caveat applies to the classical Lee-Carter setup in (1) and (3). It leads to the
counterintuitive result that the confidence intervals of the mortality rates decrease exponentially
when the horizon increases. To see this, the distribution of the European mortality rate is for given
model parameters bx and Kt,

ln
(
mEU
x,t

)
− ln

(
mEU
x,t−1

)
= bx (Kt −Kt−1) + εEU

x,t − εEU
x,t−1

mEU
x,t

mEU
x,0

= exp
(
bx (Kt −K0) + εEU

x,t − εEU
x,0

)
For large t,

tσ2
K = Var (Kt −K0)� Var

(
εEU
x,t − εEU

x,0

)
= 2

(
σEU
x

)2
such that

mEU
x,t → mEU

x,0 exp
(
bxct+ bxσK

√
tZt

)
(7)

That is, the mortality rate follows a lognormal distribution with variance

Var
(
mEU
x,t

)
→
[
1− exp

(
−b2xσ2

Kt
)]

exp
(
2t
[
bxc+ b2xσ

2
K

])
→ exp

(
2bxt

[
c+ bxσ

2
K

])
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Figure 5: Projections of Dutch life expectancy at birth in UN (2015). Left: females, right: males.
Source: http://esa.un.org/unpd/wpp/Graphs/

The inequality c < −bxσ2
K holds for the vast majority of samples of the parameters in Figure 1 and

3. It then follows from bx > 0 (Figure 1) that for high t the confidence interval of mEU
x,t decreases

in t. Accordingly, the confidence interval of the period life expectancy shrinks when the (high)
simulation horizon increases, while intuition and the projection in UN (2015) suggest the opposite
(see Figure 5).

To resolve this issue, the variance of ηEU
t in (3) increases if mortality rates are low, i.e., K is

low. More specifically, we set

σK(Kt) = σK max ((K0 −Kt)σ0, 1) (8)

The constant σ0 is calibrated on the width of the 95% confidence interval of life expectancy for the
year 2100 in UN (2015). Figure 5 indicates that this width is about 10 years. In Van Duin and
Stoeldraijer (2014), the width of this 95% confidence interval is already 10 years in 2056.11

For several values of σ0, we draw 5,000 parameter values together with a time series for the
disturbances in (1) and (4). It turns out that σ0 = 0.04 in (8) results in the desired width of 10
years in 2100, see Figure 6. On average, the adjustment σK(Kt) > σK in (8) starts to work after
13 years since σK(Kt) = σK if t < (cσ0)−1 = 13.2 years.

Not only the width is similar to the UN model, the median Dutch unisex life expectancy in
Figure 6 is also comparable to the median projection of the gender-specific distributions in Figure
5. More specifically, the median of our projection is 88 years in 2060 compared to 87.6 in the UN

11See Statistics Netherlands’ StatLine for exact numbers, and Carolina and Van Duin (2010) for a motivation using
historical gender-specific projections.
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Figure 6: Projected Dutch unisex life expectancy at birth with 5,000 simulations with the model
(1)–(4). Each simulation has a different sample from the parameter distribution.

model.12 Our projection is also close to the 87 years in EC (2014, Table III.19.1), and 88.5 years in
Van Duin and Stoeldraijer (2014).13

Instead of projecting age-specific probabilities of death, the model in UN (2015) makes a Bayesian
projection of life expectancy for multiple countries (see Gerland et al. (2014) and the references
therein). A potentially fruitful research avenue is to translate the Bayesian scenarios of life ex-
pectancy into scenarios of age-specific mortality. The UN is currently evaluating extensions along
such lines to model mortality and fertility, see Ševčíková et al. (2015). Solely modelling life ex-
pectancy requires a substantially lower number of parameters, and is therefore more suitable for a
Bayesian estimation. Nonetheless, four arguments motivate us to stick to the standard approach
where the simulated age-specific mortality implies the simulated life expectancy at birth.

First, it is more intuitive that life expectancy is the result of the more fundamental age-specific
probabilities of death than the other way around. Second, our focus on pension policy implies a
focus on age-specific mortality rates. Third, we experimented with a simple time series specification
to model the period life expectancy directly. However, this procedure cannot capture the slowdown
in gains observed in Figure 5 and 6 at long horizons. For developed countries, the more sophisticated
UN model implicitly imposes convergence of life expectancy towards a low rate of growth, thereby
forcing a slowdown in gains of life expectancy at a high life expectancy. Fourth, we discussed that
the extrapolation method of Kannisto (1992) cannot deal with improvements in mortality at high

12Average of the 2055-60 and 2060-65 in the Excel file of the UN Population Prospects, the 2015 Revision.
13See Statistics Netherlands’ StatLine for exact numbers.
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ages. This becomes particularly problematic under a direct simulation of life expectancy since the
life expectancy increases faster. Hence, the age-specific mortality distribution would converge to a
degenerate distribution at a relatively short horizon.

Next, we compare our results with the results in AG (2014). Like our paper, AG (2014) uses
the method in Li and Lee (2005) to project Dutch mortality. There are some differences with our
setup. First, along with the 13 countries in our dataset, that paper includes combined mortality
data from England and Wales. Second, they consider gender-specific mortality models. Though
the setup of both gender-specific models is identical, the processes are assumed to be mutually
independent. Third, their underlying model is a Poisson process such that they model mortality
intensities rather than mortality rates. Fourth, they estimate an unobserved mortality process by
using a Kalman filter. Our model estimates a time series model for the time series of the first
singular value (corrected for differences with the observed period life expectancy). Fifth, we take
parameter uncertainty into account by sampling from their asymptotic distributions. Sixth, their
data sample starts in 1970 and runs to 2013. For the latest years of some countries, data availability
forces AG (2014) to use mortality projections. For each country in our sample, the data starts in
1960 and ends in 2013. Finally, AG (2014) does not anticipate the counterintuitive result on the
confidence intervals that we resolve with (8).

Figure 7 shows our mortality projections of a 65 years old and the projection for females in AG
(2014). The model in AG (2014) has some so-called jump-off risk from the Kalman filter. This
initial mismodelling causes a too low prediction for the first simulation year. Two opposing forces
explain the remarkably stable width of the confidence intervals in AG (2014). While forecasting
at longer horizons should produce a wider confidence interval for the logarithm of the mortality
rates, this effect is counterbalanced by inverting the log transformation of ln (mx,t) at lower mx,t in
(7). In contrast, our model has additional uncertainty from (i) the parameter uncertainty, and (ii)
the calibrated σK(Kt) in (8) when mortality rates decline. The additional channels explain why
the confidence bands widen over time in Figure 6 and the left panel in Figure 7. After 50 years of
simulation, the median of the projections in Figure 7 are quite similar, particularly when taking into
account the lower mortality rate of females and that our model employs unisex mortality data. In
2063, the 95% confidence intervals of mortality of a 65 years old have a width of 0.3% (left panel),
and 0.2% (right panel).

2.2 Fertility

The model Figure 8 characterizes fertility rates from several perspectives. The period total
fertility rate (TFR) is the expected number of births for a female experiencing at each age the birth
rate in a certain period. As such, it is not affected by composition effects of the population. The
two left plots and the two middle plots indicate that the period total fertility rate (TFR) per female
has stabilized around 1.8. Nonetheless, the economy has some effect on the fertility rate by period
(bottom middle plot). The top right panel shows that the fertility distribution is remarkably stable
for the cohorts born since 1970. The bottom plots indicate some time variation in the fertility
distribution, thus mainly due to cohorts born before 1970.
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Figure 7: Mortality predictions for 65 years old with 5,000 simulations (left), and for 65 years old
females from Fig.1 in AG (2014) with 95% confidence intervals (right).

Figure 8 motivates us to

• impose a long run fertility rate of ā = 1.8 (top middle plot). This is identical to the long
run total fertility rate in EC (2014, Table III.19.1), slightly below the rate of 1.85 assumed in
Raftery et al. (2014), and slightly above the rate of 1.75 assumed in Van Duin and Stoeldraijer
(2014). Lee and Tuljapurkar (1994) restrict the TFR in the U.S. to converge towards the mean
replacement rate of 2.1.

• set the long run fertility distribution ax equal to the fertility distribution of the two most
recent years in our sample (see right plots). We scale ax such that it sums to the long run
fertility rate:

∑
x ax = ā.

The fertility model is a simplified version of the fertility model in Lee and Tuljapurkar (1994), which
is based on the mortality model in Lee and Carter (1992). Let fx,t denote the expected number of
children born in year t for a female with end-of-year age x. The (period) TFR is then ft =

∑
x fx,t.

The dynamics of the common fertility factor Ft determine the fertility at each age x:

fx,t = ax + bxFt + εt (9)
Ft = ρFt−1 + ηt + θηt−1 (10)

where x = 15, . . . , 49, εt ∼
(
0, σ2

x

)
, and ηt ∼ N

(
0, σ2

F

)
. The ARMA(1,1) model in (10) is also in

Lee and Tuljapurkar (1994). By imposing, ρ < 1, the TFR has unconditional mean E[ft] = ā and
unconditional variance

Var (ft) =
∑
x

b2xVar (Ft) + σ2
x =

∑
x

1 + θ2

1− ρ2
b2xσ

2
F + σ2

x (11)
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Figure 8: Fertility plots. TFR is the period total fertility rate. Age is the mother age at 31 December,
obs. year stands for the observation year. In the top left plot, solid lines are without missing fertility data,
and dotted lines have missing data. Since the data is by period, (i) the birth data at low ages is missing for
females with earlier birth years, and (ii) the birth data at high ages is missing (still unknown) for females
with more recent birth years.

To keep the model simple, we omit (i) time variation in the age pattern of ax and bx, (ii) an explicit
modelling of cohort effects.14 None of these effects has an effect on the long run population size nor
on the age composition, the focus of our analysis.

Due to data limitations, all births with a mother’s age x below 16 are in the age group labeled
x = 15, and all births with a mother age that exceeds 48 are in the age group labeled x = 49. The
estimation sample runs from 1960 to 2014.

Estimation Note that Ft = ft − ā represents the difference between the TFR at time t and the
long run TFR. Each bx is the slope of the regression of fx,t on an intercept and Ft. It can be verified
that

∑
x bx = 1 holds, because by construction a change in Ft leads to an identical change in the

TFR ft.
Similar to the mortality model, parameter uncertainty is taken into account by considering the

asymptotic parameter distributions. Figure 9 reports the estimates of a, b, σ, and F in (9). By
construction, ax in the left plot has a similar bell shape in the age x as the right panels in Figure

14Broer (2010) models variation in fertility by the variation along the cohort dimension. The estimation does not
take any uncertainty into account for cohorts older than 15 at the end of the sample. As a consequence, Figure 4.2
in that paper shows a remarkable small uncertainty in the period TFR for the first three decades of simulation.
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Figure 9: Estimation of (9). The intercept a, slope b, the standard deviation of the residuals σ, and
the common time series F .
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Figure 10: Autocorrelation function (ACF, left) and partial autocorrelation function (PACF, right)
of F .

8 where fertility is maximal around the age of 30. In the second plot in Figure 9, the age pattern
in bx reflects that fertility has the highest exposure to F for females in their early twenties. Thus,
the decrease in the time series F in the right plot may capture a lower TFR as well as the higher
mother birth age due to increases in the period of education for females. The age-specific standard
deviation σ in the third plot shows that the model is particularly accurate for females in their late
twenties, i.e., exactly when fertility is high.

Figure 10 shows that the autocorrelation function of F is highly persistent, whereas the partial
autocorrelation function is significant for the first two lags. Hence, the ARMA(1,1) model in (10) is
in line with the Box-Jenkins procedure. The parameters ρ, θ, and σF in this equation are obtained
with maximum likelihood estimation.15 Instead of estimating the parameters directly, we estimate

15The ARMA(1,1) model is a Kalman filter model with two latent states. The error prediction decomposition gives
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Figure 11: Estimation of (10). Asymptotic marginal parameter distribution of ρ, θ and σF .

ρ = logit (ρ̃), θ = logit
(
θ̃
)
, and σ = exp (σ̃) where a tilde indicates an unrestricted parameter.

This ensures stationarity of TFR (ρ, θ < 1), and a positive standard deviation (σ > 0).
We address parameter uncertainty by simulating ρ̃, θ̃, and σ̃ from their asymptotic multivariate

distribution. The marginal asymptotic distributions of ρ and θ are logit-normal, while the distri-
bution of σ is lognormal. The three parameter distributions are in Figure 11. The time series is
highly persistent as the AR(1) parameter ρ is close to one, while the MA(1) parameter θ is around
0.5. Though the parameter σF exceeds the age-specific σx (see Figure 9), we find 1+θ2

1−ρ2 b
2
x � 1 in

(11). Therefore, most variation in fertility rates is unrelated to the persistent F .

Simulation We draw 5,000 parameter samples for the tuple (ρ, θ, σ). For each parameter sample
(ρ̂, θ̂, σ̂), we simulate fx,t in (9) by simulating a path for εt and ηt. The projection of the TFR is in
the left panel in Figure 12. Notice the overlap with the bottom left plot in Figure 8. The projection
indicates a small and slow increase of the median TFR towards the long run median of 1.8. The
results are qualitatively similar to the projections in UN (2015) (right plot in Figure 8), particularly
when taking into account the slightly higher unconditional TFR rate in UN (2015) (1.85 versus 1.8).

2.3 Migration

Section 2.1 and 2.2 provide mortality and fertility as explanatory variables for changes in the popu-
lation. Similar to EC (2014, p.14), the remaining population changes are referred to as net migration
(immigration less emigration) though administrative errors may also explain some of the changes
in population.

Migration is mainly determined by exogenous factors that are hard to predict, such as migration
policy, educational policy, (foreign) political unrest, climate disasters, etc. As a consequence, net

the likelihood, see for details, e.g., Durbin and Koopman (2012).
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Figure 12: Left: TFR for 5,000 simulations, each from a different parameter sample
Right: TFR in the World Population Prospects of the United Nations,
http://esa.un.org/unpd/wpp/Graphs/

migration is trendless. The first principal component of the age-specific net-migration series explains
64% of the variation, compared to 17% for the second component. Since the time series of migration
exhibit autocorrelation, we model the common migration factor with an AR(1) factor. In line with
the stationary fertility model, we estimate the model

nx,t = ax + bxNt + εt (12)
Nt = ρNt−1 + ηt (13)

for end-of-year age x = 0, . . . , 99, and mutually independent disturbances εt ∼
(
0, σ2

x

)
, and ηt ∼

N(0, σ2
N ).

Estimation and simulation Each intercept term ax in (12) is the mean age-specific annual
net migration since 1970. Under ρ < 1, the unconditional mean annual migration E[nx,t] is the
mean migration at age x since 1970, and the unconditional total net migration is ā :=

∑
x ax =

E[
∑

x nx,t] = 25.8 thousand. This substantially differs from the UN model where annual net migra-
tion is projected to decrease from 22 thousand in 2060 towards 11 thousand in 2100.16 EC (2014,
Table III.19.1) assumes a decline from 20.8 thousand in 2035 to 9.3 thousand in 2060. Given the
globalization and continuing increase in the world population size, we do not consider a decline in
migration as the most likely future outcome. Compared to the last four decades, an increase in
migration is in our view at least as likely as a decline.

The time series Nt = nt − ā is the difference between annual net migration nt :=
∑

x nx,t and
its long-run mean ā. Each slope bx in (12) is the slope in the regression of the time series nx,t on
an intercept and nt. This gives

∑
x bx = 1, similar to the submodels of mortality and fertility.

16http://esa.un.org/unpd/wpp/DVD/
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Figure 13: Estimation of (12). The intercept a, slope b, the standard deviation σ of the residuals,
and the common time series N .

The age pattern in a (see left plot in Figure 13) suggests that migration is maximal at ages
between 10 and 30 years. At such ages, the age pattern in b (second plot) shows that migration
is most sensitive to the common factor N . However, the peak in the standard deviation σ of the
residuals (third plot) reflects that a substantial part of the variation is still unexplained for this
age group. The time series N shows large fluctuations which corresponds to the highly volatile
n = N + ā (right plot).

The small ACF and PACF of N (Figure 14) motivates us to consider a simple AR(1) model
for Nt in (13). The persistence of N is relatively low (left plot Figure 15). Generally speaking,
the idiosyncratic shock εt, and the shock from bxNt have a similar instantaneous effect on the net-
migration nx,t in (12) since σx (Figure 13) and bxσN (Figure 13 and 15) have the same order of
magnitude. This further downgrades the relative impact of the shocks ηt on the common factor
on net-migration. The simulations in Figure 16 confirm a quick convergence of total net-migration
towards the asymptotic distribution.

2.4 Aggregate demographic model

We merge the three demographic submodels into one demographic model. Consider the correlation
matrix in (14) of the three disturbance terms labeled η for mortality (8), fertility (10), and net-
migration (13). The low correlations in (14) reflect a small dependence between the demographic
disturbance terms. A positive shock to mortality (a higher mortality) is associated with an insignif-
icant positive shock to fertility (a higher TFR, and a lower mother birth age), and an insignificant
positive shock to migration (a higher net inward migration). Note that the mortality shocks are
deviations from the trend whereas the mortality trend itself is deterministic.

mort fert migr
mort
fert
migr

1 0.03 0.16
1 0.09

1

 (14)
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of N .

The corresponding projection of the population size is in the left plot in Figure 17. The plot suggests
that the population size increases up to 2040, and then stabilizes at 18 million until 2065. This
pattern is very similar to the projections in Van Duin and Stoeldraijer (2014, Figure 2.3). During
2040-2065, there is a balance between at one hand the below-replacement rate of fertility, and at
the other hand the increase in life expectancy (Figure 6) and the positive net inward migration
(Figure 16). The 95% confidence bands in Figure 17 are somewhat narrower than the bands in
Van Duin and Stoeldraijer (2014). A likely explanation is the smaller confidence interval around
the life expectancy at birth, see page 9.17

After fifty years of simulation, most individuals of the relatively large cohorts of children of the
baby boomers have died out in 2065. This decrease in the number of deaths leads to a renewed
increase in population size. The right panel in Figure 6 shows that the median projection of the
UN model misses this renewed increase. Mortality and fertility are almost identical in both models
(Figure 5 and 12). By elimination, the most important driver of the renewed increase is the higher
migration in our model compared to the UN model. Using half of the projected net migration, we
find in unreported results a similar median projection in 2100 as in UN (2015).

3 Productivity model

Following the standard literature on productivity (e.g., OECD (2001)), we measure productivity
by output per working hour. More specifically, we measure productivity by GDP per working hour
at constant prices. Productivity changes may arise from supply shocks (technological innovation, a

17See Statistics’ Netherlands StatLine for the exact numbers of the projection of Statistics Netherlands, and Carolina
and Van Duin (2010) for the employed methodology.
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Figure 17: Population size in the Netherlands. Left: Projections for 5,000 simulations, each from a
different parameter sample
Right: World Population Prospects of the United Nations, http://esa.un.org/unpd/wpp/Graphs/

change in labour market policy, etc.) or demand shocks (changes in risk perception, interest rates,
reduced government spending, exchange rates, etc.). Our empirical model does not distinguish
between the two causes.

Figure 18 depicts productivity growth for the Netherlands and the cross-sectional equally weighted
mean productivity growth of a set X of 13 countries.18 Starting from the end of the 70s, we see
a slowly evolving trend towards a lower level. In other words, productivity growth shows some
persistence and autocorrelation. Accordingly, we estimate a single aggregate productivity factor Pt
from the annual (continuously compounded) productivity growth px,t of each country x ∈ X. The
productivity growth data is from the OECD series GDP per hour worked at constant prices. The
series Pt is assumed to follow an AR(1) process

px,t = ax + bxPt + εx,t (15)
Pt = ρPt−1 + ηt (16)

with x ∈ X and mutually independent disturbances ηt ∼ N(0, σ2
P ) and εx,t ∼ N(0, σ2

x).19

Estimation and simulation

The specification of the productivity model in (15)–(16) is very similar to the fertility model (9)–
(10), and the migration model (12)–(13). In (15), the intercept ax of each country is set equal
to a long-run log productivity growth ā := log (1 + 1.4%) = 1.39%. The 1.4% growth rate is the

18The set consists of the following countries: Belgium, Canada, Denmark, France, Germany, Italy, Japan, the
Netherlands, Spain, Sweden, Switzerland, United Kingdom, and the United States.

19A country-specific disturbance for the Netherlands (as in the mortality model) leads to an undesirable high
volatility in productivity growth. We prefer the current setup where real productivity growth above 3% has a
frequency of somewhat less than once in ten years.
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Figure 18: Productivity growth in the Netherlands and 12 other countries.

assumed growth rate of the labour productivity per hour in the EU during 2013-2060 in EC (2014,
Table I.3.5). Under ρ < 1, the unconditional mean growth rate E[px,t] of country x equals ax = ā.
The parameter bx in (15) is the slope in a regression of the time series nx,t on an intercept and the
mean productivity growth pt := 1

|X|
∑

x px,t. By construction, 1
|X|
∑

x bx = 1 and Pt = pt − ā is the
mean cross-sectional deviation from the asymptotic growth rate.

Figure 19 reports parameter estimates of b, σ, and P . Note from bUS = 0.20 that US productivity
growth is more idiosyncratic than for the other countries. The variance of the disturbance σ2

NL =
1.27 in the middle plot is below half of the variance of pNL,t which is 3.0. Thus, the common factor Pt
explains more than half of the variation in productivity growth in the Netherlands. The time series
P in the right plot, which is simply the cross-sectional mean productivity growth pt less ā, suggests
that it is reasonable to impose that in the long-run E[Pt] = 0. Figure 20 indicates that the AR(1)
model in (16) is appropriate for P .20 The coefficient ρ is centered around 0.67, thereby indicating
some persistence in productivity growth. The coefficient σP is of the same order of magnitude
as σNL. It can be verified that the long-run annual variance from bxPt is b2NL

σ2
P

1−ρ2 = 1.71, which
exceeds the unexplained variance from σ2

NL = 1.27. The top plot in Figure 21 shows that simulated
productivity growth in the Netherlands stabilizes around ā = 1.39%.

In most countries, indexation of pension benefits and pension contributions is mainly determined
by price inflation or wage inflation. Wage inflation consists of price inflation and real wage growth.
The financial model in Section 4 produces the price inflation projections, whilst we base real wage
growth on the productivity growth in this section.

20The MA(1) coefficient of an ARMA(1,1) model is close to zero when restricted to the positive half line. We did
not consider negative values due to a lack of economic interpretation.
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Figure 19: Estimation of (15). The slope b, the standard deviation of the residuals σ, and the
common time series P . The intercept ax = 1.39% for each country x.
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Figure 21: Simulation of productivity growth pNL (top), real wage growth r̃wt (middle), and scatter
plot of both (bottom).

Langejan et al. (2014) advises a long-run geometric mean growth rate of 0.5% for real contractual
wage costs. We regress the continuously compounded real wage growth21 in year t, in excess of a long
run mean of 0.5%, on (i) the cumulative (continuously compounded) Dutch productivity growth
rate p̃NL,t in excess of its long run mean (p̃NL,t − ā, ā = 1.39%) in year t− u1, . . . , t− u0, and (ii)
the cumulative mean common (continuously compounded) productivity growth rate p̃t in excess of
its long run mean, P̃t = p̃t − ā in year t − v1, . . . , t − v0. The sample starts in year t0 and ends in
2014.

To find the optimal setup for the wage regression, we minimize the standard error of the regres-
sion subject to the constraints t0 < 1990, u0 ≥ 0, u1 ≥ 0, v0 ≥ 0, and v1 ≥ 0. Optimality is at
t0 = 1986, u0 = 0, u1 = 4, v0 = 0, and v1 = 1. This result is robust under alternative setups such
as annually compounded growth rates, and country-specific long-term productivity growth rates
āx. The AIC, BIC and the adjusted R2 are by definition also optimal at these parameter values.
The optimal parameter values imply that the sample starts in t0 − u1 = 1982. This coincides with
the Wassenaar Agreement which restrained wage growth in return for the adoption of policies to

21Real wage growth is nominal wage growth corrected for CPI inflation. Both time series are from Statistics
Netherlands. Nominal wage growth is the growth in employers’ labour related expenditures including gratuities,
holiday allowances and social charges. The long run dynamics of this growth should be comparable with wage growth
in collective agreements plus a smaller incidental component. The first component is the Dutch standard measure
for indexation in pension benefits.
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combat unemployment and inflation.
The estimated equation is (Newey-West t-statistics in parentheses)22

r̃wt − 0.5% = 1.27
(5.7)

(p̃NL,t − ā)− 0.683
(−5.8)

(p̃t − ā) + et (17)

where r̃wt = ln (rwt/rwt−1), p̃NL,t = 1
5

∑4
s=0 pNL,t−s, p̃t = 1

2

∑1
s=0 pt−s, ā = ln (1 + 1.4%), and et is

a residual with a standard deviation of 0.610%. By the absence of an intercept term in (17), the
real wage growth converges towards 0.5%.

Notably, a lagged term r̃wt−1 on the right hand side of (17) is insignificant. Relatedly, the ACF
and the PACF of the residuals et have a cut-off at the first lag, thereby indicating white noise. The
coefficient of the five-year average wage growth p̃NL,t exceeds one. However, the positive correlation
of 0.52 between p̃t and p̃NL,t counterbalances this effect through the reverse effect of p̃t in (17).
While the coefficient of the international growth factor p̃t has an insignificant positive sign in a
univariate regression, it becomes significantly negative in the bivariate setup in (17). Therefore, we
interpret a positive shock to p̃t (conditional on p̃NL,t) as a competitive disadvantage for the Dutch
economy, leading to a downward pressure on real wages.

We simulate real wage growth using (17) with a disturbance term that follows a normal distribu-
tion with a standard deviation equal to 0.610%. This value corresponds to the standard deviation of
the residuals et in (17). The two top panels in Figure 21 show that real wage growth is a stationary
series with a higher level of persistence than productivity growth. On an annual basis, productivity
growth and real wage growth stabilize around 1.39% and 0.5%, respectively. The bottom plot in
Figure 21 confirms that in our simulation the instantaneous correlation between productivity growth
and real wage growth is similar to the observed correlation in our data sample 1986-2014.

4 Financial model

The setup of the financial submodel is based on the model in Koijen et al. (2010) that we briefly
describe.23 The term structure of continuously compounded nominal swap interest rates on (yields)
yt(τ) is modelled by an affine two-factor model

yt(τ) = −1

τ

(
A(τ) +B(τ)′f

(term)
t

)
+ ξt,τ

22The positive correlation (0.52) of the two explanatory variables p̃NL,t and P̃t contributes to higher standard
deviations, and hence lower t-statistics. Still, multicollinearity is of minor importance with a VIF of 1.37. The
adjusted R2 is 0.52 when calculated following the principles in Eisenhauer (2003, eq.(4’)).

23The reader is referred to Draper (2014) and Muns (2015) for more details on the data set and on estimation of
the model. Peter Vlaar kindly provided the dataset. The quarterly time series run from 1973 to 2014. The parameter
estimates are adjusted to the annual model.
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The 2-year and 5-year yields are assumed to be observed without measurement error, ξt,2 = ξt,5 ≡
0:24 [

−2yt (2)
−5yt (5)

]
=

[
A(2)
A(5)

]
+

[
B(2)′

B(5)′

][
f

(term)
1,t

f
(term)
2,t

]
(18)

The functions A(τ) and B(τ) follow from the model parameters, see below. The function values at
τ = 2 and τ = 5 imply the two latent factors in f (term). Both latent factors are stationary with
a long run mean of zero. The factors jointly follow a VAR(1) process with the shocks ε1,t and ε2,t

having an independent standard normal distribution:

df
(term)
t = −Kf (term)

t dt+
[
ε1,t ε2,t

]′ (19)

The price of risk Λ̃t ∈ R2 is affine in the latent factors:

Λ̃t = Λ̃0 + Λ̃1f
(term)
t

Imposing no-arbitrage arguments implies that the intercept function A : τ → R and the slope
function B : τ → R2 satisfy

A(τ) =

τˆ

0

Ȧ(s)ds

Ȧ(τ) = −δ0R − Λ̃′0B(τ) +
1

2
B(τ)′B(τ)

B(τ) =
(
K ′ + Λ̃′1

)−1
[
exp

(
−
(
K + Λ̃1

)′
τ

)
− I2×2

]
δ1R

with A(0) = B1(0) = B2(0) = 0. The interest rate, inflation, stock return, and bond porfolio return
depend on the two latent factors and possibly a variable-specific disturbance term:

Rt(0) = δ0R + δ′1Rf
(term)
t (Instantaneous nom. interest rate)

πt = δ0π + δ′1πf
(term)
t (Expected inflation)

dΠt

Πt
= πtdt+ σ′Πεt (Realized inflation)

dSt
St

= (Rt(0) + ηS) dt+ σ′Sεt (Realized stock return)

dPBt (τ)

PBt (τ)
=
(
Rt(0) +B(τ)′Λ̃t

)
dt+B(τ)′εt(1:2) (Realized bond portfolio return)

24This differs from the Kalman procedure described in Appendix C of Koijen et al. (2010). However, Table 5 in
their paper shows a zero measurement error for the one year and five year interest rates. As such, Koijen et al. (2010)
employ a similar procedure as in Draper (2014).
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Latent factor nom. term structure Instantaneous nominal interest rate
df (term)
t = −Kf (term)

t dt+
[
ε1,t ε2,t

]′
Rt(0) = δ0R + δ′1Rf

(term)
t

K(1,1) 7.63% δ0R 2.40%
K(2,1) -19.00% δ1R(1) -1.48%
K(2,2) 35.25% δ1R(2) 0.53%

Expected inflation Realized inflation
πt = δ0π + δ′1πf

(term)
t

dΠt
Πt

= πtdt+ σ′Πεt

δ0π 2.00% σΠ(1) 0.02%
δ1π(1) -0.63% σΠ(2) -5.68·10−3%
δ1π(2) 0.14% σΠ(3) 0.61%

Realized stock return Prices of risk
dSt
St

= (Rt + ηS) dt+ σ′Sεt Λt = Λ0 + Λ1f
(term)
t

ηS 4.52% Λ0(1) 0.280
σS(1) -0.53% Λ0(2) 0.027
σS(2) -0.76% Λ1(1,1) 0.149
σS(3) -2.11% Λ1(1,2) -0.381
σS(4) 16.59% Λ1(2,1) 0.089

Λ1(2,2) -0.083
Table 1: Parameters estimated in Draper (2014) and calibrated by DNB for the scenario set of their feasibility test
of 2015Q2. The parameter symbols are identical to Koijen et al. (2010) and Muns (2015).

where εt ∈ R4 contains independent standard normal shocks, σΠ(4) = 0, and ηS is the constant
equity premium.

Draper (2014) estimates the model using Dutch quarterly data up to 2013, and converts the
estimated model from a quarterly frequency to an annual frequency.25 DNB calibrated the parameter
set to satisfy some restrictions on the long run expectation of yt(τ) and πt. The resulting parameters
are in Table 1.

The corresponding term structure coefficients are in Figure 22. The line −A(τ)/τ is the un-
conditional expectation of the nominal interest rate Rt(τ) = limt→∞ E[yt(τ)]. It is concave and
upward sloping. Both are a familiar property of the term structure. The functions −B1(τ)/τ and
−B2(τ)/τ converge to zero for long maturities τ . This reflects that yt(τ) is for large τ independent
of the current state variables f (term)

t .
Table 2 presents long run statistics of some variables. The interest rate yt(τ) converges to the

exogenously imposted UFR of 4.18%.26 The long run inflation rate is close to the inflation target
25Muns (2015) derives expressions for the ultimate forward rate (UFR), and the long run means and covariances

of the included variables.
26DNB has recently revised the method to determine the UFR ("DNBulletin: Adjustment of UFR results in more

realistic actuarial interest rate for pensions"). Instead of the previously fixed UFR at 4.2%, the UFR is now a
120-months moving average of the 1-year forward over 20-years. Using τ = 20 and τ = 21, this forward follows
endogenously by applying (12), (37), and (39) from Muns (2015) to the simulations.

26

http://www.dnb.nl/en/news/news-and-archive/dnbulletin-2015/dnb324317.jsp
http://www.dnb.nl/en/news/news-and-archive/dnbulletin-2015/dnb324317.jsp
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Figure 22: Coefficients of the term structure E[yt(τ)].

of 2%. The excess stock return is 3.2% on an annual basis, while a bond portfolio with a constant
maturity of 5 years has an excess return of 1.3%. The real instantaneous interest rate Rt(0)− πt is
in the long run 0.4%. In line with empirical practice, the volatility of a stock portfolio exceeds the
volatility of a bond portfolio.

5 Implementation

This section merges the submodels of the previous sections into one aggregate model. In total, the
annual model contains eight common risk factors. Each factor has a disturbance that follows a

geometric annual
mean st.dev.

UFR 4.18% NA
π 2.02% 1.59%
RS 5.67% 18.43%
R(0) 2.43% 3.29%
RB(5) 3.69% 5.92%

Table 2: Ultimate forward rate (UFR) and long run statistics of inflation Π, stock return RS ,
instantaneous nominal interest rate R(0), and bond portfolio return RB(5) with a constant duration
of 5 years. Parameters are from the calibrated DNB parameter set, derivations are in Muns (2015).
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multivariate normal distribution. The factors represent risks in mortality (2), fertility, migration,
productivity, real wages, and financial risk (2) through the term structure.

5.1 Disturbance correlations

From a theoretical perspective, it is possible to estimate the submodels jointly. This estimation
would directly produce a covariance matrix for the disturbances. However, this procedure performs
very slow as the estimation of the financial submodel takes more than an hour. Moreover, we might
still end up at a local optimum as the number of simultaneously estimated parameters increases sub-
stantially. Accordingly, we first estimated each submodel in isolation and estimate the disturbance
correlations afterwards.

We find the correlations of the common factors from the pairwise correlation of the residuals
η̂t of the latent factor in each block. Within the financial block, we use the theoretical correlation
from the discretized version of (19) regardless of the empirically observed correlation.27 Also due to
different sample periods of the submodels, this procedure results in a disturbance covariance matrix
Σ that is not positive definite, a prerequisite for a covariance matrix. Next, we discuss how to adjust
the matrix Σ in such a way that it is positive definite.

5.2 The latent factor disturbance covariances

We have theoretical estimates for each disturbance variance and the correlations of the disturbances
within the financial model. We estimate the remaining pairwise correlations from the time series
of the estimated factors. However, it turns out that the resulting matrix is not positive definite, a
prerequisite for a covariance matrix. Hence, we adjust the correlation of a pair of disturbances if one
disturbance is in the financial submodel and the other disturbance in one of the other submodels.

We have a set X with nonfinancial variables, and a set Y with financial variables. The covariance
matrix is as follows

Σ =

(
ΣXX ΣXY

Σ′XY ΣY Y

)
(20)

An empirical estimate is available for each pairwise correlation. The employed sample is the common
sample of the two time series, which may differ across different time series.

Σ̂ =

(
Σ̂XX Σ̂XY

Σ̂′XY Σ̂Y Y

)
(21)

A theoretical estimate is available for ΣY Y , while we need to rely on an empirical estimate for ΣXX

and ΣXY . Unfortunately, letting ΣXX = Σ̂XX and ΣXY = Σ̂XY may not lead to a positive definite
covariance matrix, though Σ̂XX and Σ̂Y Y are of course positive definite. We resolve this issue by

27The correlation depends on the parameters and is in general unequal to the zero correlation of the continuous
counterpart in (19).
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setting ΣXX = Σ̂XX and adjusting the estimate for ΣXY . Consider the Cholesky decompositions
Σ = U ′U , Σ̂ = Û ′Û , ΣII = U ′IUI , and Σ̂II = Û ′I ÛI (I ∈ {X,Y }). Notice that

U =

(
UX UXY
O UY Y

)
Û =

(
ÛX ÛXY
O ÛY Y

)
where O is a zero matrix of appropriate dimension. It follows from

ΣY Y = U ′XY UXY + U ′Y Y UY Y (22)

that UY Y 6= UY if UXY 6= O. Therefore, only the block UX = ÛX of U is known while the blocks
UXY and UY Y are in general unknown. We find UXY and UY Y by transforming their empirical
counterparts ÛXY and ÛY Y in such a way that the covariance matrix of Y equals ΣY Y :

ΣY Y = U ′Y UY

= U ′Y

(
Û ′Y

)−1
Σ̂Y Y Û

−1
Y UY

= U ′Y

(
Û ′Y

)−1 (
Û ′XY ÛXY + Û ′Y Y ÛY Y

)
Û−1
Y UY

= U ′Y

(
Û ′Y

)−1
Û ′XY ÛXY Û

−1
Y UY + U ′Y

(
Û ′Y

)−1
Û ′Y Y ÛY Y Û

−1
Y UY (23)

Combining (22) and (23), the two missing blocks of U are

UXY = ÛXY Û
−1
Y UY UY Y = ÛY Y Û

−1
Y UY .

Accordingly, we obtain the covariance matrix Σ = U ′U from

U =

(
ÛX ÛXY Û

−1
Y UY

O ÛY Y Û
−1
Y UY

)
.

5.3 Estimation results

Table 3 contains the correlations of the eight annual disturbances. It follows that most correlations
are low. The small negative correlation between mortality and productivity growth translates into
a small positive correlation between the period life expectancy and cumulative productivity growth.
Allowing for shocks to the trend of the factors may lead to a stronger association between life
expectancy and productivity. Nonetheless, it seems unlikely that productivity improvements have a
substantial instantaneous relation with mortality. In addition, there is a consensus in the literature
(e.g., see Acemoglu and Johnson (2007)) that income inequality rather than the level of income
affects life expectancy among high-income countries.

The correlation between productivity and fertility is close to zero, while the correlation between
productivity and net-migration is negative. Thus, a positive productivity shock is associated with
a lower net-migration, or even a net outflow. To assess the contemporaneous relation between
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mort EU (3) 1 -0.18 0.03 0.16 -0.13 0.15 0.05 -0.23
mort NL-EU (4) 1 0.06 0.03 0.14 0.45 0.33 0.13

fert (10) 1 0.09 -0.06 0.17 -0.14 0.14
migr (13) 1 -0.40 0.27 0.05 -0.15
prod (16) 1 0.02 -0.30 -0.02
rw (17) 1 0.18 0.04

term1 (19) 1 0.1
term2 (19) 1

Table 3: Correlations of the annual disturbances of the common factors, and the real wage rw.

productivity and demography in more detail, we run 2,000 simulations over 50 years, and find a
correlation coefficient of -0.24 between productivity growth and population size. Figure 23 suggests
that the impact of this negative relation is quite low. Notice the high uncertainty in cumulative
productivity growth. A cumulative productivity growth of zero appears as likely as a cumulative
growth of 130%.

We detect a positive correlation of 0.19 between cumulative productivity growth and the old-age
dependency ratio, defined as the ratio of the population size above 65 years old and the population
size between 21 and 65 years old.28 The negative correlation between net-migration and productivity
results in a negative correlation between productivity growth and the population size between 21
and 65 years. The resulting positive correlation between productivity growth and the old-age
dependency ratio is beneficial in a DB PAYG scheme because a higher productivity growth partly
offsets a higher dependency ratio.

By construction, the correlation of the productivity shock and the real wage residuals is low
(0.02) as the productivity residuals are explanatory variables through p̃NL,t in the regression (17).

All positive maturities depend negatively on shocks to the first latent term factor through the
negative coefficients −B1(τ) (Figure 22). This means that a negative shock to the term structure is
associated with a negative shock to productivity growth. This is intuitive as an economic downturn
is associated with lower interest rates as well as a lower productivity growth. The small correlations
between demographic shocks and the term factors indicate that demography and interest rates
have a weak correlation, at least in the short-run. This is in line with the mixed evidence in
the literature.29 The low correlation between demographic shocks and financial shocks suggests
diversification benefits of a multi-pillar pension system since the main driver of variation in the first

28The correlation decreases to 0.12 with a 100 years of simulation, i.e., until 2114.
29see Poterba (2001), Poterba (2004), Broer (2010), and the references in this literature.
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Figure 23: Scatter plot of productivity growth and population size with 2,000 simulation runs of 50
years.

and second pillar are demographic shocks and financial shocks, respectively.

6 Potential improvements

Though our model generates plausible results, improvements might be possible along the following
dimensions:

(i) Our estimation technique does not exploit the implicit dependence between the coefficients
of different ages in our model (see the smooth age-patterns in Figure 1). The smoothing
approaches proposed in Currie et al. (2004) and Hyndman and Ullah (2007) could be helpful
in reducing the number of age-specific parameters. Still, the results in Cairns et al. (2009)
on English and Welsh mortality data for the ages 60-89 suggest a poor performance of the
approach in Currie et al. (2004). In addition, Figure 1 indicates that this approach is even less
useful at low ages since the parameters are more volatile at such ages. Booth et al. (2006) show
that the accuracy of the approach in Hyndman and Ullah (2007) in modelling life expectancy
is not significantly better than the standard Lee and Carter (1992) model.

(ii) The fertility model does not take the rather stable cohort effect into account (top left plot
in Figure 8). This suffices for our planned purposes. Nonetheless, further research along the
cohort dimension is needed if one wants to estimate the number of children per female, e.g.,
for variations in child allowance.
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(iii) The quarterly observations of the financial submodel result in a high standard deviation for the
parameter estimates (see Draper (2014) and Muns (2015)). For a similar model with monthly
U.S. data, Koijen et al. (2010) obtain substantially lower standard deviations. Unfortunately,
monthly Dutch data was unavailable for the financial submodel.

7 Conclusions

For the next decades, Dutch pension funds need to deal with several headwinds simultaneously.
The continuing ageing process makes demography an adverse factor. A low real interest rate makes
pension saving costly. In addition, a lower productivity growth may translate into lower wages, and
hence reduces both pension contributions and indexation of pension benefits. The latter affects the
economies of scale of pension funds.

By combining well-known models from the literature, this paper models the joint distribution
of these risks for the Netherlands. The simple AR(1)-structure of each submodel intends to avoid
overfitting. The model allows for different sample lengths for the submodels, and can generate an
arbitrarily large number of scenarios.

The confidence bands for the demographic projections are similar to the UN model. Likewise,
our estimation yields population projections with the familiar increase in total population up to
2040, and a stable size up to 2060. Our results indicate that migration policy is a key determinant
of the population size after 2060.

Notably, the dependence between the annual disturbances is low. The low correlation between
demographic shocks and financial shocks suggests diversification benefits of a multi-pillar pension
system. The most significant correlation is a negative correlation of -0.4 between net inward migra-
tion and productivity growth. This works in a compensating way in a DB PAYG pension scheme.

The model’s aim is to be a building block in evaluating a wide range of policy reforms on pension
policy. Evaluations are possible at an age-specific, a cohort-specific or an aggregate level, and for
short run as well as for a long run analysis of more than a few decades. Still, one should keep
in mind that projections at long horizons are subject to an inherent high uncertainty (see Keyfitz
(1981)).

Appendix

A Ordinary least squares with restrictions

This appendix outlines some properties of OLS regressions with the functional form ρ(a) for the
slope and σ = exp (σ̃) for the standard error. The latter ensures σ > 0. Consider the model

yt = c+ ρ(a)xt + εt εt ∼ N(0, σ2)

The time series {xt}Tt=1 and {yt}Tt=1 are observed, and the functional form of the monotonic function
ρ is known. We describe the estimation procedure of the unknown parameters a, c, and σ > 0, and
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the corresponding asymptotic standard errors. The likelihood function is

L(c, a, σ) =
T∏
t=1

1

σ
√

2π
exp

(
−(yt − c− ρ(a)xt)

2

2σ2

)
.

Define σ̃ = ln (σ), x = (x1, . . . , xT ), y = (y1, . . . , yT ), and 1 an all-ones vector of appropriate
dimension. The loglikelihood function is

LL(c, a, σ̃) = −T
2

ln (2π)− T σ̃ − 1

2
exp (−2σ̃)

T∑
t=1

(yt − c− ρ(a)xt)
2 .

= −T
2

ln (2π)− T σ̃ − 1

2
exp (−2σ̃) (y − c1− ρ(a)x)′ (y − c1− f(a)x) .

The gradient is

∇LL(c, a, σ̃) =

LLaLLc
LLσ̃

 =

 exp (−2σ̃)1′ (y − c1− ρ(a)x)
ρ′(a) exp (−2σ̃)y′ (y − c1− ρ(a)x)

−T + exp (−2σ̃) (y − c1− ρ(a)x)′ (y − c1− ρ(a)x)


and the Hessian matrix is (use σ = exp (σ̃))

H(c, a, σ̃) =

 − T
σ2 −ρ′(a)

σ2 1′x −2LLc

−ρ′(a)
σ2 1′x ρ′′(a)

ρ′(a) LLa −
(
ρ′(a)
σ2

)2
x′x −2LLa

−2LLc −2LLa −2 (LLσ̃ + T )


The maximum likelihood estimate satisfies ∇LL (c∗, a∗, σ̃∗) = (0, 0, 0)′ such that 1′e∗

x′e∗

exp (−2σ̃) (e∗)′ e∗

 =

0
0
T

 e∗ = y − c∗1− ρ(a∗)x

Thus, c∗ and ρ (a∗) satisfy the orthogonality conditions 1′e∗ = x′e∗ = 0 . Therefore, ρ (a∗) and c∗

are the (unbiased) OLS estimates:(
c∗

ρ (a∗)

)
= (X ′X)−1X ′y X =

[
1 x

]
The parameter a∗ follows from inverting ρ (a∗). After some rewriting, we obtain the well-known
biased variance estimator

(σ∗)2 = exp (2σ̃∗) =
(e∗)′ e∗

T
,
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while the unbiased variance estimator takes the number k of free parameters in X into account (e.g.,
Heij et al. (2004, eq.(3.22))):

σ2
U =

(e∗)′ e∗

T − k
At the unbiased parameter estimate (σ̃∗U = ln (σ∗U )),

H (c∗, a∗, σ̃∗U ) = − 1(
σ∗U
)2
 T ρ′(a∗)1′x 0

ρ′(a∗)1′x (ρ′(a∗))2 x′x 0

0 0 2T (σ∗U )2


Thus, the estimate of σU is uncorrelated with the estimate for c∗ and a∗. The asymptotic covariance
matrix of the latter two parameters is

Σa∗c∗ = σ2
U

[
(X∗)′X∗

]−1
X∗ =

[
1 ρ′(a∗)x

]
(24)

Indeed, this expression coincides with the OLS covariance matrix if ρ(a) = a. At the ML estimate
σ̃∗, the asymptotic variance of σ̃ equals Σσ̃∗ = 1/(2T ) regardless of c, a, and the functional form of
ρ.

For an AR(1)-model, we sample
(
ĉ, â, ˆ̃σ

)
from N(µU ,Σ

∗) where

yt = xt+1 µU = (c∗, a∗, σ̃U ) Σ∗ =

[
Σa∗c∗ 02×1

01×2
1

2T

]
the covariance matrix is as in (24), and ρ is a logit-normal distribution

ρ(a) = logit (a) =
1

1 + exp (−a)

ρ′(a) =
exp (−a)

[1 + exp (−a)]2
=

1

2 + exp (−a) + exp (a)

This functional form of ρ(a) ensures that the AR(1)-coefficient ρ(a) is smaller than one. It follows
that

ρ(a) ∼ (1 + exp (−a∗ + σa∗Z))−1

σ ∼ exp (σσ̃∗Z + σ̃U ) = exp

(
1√
2T

Z + σ̃U

)
,

where Z ∼ N(0, 1). Simulation paths are

xt = ĉ+ ρ(â)xt−1 + εt εt ∼ N(0, σ̂2) t = T + 1, T + 2, . . .

It is straightforward to adjust the procedure if c or a is fixed.
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