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Abstract

This paper develops a theory of asset pricing in which discount rates for investments in all
assets, including adaptation and mitigation, are endogenously determined. Exploiting the
characteristics of adaptation and mitigation in terms of climatic risk, I show that adaptation
requires a lower discount rate, whereas mitigation does not. Inspection of the Ramsey rule
reveals that the social discount rate equals the social rate of return on optimally-invested
aggregate wealth minus the risk premium on that wealth. This risk premium compensates
investors for bearing market risk and the risk of unfavorable changes in the economy re-
sulting from climate change.
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1 Introduction

Uncertainty abounds in projections of future climate change. We do not know with any reason-
able amount of precision the relationship between emissions, the (ultimate) concentration of
carbon dioxide in the atmosphere and average global temperature. For example, Meinshausen
et al. (2009) show that, under the IPCC A1FI scenario, the 95% confidence interval for average
global temperature in 2100 ranges from 3.0 °C to 8.4 °C. More recently, Roe and Bauman
(2012) consider the temperature uncertainty belonging to the IPCC A2 scenario for the period
2010 to 2300. They show that the 95% confidence interval for the average global temperature
in 2100 ranges from 3.0 °C to 6.4 °C, which widens to 3.0 °C to 9.3 °C in 2200 and 3.0 °C
to 10.6 °C in 2300.

Uncertainty abounds in projections of the economic impact of climate change as well. In
his comprehensive literature review, Tol (2009) lists fourteen estimates of this so-called out-
put effect for selected benchmark warmings. For the ten estimates that consider a benchmark
warming of 2.5 °C, he finds an average output effect of -0.7% of GDP with a standard deviation
of 1.2% of GDP. More importantly, none of these estimates has considered benchmark warm-
ings of more than 3.0 °C.1 Hence, our ‘knowledge’ on the economic impact of temperature
rises beyond 3.0 °C is entirely based on extrapolation.

This paper theoretically investigates how these temperature-related uncertainties affect the
discount rates of mitigation and adaptation investments. To that extent, I develop a theory of
asset pricing in which productivity and temperature are uncertain, interdependent and endoge-
nously determined. Consumers determine, through their consumption and investment deci-
sions, both the expected rate of return on invested wealth and the flow of pollution, adjusting
their decisions as new information on the rate of return and temperature becomes available. In
equilibrium, asset markets clear and determine the equilibrium rates of return or the ‘optimal’
discount rates for all assets, including investments in adaptation and mitigation and the risk-free
asset.

The main contributions of this paper are fourfold. The first is to formally characterize mit-
igation and adaptation in terms of the underlying model parameters by making explicit how
the rate of return for mitigation and adaptation depend on temperature: investments in adap-
tation reduce the impact of unexpected changes in temperature on the rate of return, at least
for sufficiently high temperatures; investments in mitigation reduce pollution. The second is
to use this characterization to show that the discount rate for adaptation investments is lower
than that of ‘comparable’ other, i.e., non-adaptation, investments provided that the risk char-
acteristics of adaptation investments somehow ‘counterbalance’ the risk characteristics of the
economy at large. Formally, this intuitive idea of counterbalancing not only requires that adap-

1Of the other four estimates, two consider a benchmark warming of 1.0 °C, and two others a benchmarking
warming of 3.0 °C.
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tation investments are less vulnerable to temperature shocks, but also that unexpected increases
in temperature decrease the rate of return on optimally-invested aggregate wealth and that in-
creases in temperature increase the marginal value of wealth. I also conclude that the optimal
discount rate for mitigation investments may be either lower or higher than the optimal dis-
count rate of ‘comparable’ investments, because the characterization of mitigation does not
allow for stronger conclusions regarding its discount rate. The third comtribution is to give a
full characterization of the social discount rate in a model in which productivity and temper-
ature are uncertain, interdependent and endogenously determined. The fourth is that the risk
premium on aggregate wealth compensates consumers not only for bearing market risk, but
also for bearing the risk attached to any unfavorable changes in the investment opportunity set
brought about by rising temperatures. When higher temperatures both raise the marginal value
of wealth and are associated with lower wealth levels, the risk premium on the second risk is
positive: ceteris paribus, it raises the risk premium on optimally-invested aggregate wealth.

The model used here is related to the general equilibrium theory of asset pricing as devel-
oped by Cox et al. (1985). They characterize discount rates for the case where the probability
distribution of current output depends on a number of exogenous state variables, which are
themselves randomly changing over time. Special cases of the Cox et al. (1985) model have
been used to investigate a number of widely diverging issues. For example, Obstfeld (1995)
studies how global portfolio diversification affects expected consumption growth and national
welfare. Detemple (1986) considers the effect of partial information on asset prices and con-
cludes that the classic asset-pricing relationships continue to hold under an appropriate reinter-
pretation of the state variables: asset prices are not determined by the underlying unobservable
state variables, but by their conditional expectation. Duffie and Zame (1989) extend the model
by Cox et al. (1985) to multi-agent economies. None of these papers considered endogenous
(environmental) risks.

In addition, this paper is related to the growing literature on the term structure of the
risk-free rate or social discount rate. Gollier (2007) shows that the shape of the term struc-
ture depends on our view of how the uncertainty on future aggregate consumption evolves with
the time horizon. In particular, he shows that a downward-sloping term structure is justified
whenever the uncertainty about aggregate consumption increases at a rate larger than what
would be obtained by a pure random walk. Gollier (2010) extends this result to the case of a
multi-attribute utility function when the sensitiveness of the environmental quality to changes
in GDP per capita is uncertain. Weitzman (2010) studies the term structure of the risk-free rate
by using a Ramsey optimal growth model in which future productivity is both uncertain and
persistent. He shows that the risk-free rate is declining over time, because of a ‘fear factor’
associated with catastrophic low-productivity states. All these works consider optimal discount
rates for investments with certain payoffs in a world with exogenous risks.

Finally, this paper relates to a small, but growing, literature that considers discount rates for
climate investments. Using a portfolio approach in a two-period model in which the risk-free

3



rate is exogenous, Sandsmark and Vennemo (2007) show that the rate of return on invest-
ments that reduce the likelihood of damage must be lower than the risk-free rate. Aase (2011)
considers asset pricing in a production economy and discusses possible risk adjustments of the
discount factor for mitigation projects. Finally, Gollier (2012) and Weitzman (2012) investigate
the term structure of discount rates for mitigation investments in the presence of catastrophes,
where mitigation investments are defined as low-beta hedge assets for unexpected changes in
consumption. None of these papers provides a systematic framework for analyzing optimal dis-
count rates when productivity and temperature are uncertain, interdependent and endogenously
determined.

The setup of this paper is as follows. Section 2 presents the model and the characterization
of mitigation and adaptation investments, in terms of the model’s parameters. Section 3 derives
the optimal discount rates for all investments and discusses the relationship of these results to
the literature. Section 4 concludes.

2 The Model

I propose a simple general equilibrium model with two aggregate consumption goods. The
first, produced consumption, is denoted by C(t), where the index t denotes continuous time.
The second, a non-produced consumption good, is denoted by T (t). In the context of climate
change, it is natural to think of temperature, in which case non-produced consumption is a bad.
The representative consumer maximizes discounted expected utility over these consumption
goods according to

E
∫

∞

0
e−δ tU [C(t),T (t)]dt, (1)

where U(.) denotes the utility function of the representative consumer and δ is the utility
discount rate or pure rate of time preference. Utility is increasing in consumption (UC >

0), decreasing in temperature (UT < 0), and concave in both consumption and temperature
(UCC,UT T < 0). Temperature T (t) evolves according to the following stochastic differential
equation:

dT (t) = θ(T (t))P(t)dt + s(T (t))′dω(t). (2)

In this equation, P(t) is the economy’s pollution flow at time t, ω(t) is an n+ 1 dimen-
sional Wiener process in Rn+1, s(T ) is the n+1 dimensional temperature-volatility vector and
s(T )′s(T ) is the variance of temperature.2 According to (2), the expected change in tempera-
ture θPdt over the small interval (t, t +dt) is proportional to the pollution flow P and depends
on temperature T through θ . The latter may be roughly thought of as a short-term ‘climate

2From now on, I suppress subscripts where possible.
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sensitivity’ parameter capturing the expected impact of pollution on temperature in the interval
(t, t +dt).

Production of the physical consumption good may take place in any of n different sectors.
I assume there is free entry into all sectors and that consumers invest in physical production
directly, in effect creating their own firms. Consumers and firms are competitive and act as price
takers in all markets. Let Ki(t) denote the physical investment in sector i. When the output of
each sector is continuously reinvested, K(t) = (K1(t),K2(t), . . . ,Kn(t))′ obeys the following
system of stochastic differential equations:3

dK(t) = IKα(T (t))dt + IKG(T (t))dω(t), (3)

where α(T ) is the corresponding vector of the expected private rates of return in these sectors,
G(T ) is the return-volatility matrix and IK is an n×n diagonal matrix whose ith diagonal ele-
ment is the ith component of K(t). The expected private rate of return refers here to the rate of
return that would apply if the temperature process in (2) were exogenous. I assume that both α

and G are continuous, twice differentiable functions of temperature T , which implies that the
investment-opportunity set is nonconstant – it changes with temperature through the expected
private rates of return α and the return-volatility matrix G.4 The matrix GG′ denotes the covari-
ance matrix of the rates of return, while Gs denotes the covariance between incremental returns
on the production processes and unanticipated changes in temperature T (t). Depending on the
sector, this covariance may be either positive, negative or zero. Normalizing the Wiener pro-
cess such that a positive number is associated with an increase in temperature gives s(T ) > 0.
Consequently, negative return volatilities indicate that higher temperatures are associated with
lower rates of return. Notice that the production processes have constant returns to scale in the
sense that the distribution of an investment’s rate of return does not depend on its size. Finally,
let γi denote sector i’s pollution intensity, which is measured per unit of physical investment.
Sector i’s pollution flow at time t, Pi(t), is then equal to γiKi(t).5

Using the basic structure laid down by equations (2) and (3), adaptation and mitigation
are now naturally introduced by slightly tailoring the sector definition as follows. Instead of
defining sectors according to the type of good they produce, I define sectors according to the
way they produce the consumption good. There are three of these sectors: the first is the reg-
ular sector, the second the adaptation sector, and the third the mitigation sector. One way to

3To facilitate interpretation, the stochastic differential equation for sector i is given by dKi(t)/Ki(t)=αi(T )dt+
gi(T )dω(t), where gi denotes the ith row vector of G.

4The investment-opportunity set is described by the transition probabilities for the rate of return on each in-
vestment over the next trading interval (t, t +dt). See Merton (1992) for a discussion of this concept.

5With minor modifications, the framework can be expanded to include a more comprehensive description of
the environment by including additional state variables – such as oceanic and atmospheric carbon stocks, the sea
level and biodiversity – and their relations (cf. Cox et al. (1985)).
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think about this sector definition is that sectors combine a common technology to produce the
consumption good with a sector-specific technology. Examples of such sector-specific tech-
nologies are coal-generated electricity for the regular sector, dikes or heat-resistant crops for
the adaptation sector and wind energy or concentrated solar power for the mitigation sector.
The key question now is how both adaptation and mitigation investments differ from regular
investments in terms of their expected private rates of return αi(T ) and their return-volatility
gi(T ). Surprisingly, this question has received virtually no discussion in the literature. A no-
table exception is Sandsmark and Vennemo (2007), but in their theoretical model the treatment
of climate change is only implicit as the properties of climate investments are stated in terms of
consumption instead of temperature or environmental quality. Instead, in this paper I will make
explicit the way in which the rate of return on adaptation and mitigation investments depends
on temperature. For the sake of reference, however, I start with the more common assumptions
regarding the rate of return on regular investments, which are commonly stated by means of
the damage function. For example, Nordhaus (2008) assumes that the damage function is of
the quadratic form 1/[1+(T/ψ)2], which – ignoring depreciation – implies that the expected
private rate of return is also of the quadratic form and is given by α0/[1+(T/ψ)2].6 Here, α0

is the expected private rate of return at T = 0, whereas ψ is an exogenously chosen parameter.
Two characteristics stand out. The first is that the expected private rate of return has a unique
maximum at T = 0. The second is that the private expected rate of return approaches zero as
T → ∞. I slightly generalize these assumptions and assume that the expected private rate of
return in the regular sector α1(T ) is single peaked at 0≤ T = T α

1 < ∞; that it is strictly increas-
ing in T for T < T α

1 and strictly decreasing in T for T > T α
1 ;7 and, finally, that it approaches

α1 when T → ∞. Figure 1 visualizes these assumptions.
For reasons that will become clear later, I will refrain from making assumptions on both

the expected private rate of return for adaptation (α2(T )) and mitigation investments (α3(T )).
Turning next to the assumptions on sector i’s return volatility gi, I will differentiate ‘shocks’
according to their origin into climatic and economic ‘shocks’. Climatic shocks originate in the
climate system; economic shocks originate in the economy. Examples of the former are the
unexpected release of methane from sinks, unexpected changes in the atmospheric water-vapor
concentration and unexpected changes in solar intensity. Examples of the latter are unexpected
changes in productivity, technology or demand. Both types of shocks may, and in general
will, affect both temperature and productivity. To formalize, define ω(t) ≡ (ωe(t),ωc(t))′.
Here, ωe(t) and ωc(t) are Wiener processes of dimension ne and nc, representing economic and

6Take dK(t) = [1−D(T )]α0K(t)dt, where D(T ), the damage function as a fraction of output, is given by 1−
1/[1+(T/ψ)2]. Dividing both sides by K(t) gives dK(t)/K(t) = α0/[1+(T/ψ)2]dt, implying that the (expected)
rate of return equals α0/[1+(T/ψ)2].

7These assumptions are in line with observations by Tol (2009, p. 34): ‘some estimates [...] point to initial
benefits of a modest increase in temperature, followed by losses as temperatures increase further.’
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Figure 1: Private rate of return in the regular sector
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climatic shocks, respectively. Correspondingly, define the return volatility gi≡ (gei,gci) and the
temperature volatility s≡ (se,sc). The following assumption formalizes the idea that adaptation
alleviates the impact of temperature shocks, at least for sufficiently high temperatures.

To make the assumptions on the return volatility gi in each sector explicit differentiate be-
tween climatic and economic ‘shocks’. Climatic shocks originate in the climate system, change
temperature and affect the economy. Examples include the unexpected release of methane from
sinks, unexpected changes in the atmospheric water-vapor concentration or unexpected changes
in solar intensity. Economic shocks originate in the economy, affecting temperature through
their (possible) impact on pollution. Examples are unexpected changes in productivity, technol-
ogy or demand. To formalize, define ω(t)≡ (ωe(t),ωc(t))′. Here, ωe(t) and ωc(t) are Wiener
processes of dimension ne and nc, representing economic and climatic shocks, respectively.
Correspondingly, I define gi ≡ (gei,gci) and s≡ (se,sc). To capture that adaptation alleviates -
for sufficiently high temperatures - the impact of temperature shocks, I assume that, compared
to the regular sector, the adaptation sector is associated with a higher return volatility from
climatic shocks. The following assumption formalizes this idea.

Assumption 1. There exists a T ∗ such that for T < T ∗, we have gc1(T ) > gc2(T ), while for
T > T ∗, we have gc1(T )< gc2(T ),

where the comparison of the vectors gc1(T ) and gc2(T ) is element wise. Figure 2 illustrates
assumption 1 for the case of a single climatic shock. Let gci j(T ) denote the jth element in the
vector gci(T ). Temperatures below T ∗ are then associated with gc1 j(T ) > gc2 j(T ), whereas
temperatures above T ∗ are associated with gc1 j(T ) < gc2 j(T ). For example, compared with
traditional crops, heat-resistant crops may respond less favorably to a climatic shock for tem-
peratures below T ∗ and vice versa.

Remark 1. Surprisingly, assumption 1 cannot be extended to the mitigation sector, because
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Figure 2: Return volatility from a climatic shock in the regular and adaptation sectors
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there seems to be no compelling reason to assume that a sector’s return volatility from climatic
shocks gci and its pollution intensity γi are systematically related. That is, two sectors that
happen to have the same pollution intensity may very well have completely different return
volatilities from climatic shocks, whereas two sectors that happen to have different pollution
intensities may very well have equal return volatilities from climatic shocks. For example, the
rates of return on concentrated solar power and wind energy will respond differently to unex-
pected changes in either wind speed or sun hours, despite the fact that both technologies have
a pollution intensity of zero. Moreover, it seems not unreasonable to assume that unexpected
changes in wind speed will have no effect on either the rate of return on coal-fired power or
that on nuclear power, notwithstanding their very different pollution intensities. In addition,
unexpected increases in temperature may very well affect the rate of return on both of these
technologies in similar ways through the availability of cooling water. Therefore, any sys-
tematic relationship between a sector’s return volatility from climatic shocks and its pollution
intensity appears to be nonexistent. Finally, notice that regular, adaptation and mitigation in-
vestments may also differ in terms of their return volatility from economic shocks gei. However,
there seems to be no truly compelling reason for adaptation or mitigation investments to have
a systematically different return volatility from economic shocks than regular investments.8

Finally, the pollution intensity in the mitigation sector is zero as renewables are used to pro-

8The available literature is almost silent on the properties of adaptation and mitigation regarding risk. A
notable exception is Sandsmark and Vennemo (2007), who assume that ‘climate’ investments will both reduce
portfolio risk and alter the future distribution function for returns. Since the only source of aggregate fluctuations
in their model originates from climate change, these ‘climate’ investments are in fact a combination of adaptation
investments, which reduce portfolio risk, and mitigation investments, which alter the future distribution function
of returns through temperature.
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duce the aggregate consumption good. The pollution intensities in the regular and adaptation
sectors are assumed to be equal and strictly positive.

Assumption 2. 0 = γ3 < γ2 = γ1.

Besides investing in the regular, adaptation or mitigation sector, the representative consumer
can also lend and borrow at an endogenously determined risk-free rate r and invest in at least
one contingent claim to amounts of the consumption good. The value of this claim is governed
by the following stochastic differential equation:

dF = (Fβ −ζ )dt +Fh′dω(t) (4)

and will in general depend on all variables necessary to describe the state of the economy. In
(4), Fβ denotes the total mean return on the contingent claim, while ζ denotes the payout
received. Notice that (4) can be derived within the context of the model (see Appendix A). The
variance of the rate of return on this claim is given by h′h.

Having defined the investment-opportunity set in this way, the representative consumer will
allocate his available wealth among the investment opportunities in the basis and the riskless
opportunity, borrowing or lending.9 Let a be a vector whose ith element denotes the share of
wealth invested in sector i and let b be a scalar denoting the share of wealth invested in the
contingent claim. The budget constraint of the representative consumer is described by10

dW =
(
a′(α− r1)W +b(β − r1)W + rW −C

)
dt +W

(
a′G+bh′

)
dω(t), (5)

where aW is a vector whose elements denote the amount of wealth invested in each of the
production processes, bW denotes the amount of wealth invested in the contingent claim, and
1 is a 3× 1 unit vector. According to (5), expected changes in wealth are determined by the
expected private excess return on wealth, i.e., the expected private return on wealth in excess of
the risk-free rate, plus the risk-free return on total wealth minus the flow of consumption. The
representative consumer maximizes his lifetime utility (1) over consumption and the investment
strategy, a and b, subject to the budget constraint (5) and the temperature equation (2). Setting
up the Bellman equation gives11

δJ(W,T ) = max
C,a,b

{
U(C,T )+

E (dJ(W,T ))
dt

}
, (6)

9The basis is defined as the set of production processes and contingent claims such that any other contingent
claim can be written as a linear combination of the assets in the basis. See Merton (1977) for a complete description
of this concept.

10See Merton (1971) for a detailed explanation of the form of the budget constraint. Notice that by definition,
we have Ki(t) = ai(t)W (t).

11Throughout the paper, I assume that the value function is well defined and that an equilibrium to (6) exists.
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where the maximum is subject to C≥ 0 and a > 0.12 Using (2) and (5), P = ∑γiKi(t) = γ ′K(t),
and the fact that, in equilibrium, firms invest all attracted capital K = aW (6) can be written as

δJ(W,T ) = max
C,a,b

{
U(C,T )+W µ(W )JW +θa′γWJT

+
1
2
(W 2a′GG′a+2W 2a′Ghb+W 2bh′hb)JWW

+(Wa′Gs+Wbh′s)JWT +
1
2

s′sJT T

}
,

(7)

where W µ(W ) = E(dW )/dt. For the value function, subscripts denote derivatives with respect
to the states W and T . Differentiating (7) with respect to the controls C,a and b gives the
first-order conditions

0 =UC− JW , (8a)

0 = (α− r1)WJW +θγWJT +(GG′a+Ghb)W 2JWW +GsWJWT , (8b)

0 = (β − r)WJW +(h′G′a+h′hb)W 2JWW +h′sWJWT . (8c)

An equilibrium is defined as a set of stochastic processes (r,β ;a,C) satisfying (8) and the
market-clearing conditions ∑ai = 1 and b = 0. Before stating the main results, I character-
ize the behavior of the economy in response to increases in temperature. To this end, let
ḡc(T ) = a

′
Gc(T ) represent the return volatility on aggregate wealth with respect to climatic

shocks. Here Gc(T ) is defined as the matrix whose ith row is given by gci(T ). A climatic shock
is called unfavorable when the return volatility on aggregate wealth with respect to climatic
shocks is negative, i.e., ḡc(T )< 0. The scarce empirical evidence suggests that the contempo-
raneous covariance between the rate of return on aggregate wealth and temperature increases
may indeed be negative: using an unbalanced panel data set of 38 countries and an average
coverage of 20 years, Bansal and Ochoa (2011) show that countries close enough to the Equa-
tor have a negative contemporaneous covariance between the return on equity and temperature
increases. They also show that this covariance is positive for a number of European countries,
which are in the group of countries furthest away from the Equator. This suggests that, at least
for European countries and for historical temperature levels, an unexpected increase in temper-
ature may also be favorable. Of course, both the sign and magnitude of this covariance might
change when climate change unfolds and temperature rises.

Next, and following Merton (1992), I define an increase in the state variable T to be unfa-
vorable when JWT > 0. In that case, higher temperatures are associated with a higher marginal

12The case of strictly positive investment provides for a more streamlined setting. The analysis can be extended
to allow for zero investment in some sectors (Cox et al., 1985).
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value of wealth and, by (8a), with a higher marginal value of consumption. In case utility is not
state dependent, we have UT = 0, which implies again by (8a) that JWT =UCCĈT . Hence, we
must have that sgn(JWT ) =−sgn(ĈT ), i.e., unfavorable increases in temperature are associated
with decreases in consumption. Again, at modest temperatures, it might well be the case that
increases in the state variable temperature are in fact favorable, i.e., JWT < 0.

3 Optimal discount rates

The model proposed in the previous section allows the characterization of the equilibrium ex-
pected rates of return for all investments, including investments in adaptation, mitigation and
the risk-free asset. These rates of return can be interpreted as the optimal discount rates asso-
ciated with these investments: they not only recognize that both the rate of return on invested
wealth and changes in temperature are uncertain; they also take account of the fact that wealth
and temperature are interdependent, as temperature affects wealth and wealth – through the
level of pollution – affects temperature; and finally, they take into account that (the level of)
risk is endogenous and determined by the consumer’s consumption and investment decisions.
I start by characterizing the risk premium on optimally-invested wealth.13

Proposition 1. The risk premium on optimally-invested wealth, φW , is equal to(
−JWWW

JW

)(
var(W )

W 2

)
+

(
−JWT

JW

)(
cov(W,T )

W

)
(9)

PROOF: See Appendix A.
Proposition 1 states that, in equilibrium, consumers are compensated for bearing market

risk and for bearing the risk attached to any unfavorable changes in the investment-opportunity
set brought about by temperature. The compensation for market risk is the familiar compen-
sation required by a one-period risk-averse mean-variance investor (cf. Merton (1992)). It is
given by the product of the coefficient of relative risk aversion of the value function −JWWW

JW

and the variance of the rate of return on optimally-invested wealth var(W )
W 2 . The compensation

for bearing risk attached to unfavorable changes in the investment-opportunity set −JWT
JW

cov(W,T )
W

arises because the investment-opportunity set depends on temperature and is therefore stochas-
tic. The risk premium (9) is a function of aggregate wealth W and temperature T . Ceteris
paribus, the uncertainty associated with changes in the investment-opportunity set increases
this risk premium when increases in the state variable T are unfavorable and cov(W,T ) is neg-
ative. In that case, higher temperatures are simultaneously associated with lower wealth and a
higher marginal value of wealth. Using (9), I now characterize the Ramsey rule in a dynamic
stochastic general equilibrium model of climate change.

13In what follows, cov(W,T ) denotes the covariance of changes in optimally-invested wealth with changes in
the state variable temperature, while var(W ) denotes the variance of changes in optimally-invested wealth.
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Proposition 2. The Ramsey rule is given by14

â′α + â′θγ
JT

JW
−
(
−JWWW

JW

var(W )

W 2 +
−JWT

JW

cov(W,T )
W

)
= r(W,T ) =

δ −UCC

UC
E(dĈ)−UCT

UC
E(dT )

−UCCC

UC

1
2

var(Ĉ)−UCCT

UC
cov(Ĉ,T )−UCT T

UC

1
2

var(T ). (10)

PROOF: See Appendix A.
Before turning to the intuition behind (10), notice that the Ramsey rule in a dynamic

stochastic general equilibrium model is, in general, truly stochastic, thereby precluding any
comparative static analysis (Breeden, 1986). A common way to overcome this disadvantage is
to make sufficiently specific assumptions on either preferences or stochastic processes, which
allows an analytical solution to the model. For example, Heal (2009) assumes that the develop-
ment of climate change is certain, Gollier (2010) assumes that consumption and climate change
are exogenously determined and Weitzman (2010) assumes that there exists some unspecified
and catastrophic productivity risk. In doing so, however, the ability to derive optimal discount
rates for investments in adaptation and mitigation for the case in which temperature is both
uncertain and endogenous is lost.15 As it is this paper’s objective to derive optimal discount
rates for investments in adaptation and mitigation, I will refrain from making more specific
assumptions on either the utility function or the stochastic process of wealth and temperature.

Turning to the interpretation of proposition 2, the LHS of (10) represents the rate of return
on savings. An increase in savings earns a rate of return equal to the sum of the expected social
rate of return on wealth â′(α + θγ

JT
JW
) minus the risk premium on optimally-invested wealth

φW . The expected social rate of return consists of the expected private rate of return on wealth
â′α minus a compensating payment of −â′γθJT/JW to keep expected lifetime utility constant.
Here, â′γθ is the expected increase in temperature resulting from an increase in savings and
−JT/JW is the compensating variation in wealth required to offset changes in temperature and
keep expected lifetime utility constant (Breeden, 1986).

The RHS of (10) describes how the risk-free rate required by the consumer to increase
the supply of savings depends on preferences, the stochastic processes of consumption and

14Throughout the paper, a hat ˆ above a variable denotes an optimal value.
15This can be seen from (7), where the term θγ ′aWJT prevents the model’s analytical solution, even in the

case of logarithmic utility. To see this, take U(C) = lnC and guess that J(W,T ) = M(T ) lnW +N(T ). From (7),
we obtain δ (M lnW +N) = − lnM + lnW +(â′αM− 1)+ θγ ′âMTW lnW + θγ ′âNT − 1

2 â′GG′âM + â′GsMT +
1
2 s′sMT T lnW + 1

2 s′sNT T . Collecting the coefficients of W lnW and W respectively gives MT = NT = 0. Hence,
MT T = NT T = 0. Substituting this into (7) gives δM = 1 and N = 1+( â′α

δ
− 1

δ
)− 1

2
â′GG′â

δ 2 . Substituting these
results into (8b) gives â = (GG′)−1(α − r1)/W . Hence, unless both G and α are independent of T , optimal
investment will be a function of both T and W , thereby contradicting that NT = 0.
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the stochastic process of temperature. First, the risk-free rate is positively related to the util-
ity discount rate or pure rate of time preference, ceteris paribus.16 Second, the risk-free rate
is positively related to expected consumption growth and – when consumers are correlation
averse, i.e., UCT > 0 – negatively related to the expected increase in temperature. Intuitively,
correlation-averse consumers want to increase future consumption to mitigate the detrimental
effect of an expected increase in temperature (Eeckhoudt et al., 2007). This can be accom-
plished by increasing savings, which decreases the risk-free rate. Third, for a prudent con-
sumer, i.e., UCCC > 0, the risk-free rate is negatively related to the variance of consumption:
increases in consumption risk can be tempered by a higher future consumption level, which
increases savings and reduces the risk-free rate. Fourth, when a consumer is cross prudent in
temperature, i.e., UCCT < 0, lower temperatures mitigate consumption risk. Inspection of (10)
reveals that an increase in consumption risk will decrease the risk-free rate if the covariance be-
tween consumption and temperature is negative and vice versa. Intuitively, higher consumption
risk increases the risk of bad outcomes if the covariance between consumption and tempera-
ture is negative. In that case, low consumption will tend to go together with high temperature,
which will increase the desire to save and decrease the risk-free rate for a consumer who is
cross prudent in temperature. Finally, for a consumer who is cross prudent in consumption,
i.e., UCT T > 0, the risk-free rate will be negatively related to the variance of temperature. For
such a consumer, an increase in temperature risk can be tempered by a higher level of future
consumption, which increases savings and decreases the risk-free rate.

Remark 2. Proposition 2 generalizes several well-known analytical results in the literature.
Under certainty, Heal (2009) shows that an increase in temperature increases the consump-
tion discount rate if UCT > 0, that is, if consumption and temperature are substitutes in the
Edgeworth-Pareto sense.17 In their theorem 1, Cox et al. (1985) derive the Ramsey rule, when
all state variables except wealth are exogenous. Their result mirrors proposition 2 except that
in their case the risk-free rate is determined by the expected private rate of return, instead of
the expected social rate of return. Menegatti (2009) shows that the last three terms on the
RHS of (10) are a necessary and sufficient condition for positive precautionary savings in the
presence of two small, interdependent risks. Equation (10) shows that his result generalizes
locally to a general equilibrium framework in which the distribution of the interdependent risks
is endogenously determined. Finally, Gollier (2010) extends the Ramsey rule to a consumption
economy when consumption and environmental quality follow a bivariate geometric Brownian
motion. He obtains a condition similar to the RHS of (10).

16Since all inferences on the Ramsey rule in this paper are ceteris paribus, I refrain from repeating this hence-
forth.

17Heal (2009) uses environmental quality instead of temperature as an argument in the utility function. As
increases in temperature are associated with lower environmental quality, his assumption of a negative cross
derivative of the utility function is equivalent to assuming that consumers are correlation averse.
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Remark 3. Proposition 2 highlights the options for balancing the demand and supply of savings
in a climate-change economy. The conventional way is to change the consumption-savings
decision (Ramsey, 1928). An alternative way is to shift investment between the regular and
mitigation sectors, while keeping the share of adaptation in invested wealth constant. By as-
sumption 2, such an investment shift will lower the flow of pollution θ â′γ , which ceteris paribus
increases the social rate of return in the LHS of (10).

Remark 4. Proposition 2 extends the claim by Stern (2008) that the social discount rate, the
expected social rate of return on investments and the expected private rate of return on invest-
ments are wholly different concepts, from imperfect to perfect economies. To see this, notice
that the social discount rate is by definition equal to the risk-free rate, since both are equal to
the expected rate of change in the marginal utility of consumption.18 Using (10), this gives

r(W,T ) =−E(de−δ tJW )

e−δ tJW︸ ︷︷ ︸
SDR

= â′α︸︷︷︸
PRI

+ â′θγ
JT

JW︸ ︷︷ ︸
compensation︸ ︷︷ ︸
SRI

−
(
−JWWW

JW

var(W )

W 2︸ ︷︷ ︸
market risk

+
−JWT

JW

cov(W,T )
W︸ ︷︷ ︸

unfavorable changes︸ ︷︷ ︸
risk premium on optimally-invested aggregate wealth

)
.

(11)

Hence, the social discount rate is equal to the expected social rate of return on optimally-
invested aggregate wealth less the risk premium on that wealth, φW , implying that the social
discount rate and the social rate of return on investments are different concepts. Moreover, the
expected social rate of return on optimally-invested wealth differs from the expected private
rate of return on optimally invested wealth by a compensation payment to compensate the
consumer for the expected change in lifetime utility.

The next proposition characterizes the optimal excess discount rate, i.e., the optimal dis-
count rate in excess of the risk-free rate, for investments with uncertain payoffs in all sectors.

Proposition 3. In sector i, the optimal excess discount rate, βi− r, is given by

− JWW

JW

cov(Ki,W )

Ki
− JWT

JW

cov(Ki,T )
Ki

. (12)

PROOF: See Appendix A.

18This holds for the social discount rate by definition (Heal, 2005) To see that the risk-free rate equals the
expected rate of change in the marginal utility of consumption, apply Ito’s lemma to dJW , rewrite (A.9) as r =
−E(de−δ t JW )

e−δ t JW
and notice that, by (8a), JW =UC.
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This proposition states that the optimal excess discount rate in sector i is proportional to
both the covariance of its rate of return with changes in wealth and the covariance of its rate
of return with changes in temperature, extending theorem 2 of Cox et al. (1985) to endogenous
state variables, such as temperature. Intuitively, consumers are willing to accept a lower rate of
return on assets that tend to pay off more when wealth is lower; moreover, when increases in
temperature are unfavorable, they are also willing to accept a lower rate of return on assets that
pay off more when temperature is higher. Notice that (12) can be rewritten into two different
and familiar ways. First, applying Ito’s lemma to dJW gives that the optimal excess discount
rate in sector i is equal to the covariance of that sector’s rate of return with changes in the
marginal value of wealth, i.e., −cov(Ki,JW )

KiJW
. Intuitively, consumers are willing to accept a lower

rate of return on assets that tend to pay off more when the marginal value of wealth is higher.
Second, for the case of non-state-dependent utility, i.e., U(C,T ) = U(C), the optimal excess
discount rate in sector i is proportional to the covariance of that sector’s rate of return with
optimal consumption, i.e., −UCC

UC
cov(Ĉ,Ki).

Building on proposition 3, the following proposition formalizes the conditions under which
adaptation investments require a lower discount rate than regular investments.

Proposition 4. Suppose that adaptation and regular investments have similar return volatilities
from economic shocks, i.e., ge2(T ) = ge1(T ). Moreover, suppose that both climatic shocks and
increases in the state variable temperature are unfavorable, i.e., ḡc(T ) < 0 and JWT > 0. The
difference in discount rates for adaptation and regular investments is then given by

β2−β1 =−
WJWW

JW
(gc2−gc1)ḡ′c−

JWT

JW
(gc2−gc1)sc. (13)

Under assumption 1, this gives that the optimal discount rate for adaptation investments is
smaller than the optimal discount rate for regular investments if and only if T > T ∗.

PROOF: See Appendix A.
The intuition of this result is that adaptation investments are – under certain conditions – a

hedge against unexpected changes in the state variables wealth and temperature, provided that
these changes result from climatic shocks. To see why, suppose that T > T ∗, which implies by
assumption 1 that gc2(T )> gc1(T ): adaptation investments have a higher return volatility than
regular investments. Under the conditions stated in proposition 4, this higher return volatility
of adaptation investments decreases its discount rate for two reasons. The first reason is that
adaptation investments tend to pay off more than regular investments in cases where climatic
shocks decrease aggregate wealth, i.e., ḡc < 0. Notice that this particular argument for a lower
discount rate can be traced back to higher demand of less risky assets by a single-period mean-
variance maximizer (Merton, 1992, p. 384). The second reason is that adaptation investments
are a hedge against unfavorable shifts in the investment-opportunity set resulting from climatic
shocks (Merton, 1992, p. 384). Of course, this requires that the temperature increase as a
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result of the climatic shock is unfavorable, i.e., JWT > 0. Notice that differences in the return
volatility of economic shocks may still result in overall higher discount rates for adaptation
investments. For example, investments in heat-resistant crops or innovative coast protection
may be subject to specific productivity, demand or technology risks, implying that they are –
all things considered – more risky than regular investments.

Remark 5. With free entry and exit and constant returns to scale, there will be no incentive
for firms to enter or leave a sector if and only if the terms on which it can acquire capital (the
discount rate) are identical to the technologically determined physical returns in that sector (cf.
Cox et al. (1985)). Hence, in equilibrium, the optimal discount rate for the ith sector, βi, will
be equal to the technologically determined αi of that sector. From theorem 4 and assumption 1,
it then follows that α2(T ) < α1(T ) if and only if g2(T ) < g1(T ). Hence, in equilibrium, the
assumptions on the technologically determined parameters gi(T ) and αi(T ) must in some sense
‘match’, i.e., whenever 0 < âi < 1 (which is the assumption in this paper), we must have that
αi(T ) = βi = r− JWW

JW
giG′âW − JWT

JW
gis. Notice that – under constant returns to scale – we

will have either âi = 1 or âi = 0 if the assumptions on gi(T ) and αi(T ) do not ‘match’. For
example, consider a sector in which the expected rate of return is below the risk-free rate,
i.e., αi(T ) < r, while its return volatility is such that it warrants a positive risk premium, i.e.,
−JWW

JW
giG′âW − JWT

JW
gis > 0. Investment in this sector is then dominated by investment in the

risk-free opportunity. Hence, âi = 0.19

Remark 6. Proposition 4 cannot be extended to the mitigation sector. To see why, suppose that
regular and mitigation investments are characterized by equal return volatilities from economic
shocks, i.e., ge1 = ge3, which implies that any remaining differences in discount rates can be
fully attributed to differences in return volatilities from climatic shocks. In addition, suppose
– exploiting the fact that the return volatility of mitigation investments is not systematically
related to that sector’s pollution intensity – that regular and mitigation investments also have
equal return volatility from climatic shocks, i.e., gc1 = gc3. It then immediately follows that
the optimal discount rates for regular and mitigation investments will be equal, i.e., β1 = β3.
Moreover, notice that the pollution intensities γi have no effect on the optimal discount rate
for mitigation investments. The key to understanding this surprising result is that within the
consumption capital asset pricing model (CCAPM), time-t expected excess returns are propor-
tional to the time-t covariance of their return with consumption. Subsequently, any two assets
that have identical return volatilities must have identical discount rates. This result stands in
contrast to the claim of Sandsmark and Vennemo (2007) that mitigation investments must have
lower discount rates because they reduce future (non time-t) risk.20 Within their model, this

19Notice that is is straightforward to allow for the possibility of zero investment in some sectors, see Cox et al.
(1985) for further details.

20Another reason why climate investments in Sandsmark and Vennemo (2007) are associated with lower dis-
count rates is that these investments are assumed to have a negative beta: they tend to pay off more when con-
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claim originates from the assumption that the risk-free rate is exogenous: increases in climate
investments cannot change the risk-free rate despite the fact that they increase expected (fu-
ture) consumption.21 However, it is well known that when consumers expect consumption to
rise, they would like to reduce their savings, which raises the risk-free rate, see, for example,
Gollier (2007). Hence, when determining optimal discount rates for mitigation investments, it
is crucial to recognize that the risk-free rate is endogenous.

4 Conclusion

This paper provides a framework for understanding discount rates of adaptation and mitigation
investments as their equilibrium expected rates of return, taking into account both economic
and climatic risk. Previous literature has either focused on explaining the risk-free rate in a
partial equilibrium context with climatic risk or a general equilibrium context with economic
risk only or resorted to outside-the-model reasons, such as ethics or the presence of long-term
climatic uncertainty. While this literature has provided useful insights into the economics of
discounting, it cannot explain if, and why, the discount rates for adaptation and mitigation
investments should differ from the discount rate for regular investments.

Using a simple stochastic model of climate change, I have shown that the optimal excess
discount rate of an investment must be proportional to the covariance of its rate of return with
the state variables wealth and temperature. The insight that state variables other than wealth
may explain differences in optimal excess discount rates is consistent with the consumption
capital asset pricing model. According to the CCAPM, investors care not only about high
expected return and low return variance, but also about the covariances of their portfolio returns
with state variables. Interestingly, climate science provides us with a whole list of candidate
state variables, such as temperature, the atmospheric stock of carbon dioxide, the sea level, the
worldwide population and our knowledge of the climate system. All of these state variables
could easily be incorporated in the framework developed here.

Although my model is highly stylized and does not have a known analytical solution, it
permits a clear conclusion. Given equal return volatility from economic shocks, adaptation
investments will earn a lower discount rate provided that both climatic shocks and increases
in temperature are unfavorable (and temperatures are sufficiently high). Moreover, I have ar-
gued that a similar conclusion cannot be drawn for mitigation investments. Unfortunately, any
realistic implementation of the model is beyond the scope of this paper as it would require a

sumption is low. However, their climate investment combines characteristics of both adaptation and mitigation.
See footnote 8.

21Technically, Sandsmark and Vennemo (2007) assume that the partial derivative of the distribution function of
consumption with respect to climate investments is positive, i.e., it satisfies the condition of first order stochastic
dominance. Thus, a rise in climate investments will increase the expected consumption level in the next period.
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considerable extension of the model both in terms of the number of state variables and in its
setup. For example, the climate module in the Nordhaus DICE model consists of five state vari-
ables compared with only one state variable, temperature, in my model. In addition, successful
implementation of the model might require either the use of Epstein-Zin-Weil preferences or
the modeling of economic shocks through a Poisson process in order to avoid the well-known
equity premium and risk-free rate puzzle (Barro, 2009). There is therefore much scope for
further research along these lines.

A Appendix

DERIVATION OF EQUATION 4
Recognizing that the value of a contingent claim is a function of the state variables W and T ,
we get, applying Ito’s lemma:

dF(W,T ) = [FW dW +FT dT ]+
1
2
[
FWW (dW )2 +2FWT (dW )(dT )+FT T (dT )2]

Using equations (2) and (5) to substitute out dW and dT , we get after some rearrangements:

dF = (Fβ −ζ )dt +Fh′dω(t), (A.1)

where

Fh′ = FWWa′G+FWWbh′+FT s′ (A.2)

and

Fβ −ζ =FW (a′αW +bβW −C)+FT θγ
′aW

+
1
2
(FWWW 2(a′GG′a+2a′Ghb+b2h′h)

+2FWTW (a′G+bh′)s+FT T s′s).

(A.3)

PROOF OF PROPOSITION 1
Rearranging (8c), multiplying by F and using the market-clearing condition b = 0 gives

(β − r)F =−WJWW

JW
Fh′G′â− JWT

JW
Fh′s

=−WJWW

JW
(FWWâ′G+FT s′)G′â− JWT

JW
(FWWâ′G+FT s′)s

=WφW FW +WφT FT ,

(A.4)
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where the second equality follows by substitution of Fh′ from (A.2) – using b = 0 – and the
third equality by rearranging terms. Here, φW and φT have been implicitly defined and are equal
to

φW =
−JWWW

JW

var(W )

W 2 +
−JWT

JW

cov(W,T )
W

, (A.5)

φT =
−JWW

JW

cov(W,T )
W

+
−JWT

JW

var(T )
W

. (A.6)

To see that φW is indeed the risk premium on optimally-invested aggregate wealth, take a
contingent claim whose value is always equal to aggregate wealth, i.e., F =W . Its derivatives
are FW = 1 and FT = 0. Substituting this into (A.4) gives that the rate of return on aggregate
wealth βW equals r+φW . Hence, the risk premium on optimally-invested aggregate wealth is
equal to φW .

PROOF OF PROPOSITION 2
First, I derive the LHS of (10). Notice that from (8) the equilibrium solution for a,r and
β is partially separable in terms of the (derivatives of the) value function, J. When b = 0,
(8b) determines a and r. Given a and r, (8c) determines β . Denote the equilibrium value of
the control variables in (8) by Ĉ, â and b̂. As in Cox et al. (1985), the optimal value of the
equilibrium interest rate can be determined by examining two related planning problems. The
first planning problem has the same physical production opportunities and interaction between
the economy and the environment, but has no borrowing, lending and contingent claims. The
second planning problem is identical to the first planning problem with borrowing and lending
allowed (but contingent claims not).

Let ã and C̃ denote the optimal investment and consumption strategy for the first planning
problem and J̃ the corresponding value function. The portfolio allocation of the first planning
problem can now be written as the following quadratic programming problem:

max
a

a′φ +a′Da (A.7)

s.t. a′1 = 1

where φ = αWJ̃W + θγWJ̃T +GsWJ̃WT , D = 1
2GG′W 2J̃WW , and 1 denotes the unit vector.

Solving (A.7) gives (8b) for the case without borrowing or lending, r = 0, and without contin-
gent claims, b = 0. Let λ be the shadow price corresponding to the market-clearing condition,
a′1 = 1. In the optimum

φ − λ̃ ∗1+2Dã = 0.
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Consider the second planning problem with borrowing and lending at r̃ and indirect utility at
˜̃J. Inspection shows that if ˜̃J = J̃ and r̃ = λ̃/WJ̃W , then (r̃, ã,C̃) is the equilibrium for the

second planning problem. The equilibrium interest rate, r̃, is proportional to the shadow price,
λ̃ . Hence, in equilibrium the economy characterized by (1)-(6) has Ĉ = C̃, â = ã, r = r̃ and
J = J̃ = ˜̃J. This gives

r(W,T ) =
λ̃

WJW
=

â′
(
αWJW +θγWJT +GsWJWT +GG′âW 2JWW

)
WJW

= â′(α +θγ
JT

JW
)−
(
−JWWW

JW

)(
var(W )

W 2

)
−
(
−JWT

JW

)(
cov(W,T )

W

)
,

(A.8)

which is the LHS of (10). The final step uses the expressions for the variance of wealth and the
covariance between wealth and temperature evaluated at a = â and b = 0, which follow from
(2) and (5).

Second, I derive the RHS of (10). Differentiate (7) with respect to W recognizing that
both C and a are functions of W . Using the first-order conditions (8a) and (8b), we get after
rearrangement of terms:

r(W,T ) =−
(

1
2

var(W )JWWW + cov(W,T )JWWT +(â′αW −Ĉ)JWW

+θ â′γWJWT +
1
2

s′sJWT T −δJW

)
/JW . (A.9)

Differentiation of (8a) with respect to the states W and T gives JWW =UCCĈW and JWT =

UCCĈT +UCT . Differentiating again gives JWWW =UCCCĈ2
W +UCCĈWW , JWWT =UCCCĈWĈT +

UCCTĈW +UCCĈWT and JWT T = UCCCĈ2
T +UCCTĈT +UCCĈT T +UCCTĈT +UCT T . Apply-

ing Ito’s lemma to dĈ(W,T ) gives E(dĈ)/dt = ĈW (â′αW −Ĉ)+ĈT θ â′γW + 1
2ĈWW var(W )+

ĈWT cov(W,T )+ 1
2ĈT T var(T ), var(Ĉ)= Ĉ2

W var(W )+2ĈWĈT cov(W,T )+Ĉ2
T var(T ) and cov(Ĉ,T )=

ĈW cov(W,T ) + ĈT var(T ), where I have used (2) to obtain the last expression. Substituting
these expressions into (A.9) and collecting terms gives the desired result.

PROOF OF PROPOSITION 3
The required rate of return in each sector can be valued in the same way as any other contingent
claim. For sector i, this implies F = Ki and h′ = gi. Substituting this into (8c) gives after some
rearrangement:

βi =r− JWW

JW
giG′âW − JWT

JW
gis

=r− JWW

JW

cov(Ki,W )

Ki
− JWT

JW

cov(Ki,T )
Ki

,

(A.10)
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where the second expression follows from (2), (3) and (5).

PROOF OF PROPOSITION 4
Using (A.10) and subtracting β2 from β1, we get, using the fact that by assumption ge1 = ge2,

β2−β1 =−
WJWW

JW
(gc2−gc1)ḡ′c−

JWT

JW
(gc2−gc1)sc. (A.11)

Since sc > 0 and by assumption JWT > 0, ḡc < 0, the sign of β2−β1 will be opposite to the
sign of gc2− gc1. By assumption 1, it follows that β2 < β1 if T > T ∗ and β2 > β1 if T < T ∗,
because gc2−gc1 < 0 for T < T ∗ and gc2−gc1 > 0 for T > T ∗.
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