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Abstract

This paper investigates the determinants of directed technical change at the firm level in
the electricity generation sector. We use firm-level data on patents filed in renewable (REN)
and fossil fuel (FF) technologies by 5,261 European firms over the period 1978-2006. We
investigate how energy prices, market size and knowledge stocks affect firms’ incentives to
innovate in one technology relative to another and how these factors may thereby induce a
shift from FF to REN technology in the electricity generation sector. We separately study
small specialized firms, which innovate in only one type of technology during our sample
period, and large mixed firms, which innovate in both technologies. We also separate the
extensive margin innovation decision (i.e. whether to conduct innovation) from the intensive
margin decision (i.e. how much to innovate). Overall, we find that all three factors - energy
prices, market sizes and past knowledge stocks - matter to redirect innovation towards REN
and away from FF technologies. Yet, we find that these factors have a larger impact on
closing the technology gap through the entry (and exit) of small specialized firms, rather
than through large mixed firms’ innovation. An implication of our results is that firm
dynamics are of direct policy interest to induce the replacement of FF by REN technologies
in the electricity generation sector.
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1 Introduction

Today about 70% of world electricity is produced from highly carbon-intensive fossil fuels,

namely coal, oil and gas. Some countries such as Australia, China, India and Poland even pro-

duce between 70% and 95% of their electricity through the combustion of coal only (IEA, 2010).

This large reliance on fossil fuels explains why the sector of electricity generation is by far the

largest producer of carbon emissions. Electricity production generates 41% of worldwide car-

bon emissions – twice the share of the transport sector – and emissions are expected to increase

sharply in the future due to increasing electricity demand, notably from developing countries. In

light of this, achieving substantial emission reductions will imply de-carbonizing the electricity

generation sector and thus moving away from the dominance of fossil fuel technologies.

Renewable energy such as solar, wind, and renewable combustibles, can provide a clean

alternative for electricity production. Yet despite rapid recent developments, renewable energy

represents only 18% of world electricity. Accelerating technological innovation in renewable

technologies can contribute to lower the costs of renewables so that they can compete on a level

playing field with conventional fossil fuel energy sources (IEA, 2010). Specifically, directing

technological innovation away from traditional fossil fuel technologies towards renewable ones

might be particularly effective in this respect.

This paper investigates whether and how the factors affecting firm-level innovation may

induce a shift from fossil-fuel to renewable innovation in the electricity generation sector. Most

previous literature looked at the factors affecting innovation in clean technology – or clean

electricity generation in particular (Hascic, Johnstone and Lanzi, 2009; Johnstone, Hascic and

Popp, 2010) – but not whether these factors also effectively induce a shift away from dirty

technologies. In addition, a large range of the empirical literature focuses on country-level

analysis, ignoring firm-level determinants of innovation. Finally, the environmental economics

literature has so far neglected aspects of firm dynamics in driving clean technology transitions,

while existing literature in growth and innovation economics instead emphasizes the role played

by heterogeneous innovating firms in driving the replacement of old technologies by new ones.

This paper begins to bridge this gap by looking at how incentives for clean innovation affect not

only firms’ level of innovation (i.e. the intensive margin of innovation) but also firms’ decision

to undertake R&D in a given technology (i.e the extensive margin of innovation).
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We use firm-level data on patents filed in renewable (REN) and fossil fuel (FF) technologies

by 5,261 European firms over the period 1978-2006 and estimate the impacts of three main

innovation drivers, namely: fuel prices, market size and the past knowledge stock (Acemoglu

et al., 2012a). We conduct separate analyses for specialized firms, which innovate in only

one type of technology over the 1978-2006 period, and mixed firms, which innovate in both

technologies over the same period as our data show important differences between these two firm

types. Compared to mixed firms, specialized firms are younger, smaller (in terms of turnover,

assets, and employees) and innovate more incidentally. Our descriptive analysis shows that

the distinction between these two types of firms is also important for understanding how REN

technologies can replace FF ones. We find that in recent years the catch-up of REN with

FF patents in the electricity generation sector is mainly induced by an increase in the set of

specialized REN firms and a decrease in the number of specialized FF firms. Instead, innovation

by mixed firms is still largely concentrated in FF technologies, with only a very moderate shift

towards REN technologies.

Our estimation results show that all three factors – fuel prices, market size and knowledge

stocks – are effective in redirecting innovation away from FF and towards REN technologies.

Yet, we find that the drivers of innovation have an economically stronger impact on reducing

the REN-FF technology gap for specialized firms than for mixed firms. This is mainly due to

the fact that these factors are particularly effective in driving specialized firms’ decisions to

enter innovation in REN technologies (and to exit innovation in FF technologies), thus leading

to substitution between the different types of firms at the sector level. The impacts on mixed

firms have much less economic significance, since for these firms price and market signals do

not lead to a significant substitution of FF by REN innovation at the firm level. In addition,

these firms appear to be locked into FF innovation, in which they have a long history of past

innovation.

The rest of this paper is organized as follows. Section 2 provides some first descriptive trends

of innovation activities by heterogenous firms in REN and FF electricity generation technologies.

Section 3 discusses the related literature, motivating theory and hypotheses that we will test

in our empirical section. Section 4 presents the data sources and empirical strategy. Section 5

gives the main results and robustness analysis. Section 6 concludes.
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2 Trends in electricy generation innovation

Before investigating the determinants of innovation, we provide a first glance at the patenting

behaviour of firms in electricity generation. We use patent data to measure innovations in

renewable and fossil-fuel technologies.1 Since the pioneering work of Popp (2002), patents have

been widely used to study innovation in environmental technologies. We construct a dataset of

firms that have filed patents in REN or FF technologies related to electricity generations. The

data are extracted from the Orbis dataset from Bureau van Dijk, which contains information

on patents derived from the European Patent Office’s (EPO) PATSTAT dataset. A major

advantage of using the Orbis dataset is that patent applicants’ names have been harmonized

and corrected for variations in spelling in order to be matched with business register data. In

addition, the Orbis database also includes financial and operational business data for some of

the firms that could be matched with our REN and FF patents over the 2003-2006 period. We

will use some of this information to describe the types of firms included in our dataset in more

detail.

We focus on firms that have been granted at least one renewable or fossil-fuel patent at

the European Patent Office (EPO) and at 17 national patent offices of the EU-15 countries,

Switzerland and Norway over the 1978-2006 period.2 We count the number of granted patents

per firm per year.3 Hence, our patent sample adds up patents from both EPO and national

offices.4 Although there might be some concerns about comparing patents of heterogeneous

1The advantages and limitations of patents as a measure of innovation, have been discussed at length in
the literature. A main caveat of working with patents is that not all inventions are patented, as for strategic
reasons firms may prefer not to disclose some valuable information in a patent. Also, the value of patents is
very heterogeneous: only few patents will lead to successful commercial applications, while many will in the end
never be used. Yet, patents have a close (if not perfect) link to invention and are strongly correlated with other
indicators of innovative activity such as R&D expenditures or new product introductions (Griliches, 1990). For
our purpose the main advantage of using patent data is that these data are highly disaggregated and are available
at the firm and technology level.

2We focus on these 17 European countries since, even though firms and inventors worldwide can apply for
patents at the EPO, we expect that non-EU applicants are more likely to (first) file patents at their domestic or
regional patent offices. Restricting the analysis to European firms should limit the possibility that we miss out
on a substantial part of a firm’s patent applications.

3We take the application year of (priority) patents as this is closer to the year of the inventive idea than
the year in which the patent was granted. When one patent has several applicants, we weight the patent counts
accordingly.

4We follow hereby the suggestion of an anonymous referee. In addition, in the robustness analysis we provide
additional estimations after selecting for the subset of higher value patents that have been filed in at least two
other patent offices (Lanzi, Verdolini and Hascic, 2011; Popp, Hascic and Mehdi, 2011). Selecting only EPO
patents, which would allow for a more homogeneous and comparable set of patents, would reduce strongly the set
of (REN) patents under study and would be affected by the fact that filing at EPO became increasingly popular
only in the mid 1990s (Eaton, Kortum and Lerner, 2004).
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value filed at different patent offices, our baseline sample is not likely to include the lowest

quality patents since we select only granted patents that could be matched with the business

register data in Orbis, thus excluding patents from individuals. In addition, since our focus is

on firm dynamics, we would be particularly concerned about eliminating small innovating firms

that may not have the financial capacity to file their patents at EPO or in several countries, as

this may create a bias towards innovation by large firms who are more likely to patent in FF

innovation as we will demonstrate below.5

Building on previous work by Lanzi, Verdolini and Hascic (2011) and Johnstone, Hascic

and Popp (2010), we use International Patent Classification (IPC) codes to select patents in

REN and FF energy generation. REN technology classes are aimed at creating and improving

the generation of renewable energy. In particular, we consider innovations in seven different

technological classes: wind, solar, hydro, marine, biomass, geothermal and waste. Regarding FF

innovations, we consider the following technologies: production of fuel gases by carburetting air,

steam engines plants, gas turbines plants, hot-gas or combusion-product positive displacement

engine, steam generation, combustion apparatus, furnaces and improved compressed-ignition

engines.6

Our analysis focuses on a sample of 31,377 patents filed by 5,261 European firms. The REN

and FF patents represent 13% and 87% of the patents, respectively. As shown in Figure 1(a),

the total number of FF patents granted to the firms in our sample is fairly stable around 900

patents per year during the 1980s. It then increases and stabilizes around 1,100 patents per

year during the 1990s. Finally, it drops off rather rapidly since the early 2000s. The number

of REN patents is substantially smaller. The trend shows a small peak in the early 1980s, a

stable period during 1985-1995, an a subsequent acceleration. All together, this figure suggest

that the aggregate technology gap between REN and FF patents has become smaller in recent

5Additionally, since many of the REN patents are very recent, correcting for the quality of patents using
forward citations would give a positive bias to FF patents.

6In the remainder, we coin the REN technologies as follows: wind, solar, hydro, biomass. geo, and waste,
respectively; and the FF technologies as: coal, engines, turbines, hotgas, steam, burners, furnaces and ignition,
respectively. The definition of these general classes of fossil-fuel technologies is described in more detail in Lanzi,
Verdolini and Hascic (2011). With the help of patent experts, the authors started the classification by identifying
energy efficient fossil-fuel patent classes (e.g. improved steam engines, cogeneration) and by eliminating restric-
tions on the technology’s orientation towards efficiency improvement. By selecting hierarchically superior IPC
classes, they were able to identify IPC classes that in general refer to fossil combustion technologies. Subclasses
containing irrelevant patents (e.g. motor vehicle-related inventions within the improved compressed-ignition en-
gines category) and classes that are generic and applicable to energy generation using a wide range of fuels (not
only fossil) are not included (e.g. heat exchange technologies).
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years, due to an increase in REN innovation relative to FF one.

Looking at the types of firms, we find that our sample is composed of 1,307 (25%) and 3,674

(70%) firms which innovate only in REN or FF technologies over the whole sample period,

respectively. By contrast, we observe that 280 firms (5%) innovate in both technologies over

this 30-year period. In the remainder of the analysis, we coin these firms as specialized REN,

specialized FF and mixed firms, respectively. Figure 1(b) counts the number of active (i.e.

innovating) firms in each sample year, and breaks them down into specialized and mixed firms.

The trend in the number of specialized REN firms strongly mirrors the trend in REN patent

counts in Figure 1(a). A similar correspondence is observed between specialized FF firms and

the trend in the number of FF patens since the early 2000s. The number of innovating mixed

firms is relatively constant over time.

<< INSERT FIGURE 1 ABOUT HERE >>

Figure 2 further disaggregates the patent counts in Figure 1(a) by firm type. Figure 2(a)

presents REN and FF patent counts for specialized firms. The overlap with Figure 1(a) is even

more pronounced in this case. Figure 2(b) presents REN and FF patent counts for mixed firms.

Two notable differences stand out relative to the total patent counts in Figure 2(a). First, the

decrease in FF patent counts starts earlier, around 1995. Second, the increase in REN patents

in the second half of the sample period is much less pronounced. In sum, in the specialized

firm sample, the convergence between REN and FF patents is induced by an increase in REN

patents and a simultaneous decrease in FF patents. In the mixed firm sample however, it is

only induced by a decrease in FF patenting.

<< INSERT FIGURE 2 ABOUT HERE >>

Comparing patent and firm counts in Figures 1 and 2, these results suggest that specialized

firms are relatively small in terms of their total patent counts. As a result, developments in

their REN and FF patent counts are rather strongly driven by underlying firm dynamics, i.e.

a change in the set of firms conducting innovation. Mixed firms on the other hand are much

larger. In their case, firm dynamics are much less important drivers of innovation activity, as the

number of innovating firms is rather constant. Instead, the changes in the rate of innovation at

the firm level are much more important. Further inspection shows that specialized firms account
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for 70% and 65% of REN and FF patents, respectively. Mixed firms comprise approximately

5% of the total firm sample, yet they account for approximately 30% of REN patents, and 35%

of FF patents. This suggests that mixed firms are indeed larger than specialized firms.

Table 1 explores this further using a subset of our sample of firms for which we have ad-

ditional data on firms’ characteristics.7 From panels A, B, and C it is clear that mixed firms

are substantially larger on average than specialized firms in terms of turnover, total assets, and

number of employees. Panel D demonstrates that mixed firms are also older on average than

specialized firms. Finally, panel E depicts the number of active innovation years per firm type,

i.e. the number of years in which a firm was actually granted a (REN or FF) patent. As can

be seen, mixed firms are substantially more active in terms of REN or FF innovation than

specialized firms.8 T-tests on the average differences reported in panels A-E of Table 1 confirm

that the differences between mixed firms and specialized firms are statistically significant (all

below the 1% significance level). Taken together, these results illustrate fundamental differences

in the characteristics and innovation activities of specialized versus mixed firms.

<< INSERT TABLE 1 ABOUT HERE >>

A potential concern regarding our definition of specialized and mixed firms is that some of

our specialized firms will develop into mixed firms in the post-sample period. That is, mixed

firms might typically start innovating in one area (REN or FF) before venturing into the other.

If this initial “period of specialization” is relatively long, we could mistakingly classify young

firms (i.e. that innovate for the first time towards the end of our sample) as specialized. In order

to investigate this, we identified the first year of both REN and FF innovation in our sample

of mixed firms, and considered the delay between these first years of innovation. The first year

of FF (REN) innovation for the average mixed firm in our sample is 1989 (1991).9 That is, the

first REN innovation in mixed firms occurs (on average) two years after the first FF innovation.

The median difference is just one year, and the distribution of differences exhibits a high peak

7The final column in Table 1 presents the number of firms on which the statistics are based. Financial data
were only available for a subset of firms on the 2003-2006 period.

8Since mixed firms by definition patent in both REN and FF technologies, this is not surprising. However,
notice that the median mixed firm patents almost three times as much as the median specialized REN and FF
firms combined.

9Note that these first innovation years occur relatively late in the sample (more than 10 years after the start
of the sample period in 1978). We take this to indicate that we are not (on average) picking up continued FF or
REN innovation that already started before the sample period.
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at this median value. Although this obviously does not rule out that some of our specialized

firms might still become mixed firms in the post-sample period, these results demonstrate that

on average, initial REN and FF innovations in mixed firms tend to be clustered together in

time rather tightly. As such, we are not overly worried that our classification of specialized and

mixed firms is driven by the sample period.10

Finally, we inspect the prevalence of different REN and FF technologies in the two different

firm types. According to Table 2 – and as indicated above – specialized firms are responsible

for 70% of REN innovation and mixed firms for 30%. In terms of importance, solar and wind

technologies are the two most important categories in both firm types, although wind is com-

paratively more important in specialized firms than in mixed firms. Overall, the distribution of

innovation is slightly less skewed in specialized firms than in mixed firms.

<< INSERT TABLE 2 ABOUT HERE >>

Table 3 demonstrates a similar split of innovation in FF technologies between firm types:

65% for specialized firms and 35% for mixed firms. Compared to REN innovation, the distri-

bution of innovation shares across the different technologies is somewhat less skewed in both

firm types. Furnaces and burners are the most important technologies in both firm types, but

the difference in their relative importance is small. Engines and turbines are also relatively

important.

<< INSERT TABLE 3 ABOUT HERE >>

In summary, we observe that FF patents make up the lion’s share of our total energy

patent counts, and their numbers have consistently outranked those of REN patents. Only

from the mid 1990s onwards do we observe a convergence between REN and FF patents, i.e.

a closing of the technology gap, that is induced by a simultaneous increase of the former and

a decrease of the latter. However, even though both specialized and mixed firms have driven

10Another concern regarding our distinction between specialized and mixed firms is that the former might be
subsidiaries of a larger (multinational) corporate network, and as such are eventually part of a mixed firm after
all. Using the ownership relations provided in Orbis, we examined this possibility. A drawback of this analysis
is that we only have non-missing information on the identities of (global) ultimate owners (defined as firms that
own at least 25% of a focal company’s stock and are diffused firms themselves) for 8.1% of the firms in our sample.
For this small subset, we found that only 3.1% of specialized REN firms are part of a larger corporate network
that also incorporates specialized FF subsidiaries. For specialized FF firms this percentage is 3.6%. Based on
these findings at least, our distinction between specialized and mixed firms seems warranted. We thank one of
the anonymous referees for drawing our attention to this point.
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the reduction in FF patents, only specialized firms are responsible for the increase in REN

innovation. The descriptive results further suggests that this latter development is mainly

driven by firm dynamics, i.e. more (specialized) firms becoming active in REN innovation.

Finally, we have demonstrated that mixed firms are fundamentally different from specialized

firms – in terms of turnover, total assets, number of employees and age – and that they are

more frequent and persistent innovators.

3 Literature review and conceptual framework

3.1 Background literature

The goal of this study is to understand whether and how the factors affecting firm-level inno-

vation may induce a shift from fossil-fuel to renewable innovation in the sector of electricity

generation. There is an extensive literature in environmental economics studying the factors

affecting clean innovation. The starting point of this literature is the induced innovation hy-

pothesis of Hicks (1932), stating that inventions are triggered by changes in the relative prices

of production factors. In line with Hicks’ original idea, Popp (2002) finds strong evidence for

a positive effect of energy prices on patents in 11 clean energy-related technologies over the

1970-1994 period. He also finds evidence that the quality of knowledge available to inventors

matters for successful patent applications. Environmental policy can also foster technological

change in environmental and energy-related technologies, as taxes or subsidies can affect the

profits of firms engaged in innovation. Johnstone, Hascic and Popp (2010) provide an analysis

of how energy prices and various policy instruments affect innovation in different renewable

energy technologies. They find that price-based policies, such as feed-in tariffs, can effectively

increase innovative activities in the more costly renewable technologies, such as solar power.

Recent theoretical work on directed technical change aims to investigate the factors that can

induce a relative shift towards clean technologies and away from dirty ones at the aggregate level

(Acemoglu et al., 2012a; Smulders and Nooij, 2003; Di Maria and van der Werf, 2008). Acemoglu

et al. (2012a) emphasize the role of three factors affecting the direction of technological change

at the sector level: first, the price effect, encouraging innovation in the sector with higher

prices;11 second, the market size effect, encouraging innovation in the sector for which there is

11In this case, high fossil fuel prices will tend to encourage energy-saving innovation in the dirty sector.
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a bigger market (i.e. demand); third, the direct productivity effect, which pushes innovation

towards technologies with a higher productivity or existing stock of knowledge. This latter force

results from the ability to “build on the shoulders of giants”: future innovations are building

on the existing stock of knowledge or technology, thereby generating path-dependencies in

knowledge creation. A main result from Acemoglu et al. (2012a) is that when the clean and

dirty inputs are strong substitutes, the market size and initial productivity advantage of dirty

inputs will direct innovation towards the dirty sector, leading to an environmental disaster. In

that case, government intervention is necessary and temporary taxes or subsidies can redirect

innovation towards the clean sector. Building on Acemoglu et al. (2012a)’s framework, Aghion

et al. (2012) study how carbon taxes and firms’ past knowledge stocks induce firms in the

automobile sector to invest more in clean (e.g. electric and hybrid) than in dirty (e.g. internal

combustion engine) technologies. They find that firms tend to innovate relatively more in clean

technologies when they face higher tax-inclusive fuel prices. They also find evidence for path-

dependency in innovation from both aggregate knowledge spillovers and from the firm’s own

innovation history. Popp and Newell (2012) examine the trade-offs between clean and dirty

innovation at the firm level by looking at the patent portfolio of large publicly traded firm.

They find that these firms adapt their research portfolio as a response to market incentives:

as opportunities for alternative energy research become more profitable, firms will increase

innovation in alternative energy patents and reduce other types of innovation, suggesting some

form of within-firm substitution. They do not find evidence that such crowding out occurs

because firms are financially constrained.

In parallel to these developments in environmental economics, the economic growth and in-

novation literature has witnessed in recent years a renewed interest for Schumpeter’s notion of

creative destruction – the process by which new innovations replace older ones (Aghion, Akcigit

and Howitt, 2013). This literature provides useful insights to understand how technological

transitions can take place via innovation from heterogeneous firms, namely new entrants and

incumbent firms (Klette and Kortum, 2004; Acemoglu and Cao, 2010).12 The empirical litera-

ture in this line of research documents some key stylized facts about innovating firms: (1) the

distribution of R&D intensity among firms is highly skewed: a large number of firms perform

However, if there is a high degree of substitution between the clean and dirty inputs, high fossil fuel prices will
also encourage innovation in the clean sector.

12See Acemoglu et al. (2012b) for a first application to clean technology transition.
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low R&D, while a small number of firms has high R&D intensity; (2) large established firms

innovate a lot but tend to focus on improving existing technologies (Cohen and Klepper, 1992;

Akcigit and Kerr, 2010); (3) small firms and new entrants are often believed to be the source

of more major and radical innovations than large firms (Akcigit, 2011; Kamien and Schwartz,

1975);13 (4) there are high sunk and fixed costs to start R&D, such as the setup of an R&D lab,

the purchase of equipment, and the configuration of the necessary infrastructure (Stiglitz, 1987;

Hall and van Reenen, 2000; Arque-Castells and Mohnen, 2012).14 Moreover, these costs may

vary across firms (Stiglitz, 1987; Hall and van Reenen, 2000; Manez et al., 2009). For example,

Manez et al. (2009) finds that large firms in high-tech sectors incur higher sunk costs in the

decision to invest in R&D than small firms in low-tech sectors.

Malerba and Orsenigo (1999) use patent data to illustrate some of those key differences

among innovating firms. Looking at patenting firms in a wide number of technologies and coun-

tries over 13 years, they find that for all technological fields a large fraction of new innovators is

composed by occasional innovators that exit the innovating scene very fast. Only a few of them

are able to grow and to become persistent innovators. They also find that the only firms that

are able to diversify their patenting activities and enter new research areas are large patenting

firms that have already invested a lot in research activities. These so-called “lateral entrants”

(i.e. firms that start innovating in new research field in which they have no experience so far)

are also on average older than other firms. These findings are consistent with our observation

in Section 2 that mixed firms are on average larger, older, and more innovative than specialized

firms.

3.2 Conceptual framework

Building on these two strands of literature, we can formulate expectations on how heterogeneous

firms respond to incentives for innovation, and how firm dynamics may induce a replacement

of FF by REN innovation in the electricity generation sector. We assume that firms employ

scientists in corporate research laboratories and can innovate either in REN, FF or both tech-

nologies using technology-specific (REN or FF) inputs. Firms’ profits from innovation activities

13Akcigit (2011) shows for instance that due to diminishing returns to innovation small firms have more
incentives to increase their productivity and to choose higher quality innovation than large firms.

14Conducting R&D implies creating research labs, purchasing machinery and hiring and training a specialized
workforce. As Stiglitz (1987) notes: “Most expenditures on R&D are, by nature, sunk costs. The resources spent
on a scientist to do research cannot be recovered. Once this time is spent, it is spent.” (p. 889)

11



in a given technology have two components: (1) variable innovation profits - which following the

set up of Acemoglu et al. (2012a) are a function of input prices, input market size, and firm’s

past accumulated knowledge stock in the given technology;15 (2) technology-specific fixed and

sunk costs - where fixed costs, such as the salaries of R&D personnel, have to be incurred in

every period, while sunk costs, such as the purchase of necessary equipment and machines for

setting up a research lab, are incurred only once before the firm starts innovating in the given

technology. As a result, sunk costs have to be incurred twice for mixed firms, but only once

for specialized firms. This is consistent with empirical studies finding that only large firms are

on average capable of incurring the large sunk costs needed to diversify their research portfolio

and to sustain several research lines.

In every period, all firms face two types of innovation decisions (cf. Arque-Castells and

Mohnen, 2012): (1) they first decide whether they enter the innovation market to undertake

R&D in a given technology (or both) (i.e. the extensive margin of innovation); firms will only

enter the innovation market in a given period if their expected innovation profits are nonneg-

ative, i.e. if their variable innovation profits cover their sunk and fixed innovation costs; (2)

conditional on entry, firms decide how much innovation they will conduct in the given technol-

ogy (i.e. the intensive margin of innovation); the level of variable innovation profits in the given

technology (or both) will determine the firm’s rate of innovation.

We first formulate hypotheses regarding innovation decisions of specialized firms. Upon first

entry, each firm compares REN and FF innovation profits to decide which innovation market

to enter. If the firm’s expected profits of entering REN technology are large enough to cover

the firm’s initial REN sunk and fixed costs and larger than the expected profits of entering FF

innovation, then the firm will start innovating in REN technologies. Moreover, after this initial

choice, specialized firms can always choose to diversify into the other technology and become

mixed firms, if their expected innovation profits are large enough to incur the additional sunk

costs of entering a new research line. In this set up, we expect the drivers of both REN and

FF innovation profits to affect specialized firms’ extensive margin innovation decision in every

period. More specifically, we expect an increase in REN (FF) market size and a firm’s REN

past knowledge stock to increase the likelihood of undertaking R&D into REN (FF) innovation

15For now, we consider path-dependency in innovation at the firm level. In the empirical analysis we also
consider path-dependency at the sector level, allowing for aggregate knowledge spillovers. In addition, we only
consider the prices of FF inputs. As explained in Section 4, price data for REN inputs are not readily available.
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by specialized firms, while an increase in FF (REN) market size will reduce it.16 Regarding

the impact of FF prices, the literature generally assumes that REN and FF technologies are

good substitutes in electricity production (Lanzi and Sue-Wing, 2010; Baker and Shittu, 2006).

Accordingly, the price effect described by Acemoglu et al. (2012a) implies that rising FF prices

are expected to be associated with a relatively higher likelihood of entry for REN specialized

firms and a lower likelihood of entry for FF specialized firms, leading to some substitution

between the two types of firms.

Next, conditional on a positive entry decision, specialized firms make a decision regarding

how much to innovate (i.e. the intensive margin decision). Since specialized firms have either

chosen to enter the REN or FF innovation market (but not both), the intensive margin decision

will only depend on the factors affecting the innovation profits of the given technology. Specifi-

cally, REN market size and knowledge stocks are expected to increase the level of innovation in

specialized REN firms. By contrast, FF prices and market size are expected to have no impact

on the level of innovation by REN firms, since FF inputs do not enter the innovation profit

function of REN firms. A similar reasoning holds for the factors affecting the rate of innovation

by specialized FF firms.

We now turn to our hypotheses regarding mixed firms’ innovation decisions. Mixed firms

are either former specialized firms that have found it profitable at some point to diversify, or

firms that entered both the REN and FF innovation markets simultaneously upon first entry.17

Once they have incurred both sunk costs and have the necessary equipment for both REN

and FF innovation, they can still (in every period) decide to enter R&D in either one or both

technologies, depending on which technology is expected to yield the largest innovation profits

covering the per-period fixed costs. Hence, in their extensive margin decision, similar to spe-

cialized firms they will compare REN innovation profits with FF innovation profits. We expect

similar effects of the drivers of innovation as under specialized firms, with the difference that

since mixed firms have built knowledge stocks in both technologies, mixed firms’ FF knowlegde

stock will also affect the likelihood and level of REN innovation within the firm (and similarly

for REN knowledge stocks).

Once mixed firms have decided to enter innovation, their level of innovation (i.e the intensive

16By definition REN (FF) specialized firms do not have any past knowledge stock in FF (REN) technologies.
17In Section 2 we find that in our sample the typical mixed firm starts out as a specialized FF firm, but very

quickly (on average after two years) diversifies into REN innovation.
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margin) will be driven by input prices, market size and knowledge stocks in a similar fashion as

for specialized firms. Unlike specialized firms, however, mixed firms may decide to enter both

innovation markets. As a consequence, also in the intensive margin decision, mixed firms are

likely to compare net REN and FF innovation profits in order to determine how many resources

to invest in each technology. Therefore, again the determinants of both REN and FF innovation

profits are likely to enter both intensive margin innovation decisions. More specifically, we expect

that REN (FF) market size increase the level of REN (FF) innovation in mixed firms. In line

with the path-dependency hypothesis, we also expect that REN (FF) knowledge stocks increase

(decrease) the rate of REN innovation by mixed firms, and reduce (increase) the rate of FF

innovation. Regarding the impact of FF prices, assuming that FF and REN innovation are

substitutes in the firm’s technology portfolio (as suggested by the findings of Popp and Newell

(2012) of within-firm substitution between alternative energy and other technologies), we expect

an increase in FF prices to be associated with a decrease in FF innovation and an increase in

REN innovation.18 Table 4 summarizes our expectations regarding the drivers of specialized

and mixed firms’ innovation decisions.

<< INSERT TABLE 4 ABOUT HERE >>

Ultimately, we are interested in determining whether corporate innovation can be directed

away from FF techhnologies and towards REN technologies. As can be seen in Table 4, in most

cases prices, market size, and knowledge stocks in both technologies steer innovation in opposite

directions. The question we aim to answer is to what extent developments in these different

variables have been responsible for closing the aggregate FF-REN technology gap as observed

in Figure 1(a). To guide our empirical evaluation, we write the change in innovation (i.e. the

number of granted patents P ) in firm i that is active in technology j (s.t. j ∈ REN,FF ):

∆Pijt = I(.)Pijt − I(.)Pij,t−1 (1)

where I is the indicator function that takes value 1 if the firm enters innovation market j, and

18In the end, however, whether these two technologies are substitutes or complements in the firm’s knowledge
production function is an empirical question. Other research in the innovation literature shows that when firms
diversify their technology portfolio, they tend to invest in technologies that share a common or complementary
knowledge with their past innovation, suggesting that firms tend to develop complementarities between different
lines of research (Breschi, Lissoni and Malerba, 2003). In that case, the drivers of innovation in one technology
may also positively affect innovation in the other technology.
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0 otherwise.19 Since we are interested in the impact of our model variables on the aggregate

technology gap, we have to consider the gap between FF (d) and REN (c) patents, aggregated

over all firms in the economy:

∑
i

∆Pidt −
∑
i

∆Pict =
∑
i

(I(.)Pidt − I(.)Pid,t−1)−
∑
i

(I(.)Pict − I(.)Pic,t−1)

=
(
NdtP idt −Nd,t−1P id,t−1

)
−
(
NctP ict −Nc,t−1P ic,t−1

) (2)

where Njt are the number of active (i.e. innovating) firms in sector j ∈ c, d in period t, and

P are average firm-level patents. Directed technical change away from FF and towards REN

innovation implies a reduction in this gap. This could happen either through the extensive

margin (i.e. fewer firms engage in FF innovation and/or more firms engage in REN innovation),

the intensive margin (i.e. average firm-level FF innovation decreases and/or average firm-level

REN innovation increases), or both.

4 Data & methodology

4.1 Data

As described above, our dependent variable in the empirical model is patent counts to proxy

innovation in REN and FF technologies. To empirically estimate the model, we further need

data on prices, market size, and knowledge stocks.

Energy prices The Energy Prices and Taxes database of the IEA contains data on country-

level prices of the different fossil-fuel energy sources oil, gas and coal.20 These prices correspond

to the prices paid at the power plant for electricity generation, i.e. prices paid by electricity

facilities for a certain type of fuel, and include taxes. In the analysis we use a production-

weighted average price of oil, gas and coal prices per country. Ideally, we would like to have data

on input prices for both REN and FF innovations. Data for input prices for REN technologies

are, however, not easily available so that we only consider FF prices.

In order to make fossil-fuel prices firm-specific, we take into account the fact that firms

19Hence, the value of the indicator function is based on the evaluation (and comparison) of innovation profits
net of fixed (and potentially also sunk) costs discussed above.

20Missing prices were imputed using the IEA relevant price indices for oil, gas and coal.
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might be exposed to both domestic and foreign prices to different degrees as in Aghion et al.

(2012). As an illustration, we have to capture the extent to which a Dutch firm is influenced by

German prices. Arguably, this impact will be bigger, the more important the German market

is for the Dutch firm’s innovations. To capture this, we use information on patents’ families

as provided in Orbis through the link with PATSTAT to identify the set of countries in which

the original patent has been filed.21 To this end, we use data provided in Orbis that indicates,

for each of the patents in our sample, if and in which countries it has been validated. For each

firm i we then compute a weight wic which captures the share of country c in the firm’s overall

patent validation portfolio. In addition, we weight the different countries’ prices with their FF

market size in order to make sure that small countries do not have a disproportionate impact

on computed prices.

Taken together, this implies that the fossil-fuel price faced by firm i at time t is computed

as:

pit =
∑
c

wic × pct

s.t. pct =
∑

f=oil,coal,gas

Mfc

MFFc
× pfct

(3)

where pct is the sum of (log) fossil-fuel prices pfct (oil, coal and gas) in country c at time t,

weighted by the respective average market shares of each fossil fuel type in that country. This

price is then multiplied by the weight wic = Pit×MFFic∑
PitMFFic

, where Pic is the total number of patents

validated by firm i in designation country c and MFFc is the country’s FF average market size.22

Figure 3 shows the average firm-level developments of prices for the weighted average price

used in the analysis as well as for the different individual fuel prices (oil, coal, and gas).

<< INSERT FIGURE 3 ABOUT HERE >>

21For EPO patents we additionally extract information on validation countries from the INPADOC database.
Since our focus is on European firms that we assume will be primarily affected by drivers in Europe, we only
consider patents filings in European countries. We find indeed that the large majority of our patents (87%) have
been filed only in European countries (while about 13% have subsequently been filed in Japan or US).

22All our weights are fixed, i.e. we compute total patent counts Pic and average market sizes MFFc over the
whole sample period. If changes in FF prices affect the country mix of the patent portfolio or the size of the FF
market, not fixing the weights might feed back into the prices, causing potential endogeneity.
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Market size To proxy market size, we use data on electricity output from renewable and

fossil-fuel energy sources. These data are derived from the Energy Statistics database from the

IEA and are expressed as the total number of GWh generated by power plants. Regarding

FF energy, we have separate data on electricity output by three different types of fuel sources,

namely coal, gas, and oil. Renewable electricity output breaks down into solar, wind, hydro,

marine, geothermal, biomass and waste. In our robustness analysis, we also use data on installed

capacity in the various energy sources extracted from the Electricity Information database

from the IEA.23 Market size variables are also likely to capture demand-pull policies (e.g.,

guaranteed tariffs, investment and production tax credits) aiming to increase the market demand

for renewables.

As with prices in (3), we construct fixed firm-specific designation country weights wik to

compute firm-level FF and REN market sizes. However, we now also introduce fixed firm-

specific technology weights wis to account for the fact that e.g. a firm innovating mainly in

solar power will be mostly concerned with the market size for solar energy. Hence we compute:

Mit =
∑
c

∑
s

wiscMsct (4)

with wisc = Pisc∑
s

∑
c Pisc

, where Pisc is the number of patents of firm i in technology s in country

c and Msct is the (log) market size of technology s in country c.

To compute FF technology weights wisc we use a correspondence between the FF techno-

logical areas and oil, gas or coal fuels as provided in Lanzi, Verdolini and Hascic (2011). For

instance, technologies in the field of production of fuel gases by carburetting air are assigned

to the market size of electricity output from coal.24 For those FF innovations without such a

correspondence, we assign the weighted average market size of all three fuel sources. Finally,

we also compute firm-specific REN market sizes for firms innovating only in FF technologies

since we include these in our estimations as explained in Section 4.2 below. To do so, we as-

sign country-level market size averaged across all REN technologies, using the firm’s relevant

country-weights (wic). We proceed in a similar manner to assign FF market sizes to firms that

innovate only in REN technologies. Figure 4 depicts the development of average firm-level REN

23We imputed missing values for installed capacity based on country-specific trends in electricity output data.
24See Table 1 on p.6 of Lanzi, Verdolini and Hascic (2011).
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and FF market sizes over the sample period. The average FF market size is very stable and

substantially higher than REN market size. However, the latter shows a remarkable increase

since the early/mid 1990s. In addition to REN and FF technology market sizes, we use real

GDP data from the World Bank Development Indicators for all the designation countries in

our sample, and compute a firm-specific real GDP variable in a similar way as we compute

firm-level prices (see above) to control for overall marketsize.

<< INSERT FIGURE 4 ABOUT HERE >>

Knowledge stock To proxy past productivity, we use cumulative patent counts to construct

firm-specific knowledge stocks. We have to account for the fact that knowledge becomes obsolete

as time progresses, for example due to the creation of new knowledge. We assume that knowledge

stocks depreciate annually by 15% as is commonly assumed in the literature (Hall and Mairesse,

1995).25 Knowledge stocks are computed using the perpetual inventory method as KSt =

(1−δ)KSt−1 +Pt, where δ is the depreciation rate. Since we observe a long history of patenting

for each firm, the initial knowledge stock for each firm is the cumulative knowledge stock in

REN and FF technologies until 1978 (the first year of the sample period), or up until the first

(observed) year of REN or FF innovation (if this is after 1978).

In addition, just as in Blundell, Griffith and van Reenen (1995) we include two variables to

capture firms’ capacity to innovate in the pre-sample period as explained in Section 4.2. We

first compute the average pre-sample innovation count of every firm in all technologies, i.e. not

only electricity generation technologies. This is the total count of all patents divided by the

number of active innovation years in the period before the firms’ first innovation in REN or FF

technology. In addition, we add a dummy variable capturing whether a firm has innovated at

all in the firm-specific pre-sample period. We will use this information in our estimations to

control for unobserved firm heterogeneity as in Blundell, Griffith and van Reenen (1995).

4.2 Methodology

Our ultimate aim is to establish the impact of the energy prices, market size, and knowledge

stocks on the direction of innovation. In order to do so, we first have to estimate how these

25Hall and Mairesse (1995) show in addition that the choice of depreciation rate for R&D makes little difference
to estimate innovation production functions.
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various factors affect firms’ decisions to innovate in a given technology. An important issue

that we need to address is firm’s heterogeneity in innovation. As we show in Section 2 and

as commonly found in the innovation literature, we have a large number of firms making few

innovations while a small group is involved in higher and more diversified levels of innovation.

These differences are unlikely to be all captured by observable differences across firms. In line

with our conceptual framework in Section 3 some of the firm’s heterogeneity is also explained

by differences in firm’s fixed and sunk costs for innovation reflecting their capacity to undertake

R&D and break even on the innovation market. Other sources of heterogeneity may come from

firm’s propensity to patent or firm’s (financial) capacity to innovate (for instance due to a better

capacity to appropriate research efforts). In firm-level data, firm’s heterogeneity is reflected

in a larger number of zero innovation counts than a standard Poisson process would predict

(Blundell, Griffith and van Reenen, 1995). In our analysis there are two different processes

explaining a firm’s zero patent count: (i) the ‘structural’ (excess) zeros stem from the fact that

the firm has not find it profitable to undertake R&D (i.e. to enter the innovation market) in a

given technology in that year (i.e. expected profits are not large enough to cover annual fixed

costs), (ii) the ‘standard’ zeros are the realization of a standard Poisson process and reflect the

fact that although the firm has entered the innovation market that year, innovation has not been

successful (since innovation is an uncertain process). Accordingly, these two different processes

capture firm’s innovation decisions at the extensive and intensive margins as depicted in Section

3. To capture these two margins we estimate firm-level patenting behavior by a zero-inflated

Poisson model. In this model, a logit distribution first determines whether the count variable

(i.c. patent counts) has a zero or positive outcome. Then a second-stage Poisson distribution

governs the actual realization of the outcome. Accordingly, the number of patents will follow a

Poisson distribution, such that the intensive margin decision governing the rate of patenting is

given by a log-linear Poisson model:

E(Pijkt|Xijkt, ηi, υk, νt) = log(λijkt)

s.t. λijkt = exp(β0 + β1 log pit−1 + β2j logMijt−1 + β3j logAijt−1 +Xitγ

+ ηi + υk + νt)

(5)
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with i, j, k and t indexing firm, technology (REN (c) or FF (d)), country, and time respectively.

The variable p denotes FF prices, M denotes market size, and A denotes knowledge stocks. η, υ

and ν capture unobserved firm, country and time-specific heterogeneity, respectively. The vector

X includes firm-specific levels of real (total) GDP. We lag the price and market size variables by

one year to allow their impacts on patenting to be sluggish. To test the expectations depicted

in Table 4, we include all REN and FF variables in both margins for both firm types when

possible.26 Regarding the extensive margin decision, in the zero-inflated Poisson model the

likelihood of having a zero outcome for the count variable is estimated by a logit model:

Pr(Pijkt = 0) = Λ(µijkt) =
eµijkt

1 + eµijkt
(6)

where µijkt = ln(λijkt) (as given in (5)) and Λ denotes the logistic distribution function.

The zero-inflated Poisson model allows us to separate the extensive and intensive innovation

margin decisions, as it simultaneously estimates the two models in (5) and (6). In this regard,

it is instructive to write the conditional mean of the model:

E(Pijkt|Xijkt, ηi, υk, νt) = (1− Λ(µijkt))× λijkt (7)

The first term on the RHS of (7) captures the probability that the binary process variable equals

1, implying a non-zero outcome (i.e. the extensive margin), whereas the second term on the

RHS of (7) captures the level of patenting (i.e. the intensive margin).

Our motivation for the choice of zero-inflated Poisson estimation techniques presents many

analogies with recent developments in the trade literature on how to deal with zero-value trade

flows in gravity equations explaining bilateral trade activities (Helpman, Melitz and Rubinstein,

2008; Silva and Tenreyro, 2006; Anderson and van Wincoop, 2003; Burger, van Oort and Linders,

2009) in particular when estimations are disaggregated to the product level. In many cases,

these zeros occur simply because some pairs of countries did not trade in a given period. The

absence of trade can be explained by the presence of fixed costs to start trading, such as the

lack of cultural or historical links between the two countries, and expected profits may simply

not be large enough in the absence of demand for a given product. Hence in this literature - and

26As noted, we cannot include REN (FF) knowledge stocks in the models for specialized FF (REN) firms due
to absence of such stocks for firms.
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analogous to our modeling of innovation decisions - the same determinants that explains trade

profits might thus affect both the extensive margin (decision to trade) and intensive margin

(volume of trade) decisions.

Finally, although the zero-inflated Poisson model bears resemblance to the Heckman selec-

tion model, the zero-inflated Poisson is less restrictive as it does not rely on stringent normality

assumptions and do not require an exclusion restriction or instrument for the second stage of

the equation27 Additionally, the Heckman model is not based on a count data process but on a

logarithmic transformation of the explanatory variable, which is less suited for modeling patent

counts.28 As a result, the zero-inflated Poisson is our preferred estimation model.

Although the zero-inflated model accounts for unobserved heterogeneity in firms’ sunk and

fixed costs in innovation, there might be additional heterogeneity that cannot be captured by

observable variables, such as the firm’s financial ability to invest in innovation or other factors

affecting the firm’s capacity to innovate. Although the Orbis dataset includes some business

and financial data at the firm level, the sample of firms for which these data are available is

too small for reliable estimation. In addition, these data are only available for years after 2003

while our innovation panel runs for much earlier periods of time, raising the issue of endogeneity

for these variables.

An additional complexity arises due to the fact that we include firm’s knowledge stock on

the right-hand side, which are not strictly exogenous, as they are based on the cumulative sum

of lagged realizations of the dependent variable. This rules out an estimation of firms’ fixed

effect based on Hausman, Hall and Griliches (1984) conditional maximum likelihood estimation,

since the later requires strict exogeneity and thus excludes the inclusion of a dynamic variable

on the right hand side.29 Instead or order to capture additional firm’s heterogeneity, we rely

on the pre-sample mean estimator developed by Blundell, Griffith and van Reenen (1995).

They derive a proportional relationship (up to a constant) between a firm’s average pre-sample

innovation activity on the one hand, and unobserved firm heterogeneity on the other hand.

The underlying assumption is that pre-sample innovation is a proxy for firm’s propensity to

27In our case, this instrument should reflect a variable that influences the absence of innovation but is unrelated
to the level of innovation - which would be hard to find.

28This is particularly true when studying patent counts at the firm level where there are only small absolute
differences in the number of patents (which would become large differences after a logarithmic transformation).

29See Majo and van Soest (2011) for an example of zero-inflated fixed effect Poisson estimator based on
conditional maximum likelihood estimation as in Hausman, Hall and Griliches (1984) and constructed for two
time periods only, as standard routines for this model are not (yet) available in standard statistical packages.
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innovation and firm’s innovation search activity, which itself follows an AR1 process and is

stationary. Hence, in our estimation we include for each firm its average pre-sample patent

count, as well as a dummy variable equal to one if the firm ever innovated in the pre-sample

period (cf. Blundell, Griffith and van Reenen, 1995).30 The dummy will capture the fact that

firms who have ever innovated in the past may be qualitatively different from firms who never

innovated. Additionally, we control for unobserved country and time heterogeneity through the

use of country and year dummies.

We include all the explanatory variables – including the proxies for unobserved firm hetero-

geneity – in both models. One limitation of our data is that we do not have data on firms’ real

entry and exit, only on its innovation (i.e. patenting) entry and exit. Hence, we are concerned

that we might be trying to explain a firms’ decision to invest into a R&D in periods where

the firm did not even exist. To mitigate this issue, we only estimate our models on the firm’s

innovation period, i.e. between the first and last innovation years that we observe in our sample.

Hence, our extensive margins estimates mainly reflect whether a firm expected profits in a given

technology are large enough to cover the firm’s fixed costs to innovate in a given year.

We estimate the empirical models in (5) and (6) separately for specialized and mixed firms.

Using the estimated marginal impacts of each of the explanatory variables in the REN and

FF models, we then compute the impact on aggregate directed technical change. That is, we

compute the impact of the different model variables on the (relative) change in the FF-REN

technology gap as formulated in (2), separating extensive and intensive margin impacts (the

Appendix provides the technical details).

Table 5 shows some summary statistics and pairwise correlations of the variables in our

model. In accordance with the descriptive evidence presented above, all the unconditional

averages of the FF variables are higher than those of the REN variables. As can be seen,

multicollinearity is not an issue in our sample.

<< INSERT TABLE 5 ABOUT HERE >>

30For firms that have zero pre-sample information, we use the logarithm of an arbitrary small constant and
let the dummy estimates its level.
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5 Estimation results

5.1 Baseline results

In Table 6 we present our baseline results. All models include full sets of country and year

dummies (not reported). Columns (1) and (2) estimate the model for specialized REN and FF

firms, respectively. Columns (3) and (4) estimate the two models for mixed firms. All models

are estimated using the zero-inflated Poisson model described earlier. The top part of the

table presents the coefficient estimates of the Poisson model on the number of patents (i.e. the

intensive margin of innovation), whereas the bottom part of the table presents the coefficient

estimates of the logit model in the inflation equation on the likelihood of observing (excess) zero

patent counts. We interpret the results of the inflation equation as the impact on the extensive

margin of innovation, i.e. the likelihood of participating into the innovation market (innovation

‘entry’). A negative impact on the likelihood of (excess) zero patents is thus interpreted as a

positive impact on the likelihood to undertake R&D. The Vuong test statistic reported in the

bottom of the table suggests that the zero-inflated Poisson model performs significantly better

than the general Poisson model in all of the estimated models in line with our reasoning that

there are two different processes explaining zero patenting in our model.

Firm fixed effects are captured by the two pre-sample variables: (1) a dummy variable equal

to one if the firm has innovated in the pre-sample period; (2) the firm’s average innovation count

in the pre-sample period in all technologies (i.e. not only patents in REN and FF technologies).

While they reflect the innovation capacity of the firm and thus firms’ heterogeneity, we do

not have a priori expectations on the sign of generic pre-sample innovation on further specific

innovation in REN or FF technologies. For specialized firms, the pre-sample variables tend

to be mainly significant in the extensive margin models. Having patented in the pre-sample

period is positively associated with the likelihood to conduct innovation both in REN and FF

technologies. Yet the pre-sample level of patents is negatively associated with innovation entry in

electricity generation. For mixed firms, we observe that having pre-sample innovation experience

increases the rate of REN innovation, even though the level of pre-sample patents reduces it.

Instead, pre-sample innovation decreases the rate of FF innovation by mixed firms.31 Regardless

31These results suggest a subtle effect of general (as opposed to specific) innovation experience. Having some
innovation experience by itself increases the probability of future REN innovation. However, the actual amount
of innovation experience is not conducive to more REN innovation. This seems to imply that mixed firms in our
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of the actual signs of the coefficients, the more important result is that either (or both) of the

firm heterogeneity proxies are statistically significant in almost all models, suggesting that they

indeed pick up (part of the) unobserved firm characteristics. The impact of overall market size

as measured by firm-specific real GDP is hardly ever significant.

Column (1) conducts the analysis for firms that specialize in REN innovation only (conse-

quently, the FF knowledge stock is dropped from the model, as these firms have not built up

FF knowledge stocks). Regarding the factors affecting the rate of innovation (i.e. intensive

margin decision) as shown in the upper panel of column (1), except for a positive effect of the

firm’s past REN knowledge stocks, none of the other variables significantly affect the rate of

REN innovation. The drivers of innovation are, however, much more significant on the extensive

margin as can be seen in the lower panel of column (1). The inflation equation shows a positive

impact of both FF energy prices and REN market size on the likelihood of REN innovation. In

a counter-intuitive way, larger REN knowledge stocks reduce this probability. Although unex-

pected, this result is consistent with our earlier observation that specialized firms are typically

incidental (one-time) innovators. The knowledge stock of these firms turns positive only after

their first innovation, yet often they do not re-enter the innovation market again, inducing a

negative correlation between knowledge stocks and the likelihood of innovation.

Column (2) repeats the analysis in column (1) for firms that specialize in FF innovation only

(consequently, the REN knowledge stock is dropped from the model). A rise in FF prices is

associated with a marginally significant positive impact on the rate of innovation by specialized

FF firms. We find the opposite effect of FF prices in the inflation equation: here a rise in

FF prices is associated with a negative effect on the likelihood of innovation entry. As with

specialized REN firms, FF knowledge stocks also have a negative impact on the likelihood of FF

innovation entry, again reinforcing the notion that specialized firms are incidental innovators.

<< INSERT TABLE 6 ABOUT HERE >>

Column (3) looks at REN innovation in mixed firms. The top panel in column (3) shows

how the various factors affect the intensive margin decisions of mixed firms. First, FF energy

prices have a positive and significant impact on the rate of REN innovation by mixed firms.

We also find a positive significant effect of the firm’s past REN knowledge stock. FF market

sample have developed generic innovation experience that is not relevant to REN innovation.
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size further has a negative and significant impact on REN patenting, as expected. However,

FF knowledge stocks also have a positive and significant impact, suggesting complementarities

between REN and FF innovation in mixed firms. Regarding mixed firms decisions to undertake

REN innovation in every period, i.e. the extensive margin decision, results of the inflation

equation given in the lower part of column (3) suggest that a large REN knowledge stock

increases the likelihood of REN innovation entry, whereas a larger FF knowledge stock reduces

it.

Finally, column (4) shows that the rate of FF innovation in mixed firms is driven by changes

in FF prices, FF market size and FF knowledge stocks. As in column (3), an increase in FF

prices also raises FF innovation. Together with the positive effect of FF prices on REN patents,

this suggests that mixed firms are not substituting one type of innovation for the other as

we expected, but rather increasing both simultaneously.32 Finally, the results in the inflation

equation suggests a significant positive impact of FF market size and FF knowledge stocks on

the FF innovation probability.

Summarizing these results, we find mixed support for the expectations formulated in Table 4.

Innovation by specialized firms is mainly affected by the model variables through the extensive

margin. For firms specializing in REN innovation, we find that FF prices and REN market

size encourage firms to enter REN technologies, while high FF prices also discourage firms to

enter FF technologies, all as expected. Contrary to mixed firms, innovation by specialized firms

tends to be very incidental and cannot be sustained over time, as demonstrated by the fact

that larger knowledge stocks reduce the likelihood of innovation. Once specialized firms have

entered, their level of innovation is mainly affected by their past knowledge stock.33 Mixed

firms tend to increase both REN and FF innovation in equal proportion as a response to a

rise in FF prices, which goes against our hypothesis of within-firm substitution. A larger FF

market further induces substitution from REN to FF innovation. Also, these firms experience

complementarities in innovation, as the past stock of FF innovation positively affects REN

patenting.

32Results of a Wald test show however that there is no significant difference between the two coefficients (cf.
Table 7), suggesting that mixed firms will respond to a rise in FF prices by increasing both types of innovation
in equal proportions.

33Although we do find a marginally significant positive impact of FF prices on the rate of innovation by
specialized FF firms, this effect is not always robust for alternative specifications (see Section 5.3).
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5.2 Impact on the technology gap

The overarching motive of our study is to establish whether developments in prices, market

size, and knowledge stocks are able to direct innovation from FF towards REN technologies

in the sector of electricity generation. In order to assess to what extent this is the case, we

conduct additional computations – combining the estimated elasticities of Table 6 with the

actual average yearly changes in our model variables34 – to draw conclusions on the magnitude

of the effects on the direction of technical change in electricity generation. We compute the

relative change in the FF-REN technology gap at the aggregate level, following the average

yearly change in one of the model variables (while keeping the others constant). Ultimately, we

want to assess which variables have the largest impact on closing this gap (i.e. on reducing the

difference between the total number of FF and REN patents in our sample of firms). As stated

in equation (2), the technology gap at the sector level varies with the number of firms active in

the two technologies and with the average number of patents by firm. A technical explanation

of our computations is relegated to the Appendix.

Table 7 presents the results. Columns (1) to (4) in Table 7, labeled “firm-level impact”,

show the impact of an average yearly change35 in each of the explanatory variables on the

firm-level intensive and extensive margins of innovation. These impacts are presented for the

different subsamples, using the coefficients estimated in Table 6. As an illustration, we find

that for specialized REN firms an average yearly change in the firm past REN knowledge stock

is associated with a 5.78% increase in the rate of REN patents.

<< INSERT TABLE 7 ABOUT HERE >>

Columns (5) and (6), labeled “aggregate FF-REN technology gap”, present the resulting

changes in the technology gap at the aggregate level. Since this is our metric of interest, we

only focus from now on on the implications of the results in columns (5) and (6). Figures

presented in bold indicate that there is a significant difference (below the 5% significance level)

between the coefficient estimates for the REN and FF models in Table 6.36

34See Popp (2002) for a similar approach to interpreting marginal impacts.
35In the remainder of this subsection, an increase in a explanatory variable thus always refers to an average

yearly increase of the given variable.
36We conduct Wald tests for differences in coefficients between the two models (i.e. REN and FF, for both

specialized and mixed firms) in a seemingly unrelated regressions framework.
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A first look at the top panel of column (5) shows that knowledge stocks are the main

significant drivers of the technology gap on the intensive margin for specialized firms. As shown

in column (6), knowledge stocks are only important drivers for mixed firms. For both specialized

and mixed firms, we see that REN knowledge stocks have a significant effect on closing the

technology gap, whereas FF knowledge stocks widen it. The impact generated by specialized

firms is substantially stronger than that by mixed firms. An increase in REN knowledge stocks

in specialized firms reduces the innovation gap by 4.35%, while it only reduces it by 0.15%

for mixed firms. Similarly, an increase in FF knowledge stocks in specialized firms widens the

innovation gap by 7.67%, while for mixed firms the impact is smaller (2.79%). Also, the relative

difference between the impacts of REN and FF knowledge stocks is much larger for mixed firms

than for specialized firms. This is in line with our earlier observation that mixed firms tend

to have a long history of FF innovation and only innovate occasionally in REN technologies.

Besides knowledge stocks, other factors are less important for mixed firms. While we did find

that FF prices have a significant effect on the rate of REN and FF innovation in Table 6, they

do not affect REN innovation in a significantly different way than FF innovation. As a result,

FF prices in this case have no effect on the aggregate technology gap. FF market size marginally

increases the innovation gap through mixed firms’ innovation by 0.003%.

The bottom panel in Table 7 shows that several different variables affect the drivers of the

aggregate technology gap on the extensive margin in particular for specialized firms. Indeed,

for these firms both FF prices and REN market size help to reduce the gap in the REN-FF

innovation probabilities, by 0.4%-points and 2.6%-points, respectively. An increase in REN

knowledge stocks increases the gap by 8.1%-points, whereas an increase in FF knowledge stocks

reduces it by 0.9%-points. These latter impacts again reflect the incidental nature of innovation

in specialized firms. Finally, in mixed firms we see that increases in FF market size and FF

knowledge stocks widen the innovation probability gap by 0.001%-points and 0.84%-points,

respectively.

Summarizing, the following patterns emerge. First, in both the intensive and extensive

margins of innovation, the marginal impacts of average yearly changes in our model variables

on the aggregate FF-REN innovation gap are generally larger in an absolute sense for specialized

firms than for mixed firms. This is consistent with the observation in the previous section that
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FF-REN innovation convergence has been induced mainly by specialized firms. Second, the

impact of variables external to the firm (prices and REN market size) is particularly strong in

affecting the extensive margin of innovation - i.e. the innovation entry and exit - in specialized

firms. This is consistent with the observed pattern of convergence between the number of

innovating REN and FF firms during the latter part of our sample period (cf. Figure 1(b)),

when both FF energy prices (cf. Figure 3) and the REN market size (cf. Figure 4) were

also rising. Third, the incidental nature of innovation in specialized REN firms forms a strong

impediment to stronger convergence between FF and REN innovation probabilities.

5.3 Robustness analysis

In this section we report on a number of robustness tests. To economize on space, we only

provide a discussion of the outcomes and refer the reader to the online Appendix of this paper

for a detailed overview of all the estimation results. All together, these tests indicate that

the main results presented in Table 6 are robust to different changes in model specification.

In particular, our conclusions drawn from Table 7 on the main significant drivers of directed

technical change at the aggregate level remain robust.

First, we consider the role of the firms’ fixed effects captured by the pre-sample variables

by dropping them from our baseline estimation. As explained earlier, we believe that these

fixed effects mainly capture the firms’ capacity to innovate. Excluding the pre-sample variables

mainly results on a lower impact of FF prices on the incentives for REN innovation: the impacts

of prices on specialized REN firms’ decision to conduct R&D and on mixed firms’ rate of REN

innovation loose significance. This might be explained by a negative correlation between FF

prices and firms’ fixed effects with regard to REN innovation. A potential explanation is that

when FF prices are high only firms with a high capacity to innovate will choose to invest

in REN innovation, while other firms with lower capacity to innovate will instead choose a

less risky innovation path and focus on improving FF technologies. A log-likelihood ratio test

confirms that the baseline specification including firms’ fixed effects is to be preferred over the

specification without fixed-effects for all models (at the 1% level).

Second, we further investigate the positive impact of FF energy prices on FF innovation.

This effect is intuitive insofar as FF innovation is aimed at improving the efficiency of methods

28



FF energy generation. On the other hand, to the extent that FF innovation is more aimed at

e.g. developing alternative methods of FF energy generation, the positive price effect is not

necessarily straightforward, as we should expect substitution towards REN innovation in mixed

firms. Following Lanzi, Verdolini and Hascic (2011) we make a distinction between energy-

efficient FF (EFF) versus traditional FF (TFF) innovation. As FF energy prices increase, it

seems reasonable to assume that in particular EFF innovation increases. The results partly

support this expectation. FF prices indeed have a positive and significant effect (at the 5%

level) on the rate of EFF innovation but no significant effect on the rate of TFF innovation

by specialized FF firms. For mixed firms, however, we still find a positive impact of FF prices

on the rate of both EFF and TFF (as well as REN) innovation, although the impact is more

significant for EFF than for TFF innovation.

Third, we consider the impact of knowledge spillovers on innovation by including external

knowledge stocks in the model. In particular, using the patent portfolio of each firm in our sam-

ple, we established the distribution of inventors across different countries.37 We then construct

overall REN and FF knowledge stocks in these countries (excluding the focal firm’s patents)

and computed firm-specific external knowledge stocks using inventor-country weights as well as

technology-weights (similar to the weights used to construct market size in equation (4)). For

specialized firms, we find that the size of the external knowledge stock has a positive impact on

the likelihood of innovation entry by specialized FF firms. Also, a larger external FF knowledge

stock tends to marginally decrease the rate of innovation by specialized REN firms. Yet, we do

not find any significant impact of the external REN knowledge stock on innovation by special-

ized REN firms. Regarding mixed firms, the size of the external REN knowledge stock has a

positive impact on the likelihood of REN innovation, although we also find a positive impact

on the rate of FF innovation by mixed firms (but this effect is only marginally significant).

Higher external FF knowledge stocks increase the rate of FF innovation by mixed firms. Hence,

a striking result is that there is no evidence for spillover effects from REN technologies (except

for a marginally significant impact on mixed firms decision to innovate in REN technologies).

Our intuition is that the stock of REN innovation is still relatively small in almost all countries

to have a sensible impact.

37We only considered inventors from either one of the 17 home countries in our sample, as well as the United
States, Japan, and Canada. This accounts for more than 93% of all inventors in the sample.
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Fourth, we consider dropping the (very) large (i.e. innovative) firms from our model to rule

out any biasing influence of outliers. Following Aghion et al. (2012) we identified the top 1%

of firms (in terms of total innovation activity) in each of the subsamples and re-estimated the

models in Table 6 excluding these firms. Most of our main results carry over, except for the

fact that REN knowledge stocks are no longer positive and significant in the intensive margin

model for specialized REN firms, suggesting that this effect is mainly due to large firms with a

history of REN innovation (as expected). Also, the positive impact of FF prices on the rate of

innovation by specialized FF firms now drops out.

Fifth, in Table 6 we include both (FF) prices and market size simultaneously. However, these

variables are likely to influence each other. In particular, as FF prices increase we might expect

REN (FF) market size to increase (decrease). Indeed, the correlations in Table 5 suggest that

this is the case, although the correlations are very small. Therefore, it would be informative to

establish the unconditional impact of both prices and market size. To this end, we re-estimated

the models in Table 6, excluding either FF prices or REN and FF market size from the model.

All our main significant results carry over.

Sixth, we may be concerned about the issue of endogeneous market size. Indeed, innovation

may also have an impact on the level of electricity output produced in a given country from a

given technology type. Since we conduct the analysis at the firm level, the issue of endogeneity

of market size is mainly likely to be relevant for mixed firms that are large enough to have an

impact on a country’s market. To address this issue, we check the robustness of our results

using installed capacity data– i.e. the installation of new REN and FF power plants, measured

in terms of megawatt-hours. Using installed capacity might go some way towards addressing

the potential endogeneity of electricity output as a measure of market size, since the building

of power plants is arguably a long-term process, the plans for which are made further back in

time. As such, it is less likely to be influenced by current innovation. Using installed capacity

leaves our main significant results reported in Table 6 intact, with two exceptions: First, REN

market size now reduces the likelihood of innovation entry by specialized FF firms (p<0.01).

Second, the positive impact of FF market size on the likelihood of FF innovation by mixed firms

now drops out. Additionally, we also find a positive impact of REN market size on the rate of

innovation by specialized REN firms, but this effect is only marginally significant. Additionally,
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we also conducted the analysis using longer lags for market size (2 and 3 years lags for both

electricity output and installed capacity data) to address the issue of endogeneous market size

and found that all our results carry over; market size coefficients are hardly affected.38

Finally, we also conduct estimations for an alternative set of patents. As explained earlier,

our baseline results include patents granted at the EPO as well as the 17 national patent offices

in the different home-countries of our sample firms. In order to select only high-quality patents,

we instead select the set patents that have been filed in at least two additional patent offices.

As explained earlier, a main disadvantage of selecting only the highest quality patents is that

we are biasing our sample towards large internationally active firms that can afford to file their

patents in multiple patent offices. As expected, the sample of REN patents is reduced and our

results for specialized firms are particularly affected by this selection process. We find that

FF prices do not have any significant impact anymore on the likelihood of innovation entry

by specialized REN firms. Also, the positive impact of FF prices on the rate of innovation by

specialized FF firms is now significant below the 1% significance level. This implies that in

these settings the impact of price signals on specialized firms will tend to widen the technology

gap towards FF innovation.39 Regarding mixed firms, the effects of FF prices on both rates of

REN and FF innovation loose significance but there is still no statistical difference between the

impact of prices on REN and FF innovation. Also, REN knowledge stocks have no significant

impact anymore on REN innovation by mixed firms. Accordingly, the impact of mixed firms

on closing the aggregate technology gap still remains very limited.40

6 Conclusion

This paper uses firm-level data on patents filed in renewable (REN) and fossil fuel (FF) tech-

nologies by 5,261 European firms over the period 1978-2006 to investigate directed technical

change in the electricity sector. The paper focuses on the determinants of firm-level innovation

and the role of firm dynamics in driving the replacement of FF technologies by REN technolo-

gies. In our analyses, we make a distinction between specialized firms – that innovate only in

38Results available on request.
39Relative to the baseline, the changes are that (1) there is now a significant difference between price effects

in the specialized firm level equation; (2) the significant difference in price effects in the specialized firm inflation
equation drops out.

40We find that neither knowledge stocks are significantly different anymore in the mixed firm level equation
(i.e. only FF market size has a significantly different impact).
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REN or FF technologies – and mixed firms – that innovate in both.

We find that the three factors – prices, market size and past knowledge stocks – as described

in Acemoglu et al. (2012a) affect firms’ decision to innovate at both the extensive and intensive

margins. Yet, we demonstrate that the impact of these factors on closing the aggregate FF-REN

technology gap is stronger for specialized firms than for mixed firms. This is mainly explained by

the fact that specialized firms’ dynamics (innovation entry and exit) are particularly responsive

to price and market signals. Past knowledge stocks are also significant drivers affecting the

aggregate REN-FF technology gap since we find that higher firm-level REN knowledge stocks

and lower FF knowledge stocks will tend to close the technology gap in both specialized and

mixed firms. Yet, further innovation by specialized firms appears to be limited by the incidental

nature of innovation in these firms. Although we do find that mixed firms respond to market

and price incentives, their impact on the aggregate technology gap is much more limited. This

is mainly due to the fact that prices and market size variables do not significantly shift mixed

firms’ innovation towards REN technologies relative to FF ones. In addition, mixed firms’ past

knowledge stock in REN innovation is still too low (and complementarities between the REN

and FF knowledge stocks too limited) to significantly counterbalance path-dependencies effect

in FF innovation due to the long history of mixed firms with FF innovation.

Metaphorically, specialized firms are the small ships in an ocean of innovation. They change

their course more explicitly in the face of changes in (external and internal) drivers of innovation,

yet they also go under more easily. Mixed firms on the other hand are the big ships. Their course

is more difficult to change, yet they command a comparatively large share of the ocean and stay

afloat much longer. The (policy) challenge thus is twofold: first, to encourage small specialized

firms to start and sustain innovation in REN technologies; second, to make mixed firms more

responsive to drivers of REN technical change. There are several options for policymaking to

encourage additional innovation entry into REN technologies, ranging from providing venture

capital for REN start-up firms (Criscuolo and Menon, 2011), to providing firm-size dependent

R&D subsidies (Akcigit, 2011).41 Further research should also explore how to prevent premature

41Due to the important contributions of small firms to aggregate technological innovations and growth, Akcigit
(2011) argues for size-dependent R&D policies which would provide higher subsidies to smaller firms. Our results
show that such subsidies should not only be one-shot transfers to encourage small firms into REN innovation;
they should be temporarily continued to help these firms continue their innovation, up until the point where the
productivity-effect (i.e. knowledge stock) becomes innovation-reinforcing. This reasoning is similar to the conclu-
sions of Arque-Castells and Mohnen (2012), who model both an innovation entry and an innovation continuation
subsidy threshold.
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innovation exit of small specialized REN firms, for instance by investigating the role of a stable

environmental policy regime.

Making large mixed firms more responsive to drivers of REN technical change seems more

involved. What appears to be hindering directed technical change towards REN innovation

in these firms is the large stock of FF innovation that they have built up in the past as this

reinforces FF innovation in the future. Nonetheless, our empirical results also suggest some

degree of complementarity between the FF knowledge stock and REN innovation in these firms.

As such, policies might be configured to leverage the large stock of FF innovation in mixed

firms by subsidizing research that develops complementarities between existing FF innovations

and new REN innovations. As the resulting REN innovation add to the REN knowledge stocks,

such policies should eventually become self-reinforcing and could thus be only temporary.
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Appendix

Change in the technology gap

In order to derive the marginal impacts in the zero inflated poisson model, it is useful to again

write the conditional mean of the dependent variable as in (7):

E(Pijkt|X) = (1− Λ(0|µijkt))× λijkt (A.1)

where Λ is the logistic distribution and µ and λ are defined as in equations (5) and (6). Ac-

cordingly, a change in this conditional mean is given by:

∆E(Pijkt|X) = λijkt ×∆(1− Λ(0|µijkt)) + (1− Λ(0|µijkt))×∆λijkt (A.2)

The first term on the RHS of (A.2) is the change in the probability of observing a non-zero

patent count (i.e. the extensive margin) whereas the second term is the change in the patent

count itself (i.e. the intensive margin).

In our computations, we separate intensive and extensive margin impacts, as well as spe-

cialized and mixed firms. For the intensive margin, using (A.1) we first compute the average

number of FF and REN patents per firm. Aggregating over the total number of (REN and FF)

firms in our sample, we then derive the FF(d)-REN(c) technology gap:

∑
i

E(Pid)−
∑
i

E(Pic) = P d − P c (A.3)

We then compute the intensive margin change in these averages by setting Λ(0|µijkt) in (A.1)

to 0 (i.e. ignoring the fact that some firms do not innovate in some period) so that the RHS in

(A.2) is reduced to ∆λijkt. Using the estimated coefficients in the level equations of Table 6,

we compute the (expected) change in the number of patents in each technology, following the

change in each of the model variables ceteris paribus. That is, we compute the marginal impact

of each model variable xk (prices, market size, or knowledge stock) on the average innovation
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rate in sector j, keeping the others constant:

∆P j =
∂P j
∂xk

×∆xjk

= βjk × exp(X ′jβ)×∆xk

= βjk × P j ×∆xk

(A.4)

where βjk is the estimated coefficient of variable xk in the level equation of Table 6 in sector j,

and ∆xjk is the average within-sample change in that variable.42 These results are reported in

columns (1)-(4) in the top panel of Table 7.

Taken together, the impact on the relative change in the innovation rate gap – as reported

in columns (5) and (6) in the top panel of in Table 7 – is then computed as:

∆P d −∆P c

P d − P c
=
βdk∆xdkP d − βck∆xckP c

P d − P c
(A.5)

For the extensive margin, we proceed in a similar fashion. We first compute the average

innovation probability in FF and REN technologies for each firm i in sector j, i.e. (1−Λ(0|µij)).

We then compute the aggrate averages of these probabilities in the FF (d) and REN (c) sector

to compute the aggregate FF-REN innovation probability gap:

∑
i(1− Λ(0|µid))

Nd
−
∑

i(1− Λ(0|µic))
Nc

= πd − πc (A.6)

where N denotes the total number of firms (rather than the total number of active firms N).

We then compute the extensive margin change in these averages by setting λijkt in (A.1) to

1 (i.e. ignoring the intensive margin) so that the RHS in (A.2) is reduced to ∆(1−Λ(0|µijkt)).

We then proceed as before, using the estimated coefficients in the inflation equations of Table

6 to compute the (expected) change in the average innovation probability, following the change

42Note that for specialized firms, ∆xdk 6= ∆xck since the two samples are disjoint. For mixed firms however,
∆xdk = ∆xck.
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in each of the model variables ceteris paribus.43

∆πj = −1× ∂πj
∂xk
×∆xjk

= −βjk × [e(X′jβ)/(1 + e(X′jβ))2]×∆xjk

= −βjk × [eπj/(1 + eπj )2]×∆xjk

(A.7)

In each case, we evaluate the marginal impacts using the estimated coefficients in the bottom

part of Table 6. These are the impacts reported in columns (1)-(4) in the lower panel of Table

7.

Taken together, the impact on the (percentage-point) change in the innovation probability

gap – as reported columns (5) and (6) in the lower panel of Table 7 – is then computed as:

∆πd −∆πc = βck[e
πc/(1 + eπc)2]∆xck − βdk [eπd/(1 + eπd)2]∆xdk (A.8)

Based on the estimated marginal impacts of our model variables (depicted in the first four

columns in the lower panel of Table 7), we then compute the expected change in the FF and

REN innovation probabilities. Comparing the difference between the FF and REN innovation

probabilies in both cases gives us an ‘old’ and a ‘new’ innovation probability gap. Comparing

the relative change between these two yields the elasticities presented in columns (5) and (6) in

the lower panel of Table 7.

43Since the inflation equations estimate the probablity of zero innovation (Λ(0|µijkt)), but we are interested
in estimating the impact on positive innovation ((1− Λ(0|µijkt))), we multiply each coefficient βk by -1.
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Table 1: Characteristics of specialized vs. mixed firms

Variable Firmtype Mean St. Dev. Min. Med. Max. # Firms

A. (Log) turnover REN 8.7 3.5 0.6 8.7 17.2 233
FF 10.5 3.1 1.27 10.7 18.7 350
Mixed 13.3 3.4 3.0 13.1 19.0 74

B. (Log) total assets REN 7.9 3.4 -6.4 7.7 19.0 307
FF 9.7 3.4 -5.7 9.5 16.9 419
Mixed 13.4 3.5 3.49 13.7 19.3 69

C. (Log) Employees REN 3.9 2.7 0.0 3.8 12.2 168
FF 5.2 2.5 0.0 5.2 11.2 304
Mixed 8.1 2.7 0.0 8.1 13.0 66

D. Age (years) REN 17.1 25.4 1.0 9 136 513
FF 26.1 31.2 1.0 15 187 725
Mixed 45.9 41.0 1.0 33 159 99

E. Number of innovative years REN 2.5 1.9 1.0 2.0 12.0 1,307
FF 5.3 409 1.0 3.0 24.0 3,674
Mixed 10.5 7.8 1.0 8.0 29.0 280

Table 2: Share of REN patents by specialized and mixed firms per technology type

Biomass Geo Hydro Marine Solar Waste Wind Total

Specialized firms 1.7 2.1 4.2 4.7 34.6 1.4 21 69.7
Mixed firms 0.6 1.3 1.8 1.4 19.9 1.1 4.3 30.3
Total 2.3 3.4 6 6.1 54.5 2.5 25.3 100

Table 3: Share of FF patents by specialized and mixed firms per technology type

Ignition Furnaces Steam Burners Coal Engines Hotgas Turbines Total

Specialized firms 6.1 17.2 2.7 27.9 1.7 4.3 0.6 5 65.4
Mixed firms 5 7.1 0.9 11.6 1.3 3.2 0.3 5.3 34.6
Total 11.1 24.3 3.6 39.5 3 7.5 0.9 10.3 100
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Table 6: Baseline results for specialized and mixed firms

Specialized firms Mixed firms
(1) (2) (3) (4)

REN FF REN FF

Intensive margin (Poisson)
FF price -0.132 0.166* 1.015*** 1.743***

(0.152) (0.092) (0.387) (0.497)
REN market size 0.026 -0.005 -0.034 0.014

(0.017) (0.042) (0.036) (0.027)
FF market size -0.025 -0.038 -0.116*** 0.123***

(0.078) (0.024) (0.031) (0.040)
REN knowledge stock 0.264*** 0.184*** -0.017

(0.083) (0.063) (0.074)
FF knowledge stock 0.429*** 0.352*** 0.567***

(0.035) (0.062) (0.042)
GDP -0.136 0.015 -0.295* 0.328**

(0.127) (0.079) (0.170) (0.167)
Presample patent stock 0.019 -0.049* -0.258*** 0.093

(0.062) (0.029) (0.047) (0.065)
Presample innovation dummy -0.121 0.008 0.461** -0.337*

(0.102) (0.059) (0.193) (0.194)
Constant 4.898* -0.729 3.074 -18.981***

(2.799) (2.094) (5.072) (5.431)

Extensive margin (inflation)
FF price -1.440** 0.644*** 0.385 0.164

(0.636) (0.126) (0.386) (0.257)
REN market size -0.431*** -0.002 -0.074 0.010

(0.121) (0.074) (0.052) (0.045)
FF market size -0.136 -0.011 0.049 -0.118**

(0.319) (0.054) (0.044) (0.060)
REN knowledge stock 1.478*** -0.389** -0.114

(0.259) (0.152) (0.115)
FF knowledge stock 0.341*** 0.355*** -0.416***

(0.041) (0.076) (0.106)
GDP 0.206 -0.195* -0.629*** 0.021

(0.690) (0.113) (0.186) (0.168)
Presample patent stock -2.727*** -0.206*** -0.381*** 0.136

-0.662 (0.063) (0.100) (0.088)
Presample innovation dummy 1.171* 0.529*** 0.861*** -0.218

(0.603) (0.126) (0.248) (0.258)
Constant 0.457 0.886 15.099*** -0.080

(15.558) (2.638) (5.314) (5.090)

Observations 2,417 14,418 3,565 3,565
Log-likelihood -3253 -22457 -2221 -6636
Vuong test 8.01*** 22.7*** 14.2*** 10.4***
Note: All models include a full set of year and country dummies. Robust standard errors are clustered
at the firm level. All explanatory variables are expressed in logarithms and are lagged by one year.
Fossil fuel price and market size variables are constructed by using firm-specific weights reflecting the
firms’ patent portfolio and designation countries. . The dependent variable in each column is the
number of patents per firm (i) and year (t), where for each firm we only include the years over the firms
innovation period (i.e from the firms first to the last patent observed over 1978-2006)

b p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01
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