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Abstract

Using a structural vector autoregression with time-varying parameters, I analyze to what extent the

dynamic effects of unanticipated changes in tax policy have changed structurally over the post World

War II period in the United States. The estimated time variation points to a permanent decline in the

tax multiplier as well as a faster response of the economy. Despite the permanent decline, the estimated

tax multiplier is still at the higher end of the range of existing empirical estimates, which is consistent

with Mertens and Ravn (2013b), whose identification strategy I follow. Furthermore, the estimated

time variation also suggests that fiscal policy has become more countercyclical over time. In particular,

spending policy used to be procyclical and has become countercyclical after the beginning of the 1990s,

whereas tax policy already used to be countercyclical and has become even more countercyclical over

time.
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Nederlandse samenvatting (summary in Dutch)

In dit paper onderzoek ik in welke mate de dynamische effecten van onverwachte veranderingen in belas-

tingbeleid structureel zijn veranderd gedurende de periode na de Tweede Wereldoorlog in de Verenigde

Staten. Het gebruikte empirische raamwerk is gebaseerd op De Wind en Gambetti (2014), waarin een

nieuwe model opzet voor vector autoregressieve (VAR) modellen met tijdsvariërende parameters is ont-

wikkeld. Voor de identificatie van de structurele belastingschok heb ik de identificatie strategie van

Mertens en Ravn (2013b) gevolgd, waarbij gebruik wordt gemaakt van informatie over onverwachte ver-

anderingen in belastingbeleid (via een zogenaamde narratieve tijdreeks die geconstrueerd is op basis van

veranderingen in de wetgeving). Het kenmerkende onderscheid met hun paper is dat ik gebruik heb

gemaakt van een tijdsvariërende parameter VAR model, terwijl zij daarentegen gebruik hebben gemaakt

van een VAR model met constante parameters.

De resultaten duiden op een permanente afname van de Amerikaanse belastingmultiplier alsook een

snellere reactie van de economie. Ondanks de permanente afname bevindt de geschatte belastingmultiplier

zich nog steeds aan de bovenkant van de range van bestaande empirische schattingen voor de Verenigde

Staten, wat consistent is met Mertens en Ravn (2013b).

Daarnaast heb ik ook geanalyseerd in hoeverre begrotingsbeleid anti-cyclischer is geworden in de loop

der tijd. De resultaten geven aan dat het bestedingsbeleid pro-cyclisch was en anti-cyclisch is geworden

na het begin van de jaren 1990, terwijl het belastingbeleid reeds anti-cyclisch was en in de loop der tijd

zelfs nog anti-cyclischer is geworden.
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1 Introduction

Fiscal stimulus has been rediscovered as an important instrument to stimulate the economy. After the

collapse of Lehman Brothers and the following sharp drops in real activity, policy makers in several

countries have responded with fiscal stimulus packages to counteract the slowdown of the economy. The

reaction of the United States was particularly vigorous and has resulted in the Economic Stimulus Act

of 2008 and the American Recovery and Reinvestment Act of 2009. Further efforts by President Obama

such as the American Jobs Act were blocked in 2011 by the Republicans, who had acquired the majority

in the House of Representatives in 2010.

The strong countercyclical response to the 2007–2008 financial crisis, and the general consensus in

support of the large fiscal stimulus, is a marked change from earlier episodes. Auerbach (2009) argues that

the change towards countercyclical fiscal policy predates the 2008–2009 stimulus packages, as the response

to the early 2000s recession included countercyclical bonus depreciation investment incentives as opposed

to the clearly procyclical responses to the early 1980s and early 1990s recessions.1 Auerbach (2009) also

presents evidence that fiscal policy has overall been countercyclical, although it is not clear how much of

this result is driven by the exclusion of the early 1980s recession (and the subsequent procyclical fiscal

response) from the estimation sample. In another paper, Auerbach (2008) identifies different budget

control regimes in the United States and shows that fiscal policy has become more countercyclical after

the introduction of the Budget Enforcement Act of 1990, based on (insignificant) sample-split results. In

this paper, I present systematic evidence on the cyclicality of fiscal policy using a vector autoregression

(VAR) with time-varying parameters, and indeed fiscal policy seems to have become more countercyclical

over time.

In view of the increased use of countercyclical fiscal policy, it is important to understand the dynamic

effects of changes in fiscal policy. How large are the effects on impact? After how many quarters do

the effects reach their peak and how large is the peak? How fast do the effects die out thereafter? The

empirical literature does not answer these questions with one voice. There is no consensus regarding the

dynamic effects of changes in government expenditure nor regarding the dynamic effects of changes in

tax policy. In this paper, I focus on the dynamic effects of unanticipated changes in tax policy.

Most studies agree on the direction of the effects of tax increases, yet there is not much consensus on

the size of the effects. Most studies belief that tax increases are generally contractionary, yet estimates

1Countercyclical fiscal policy goes against the business cycle (stimulus in downturn, austerity in upswing), whereas

procyclical fiscal policy goes with the business cycle (austerity in downturn, stimulus in upswing).
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for the US tax multiplier range from close to zero to more than four.2 The broad range reflects numerous

differences in methodology, identification assumptions, model specification, and sample coverage. In

the empirical literature, there are two main methodological approaches to the estimation of the US tax

multiplier. In the structural VAR approach, tax shocks are identified by imposing short-run restrictions

as in the seminal contribution by Blanchard and Perotti (2002) or by imposing sign restrictions as in

Mountford and Uhlig (2009). In the narrative approach, a narrative series of observable (legislated)

changes in tax policy, such as the one constructed by Romer and Romer (2009), is used to measure tax

shocks directly. Recently, the two approaches are combined by Mertens and Ravn (2013a) as well as

Mertens and Ravn (2013b), who use a narrative series as a proxy that imperfectly measures tax shocks

in a structural VAR model. In particular, they assume that the narrative series is correlated with the

structural tax shock but uncorrelated with the other structural shocks, which is sufficient to identify the

structural tax shock and to back out the tax multiplier. Mertens and Ravn (2013b) also give an overview

of existing empirical estimates for the US tax multiplier, and with their “proxy structural VAR model,”

nesting both the structural VAR approach as well as the narrative approach, they can reconcile their own

estimate for the US tax multiplier with the pre-existing ones.

In this paper, I have analyzed what the effects are of unanticipated tax changes and, in particular,

to what extent these effects have changed structurally over the post World War II period in the United

States. The main results of this paper are: (i) there has been a permanent decline in the tax multiplier,

from more than four at the beginning of the sample period to around three at the end of the sample

period and (ii) the response of the economy has become much faster, reaching its peak response after

six quarters at the beginning of the sample period as opposed to four quarters at the end of the sample

period. Despite the permanent decline, the estimated tax multiplier is still at the higher end of the range

of existing empirical estimates, which is consistent with Mertens and Ravn (2013b), whose identification

strategy I have followed.

The permanent decline in the tax multiplier and faster response of the economy found in this paper

are consistent with the sample-split results of Mertens and Ravn (2013b), who have applied their proxy

structural VAR methodology to compare the dynamic effects of an unanticipated tax shock in the post-

1980 period with the dynamic effects in the pre-1980 period. Mertens and Ravn (2013b) use the subset

2The tax multiplier is defined as the ratio between the change in GDP (in dollars) and the autonomous change in tax

revenues (in dollars) that triggered it. The tax multiplier is a dynamic concept and wherever I am not specific about the

horizon of the tax multiplier, I refer to the tax multiplier at its peak (as opposed to the tax multiplier on impact).
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of the Romer and Romer (2009) narrative series that includes only unanticipated tax changes. This still

leaves 26 nonzero elements for the full sample, yet only nine nonzero elements for the second sub-sample

that starts in 1980. The identification procedure, described above, exploits the informational content of

the nonzero elements in the narrative series of unanticipated tax changes. Not surprisingly, the sample-

split results of Mertens and Ravn (2013b) are not robust with such a low number of nonzero elements,

as shown in this paper.

As an alternative for their sample-split VAR, I have extended the analysis of Mertens and Ravn

(2013b) by allowing for time variation in the reduced-form parameters of the VAR model. The reduced-

form model specification is, apart from the time-varying parameters, unchanged with the same set of

variables and number of lags. Also the proxy identification procedure is the same, ditto the narrative

series of unanticipated tax changes. For an extensive discussion of the benefits of time-varying VARs,

see De Wind and Gambetti (2014) and the references therein. Here, I only would like to emphasize

that time-varying VARs are more appropriate for analyzing time variation than sample-split VARs. In

particular, with time-varying VARs the timing and number of sub-samples are endogenously determined

by the data, whereas with sample-split VARs this is simply imposed by the researcher without proper

empirical support. Moreover, the sample-split method is particularly sensitive in combination with the

proxy identification procedure due to the low number of nonzero elements in the narrative series. Despite

the differences in methodology, the results from the time-varying VAR model used in this paper are

consistent with the sample-split results of Mertens and Ravn (2013b).

Finally, my analysis focuses on the structural change in the effects of discretionary fiscal policy (in

particular, unanticipated tax changes), which is complementary to the literature that argues that the

effects of discretionary fiscal policy depend on the state of the business cycle. There is both empirical as

well as theoretical work arguing that fiscal multipliers are larger when the economy is in recession. An

empirical example is Auerbach and Gorodnichenko (2012), who use a smooth transition structural VAR

model and estimate that fiscal multipliers are larger in the recessionary regime. A theoretical example is

Christiano, Eichenbaum, and Rebelo (2011), who develop a DSGE model and find that fiscal multipliers

are larger at the zero lower bound on nominal interest rates, which happens only in recessionary times.

The organization of the rest of this paper is as follows. In section 2, I replicate the proxy structural

VAR results of Mertens and Ravn (2013b) and show that their sample-split results are not robust. In sec-

tion 3, I describe the time-varying VAR model used in this paper and give the priors used in the Bayesian

estimation. In section 4, I first present evidence that fiscal policy has become more countercyclical over
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time and then I present evidence on the permanent decline in the tax multiplier and faster response of

the economy. I also give various robustness checks. Finally, section 5 concludes.

2 Mertens and Ravn (2013b) replication

In this section, I replicate the proxy structural VAR results of Mertens and Ravn (2013b). In particular,

I focus on the dynamic effects of unanticipated tax changes and show that the sample-split results of

Mertens and Ravn (2013b) are not robust along this dimension. Before presenting the results, I first

describe the reduced-form VAR model specification and the proxy identification procedure.

2.1 Reduced-form VAR model specification and data description

Mertens and Ravn (2013b) use the same reduced-form VAR model specification as Blanchard and Perotti

(2002), which is the benchmark specification in the literature. The model contains quarterly US data

on tax revenues Tt, government spending Gt, and output Yt. It is important to model tax revenues and

government spending jointly because they are presumably not independent. Moreover, it is important

to include four lags in the model since some taxes, such as those on corporate income, are often paid

with substantial delays and, in addition, these delays are quarter dependent, an argument put forward

by Blanchard and Perotti (2002).

The variables in the trivariate VAR are specified in levels. In particular, the vector of endogenous

variables yt = [Tt, Gt, Yt]
′ is modeled by

yt = α′dt +

p∑
i=1

Biyt−i + ut (1)

where {Bi}pi=1 are n × n matrices of autoregressive parameters in the model with n = 3 variables and

p = 4 lags. The n × 1 vector ut with reduced-form shocks is assumed to be distributed according to

the normal distribution ut ∼ N (0,Σ). To account for low-frequency properties of the data, the model

includes a linear and quadratic time trend in the vector dt with deterministic components, in addition to

a constant and a dummy for 1975Q2. The coefficients for the deterministic components are represented

by the matrix α of suitable dimensions.3

3Blanchard and Perotti (2002) also include four lags of the 1975Q2 dummy, which are left out by Mertens and Ravn

(2013b).
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The reduced-form VAR model is estimated on quarterly US data from the Bureau of Economic

Analysis. In particular, the data for federal tax revenues, federal government consumption and investment

expenditures, and GDP are taken from the national income and product account tables. All variables

are in log real per capita terms and the sample runs from 1950Q1 up to and including 2006Q4. For more

details about the data, see Mertens and Ravn (2013b).

Mertens and Ravn (2013b) use a narrative series of observable, legislated changes in tax policy for

the identification of unanticipated tax shocks. In particular, they use the narrative series constructed by

Romer and Romer (2009) regarding legislated changes in tax policy on the federal level,4 yet only include

the subset with changes that are unanticipated. Mertens and Ravn (2013b) make the assumption that

changes in tax policy are unanticipated when the legislation and implementation date are less than one

quarter apart, leaving 26 nonzero elements in their proxy. Figure 1 plots the Mertens and Ravn (2013b)

proxy, which is scaled by previous quarter nominal GDP, together with the revenues-GDP ratio.

2.2 Proxy identification procedure

Mertens and Ravn (2013b) use the proxy identification procedure they had developed earlier in Mertens

and Ravn (2013a). Although the proxy identification procedure actually originates to slides by Stock

and Watson (2008) and was laid out at approximately the same time in Stock and Watson (2012), it was

developed independently by Mertens and Ravn (2013a).

The key idea of the proxy identification procedure is to use narrative series as proxies that imperfectly

measure the structural shocks in a structural VAR model. The structural shocks can be identified

by imposing moment conditions between the narrative series and the structural shocks. Although the

proxy identification procedure is more general, it is explained here for the case with one proxy for the

identification of one structural shock (which, in the current application, is labeled as structural tax

shock).5

As is standard in the structural VAR literature, the identification procedure starts with the assumption

that the n × 1 vector ut with reduced-form shocks depends linearly on the n × 1 vector εt with structural

4Romer and Romer (2009) have selected legislated changes in tax policy that are motivated either as ideological or as

arising from inherited debt concerns, so that the changes can be considered as exogenous to the fluctuations in the economy.

5For the case with multiple proxies for the identification of one structural shock, see Stock and Watson (2012). For the

case with k proxies for the identification of k structural shocks, see Mertens and Ravn (2013a).
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shocks so that

ut = Bεt (2)

where B is an n × n impact matrix. The structural shocks are, by nature, orthogonal to each other and

the structural shocks can, without loss of generality, be normalized to have unit variance, implying that

Σ = BB′ (3)

which amounts to n(n+1)
2 restrictions on the impact matrix B. This is, however, not sufficient to fully

identify the impact matrix, which has n2 free elements, and therefore additional identifying restrictions

are needed. Typically, tax shocks are identified by imposing short-run restrictions as in the seminal

contribution by Blanchard and Perotti (2002) or by imposing sign restrictions as in Mountford and Uhlig

(2009).

The proxy identification procedure instead exploits the informational content of a narrative series to

obtain the needed additional identifying restrictions. In particular, it is assumed that the narrative series

is correlated with the structural tax shock but uncorrelated with the other structural shocks, thus

E
(
εTt mt

)
= φ 6= 0 (4a)

E
(
εOt mt

)
= 0 (4b)

where the proxy is denoted by the scalar mt, the structural tax shock by εTt , and the vector with the

other structural shocks by εOt . The structural shocks are ordered as εt = [εTt , (ε
O
t )′]′. Furthermore, the

proxy is assumed to have a zero mean, which can without loss of generality be satisfied by subtracting

the mean of the nonzero elements from the nonzero elements.6

The aforementioned moment conditions are sufficient to identify the structural tax shock and the

associated impulse response function. The derivation of the impulse response function and the procedure

to back out the full history of the structural tax shock are discussed in turn.

First, note that for the identification of the impulse response function of the structural tax shock we

only need the first column of the impact matrix B, so that it is useful to partition B = [βT , βO] where

6The proxy identification procedure also requires that the proxy is uncorrelated with the history of yt. Nevertheless,

note that it is always possible to use the projection error of the projection of the proxy on the history of yt, which is

orthogonal by construction.
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βT represents the first column and βO represents the other columns. Using the aforementioned moment

conditions we can derive

E (utmt) = B E (εtmt) = βT E
(
εTt mt

)
+ βO E

(
εOt mt

)
= βTφ (5)

which implies that the covariance between the reduced-form shocks and the narrative series, for which

we can simply get a sample estimate, pins down the impact vector βT up to scaling. The covariance

parameter φ, which serves in the above equation as constant-of-proportionality, is still to be estimated,

although we do not need it for all purposes. In particular, the shape of the impulse response function, and

with that the size of the tax multiplier, does not depend on the scaling. Regarding the impulse response

function, we only need the constant-of-proportionality if we want to show the response to a (negative)

one-standard deviation structural tax shock, but not if the magnitude of the impulse is scaled otherwise.

In the current application, the impulse to the structural tax shock is scaled such that it amounts to a

decrease in tax revenues of one percent of GDP. More specifically, the impulse to the structural tax shock

is first scaled such that it amounts to a one-percent decrease in tax revenues and then it is divided by the

sample average of the ratio between tax revenues and GDP, which is approximately 17.5%. This scaling

gives the response of GDP the interpretation of tax multiplier, i.e. the ratio between the change in GDP

(in dollars) and the autonomous change in tax revenues (in dollars) that triggered it. The tax multiplier is

a dynamic concept and the full dynamic pattern can be read directly from the impulse response functions

reported in this paper. Wherever I am not specific about the horizon of the tax multiplier, I refer to the

tax multiplier at its peak (as opposed to the tax multiplier on impact).

Altogether, the impulse response function of the structural tax shock can be estimated using the

following steps:

1. Estimate the reduced-form VAR model by ordinary least squares

2. Estimate the vector with covariances between the reduced-form shocks and the narrative series,

which pins down the first column of the impact matrix up to scaling

3. Scale the first column of the impact matrix such that the first element is equal to the negative of

the reciprocal of the sample average of the ratio between tax revenues and GDP, which specifies

the impulse to the economy

4. Enter the impulse to the economy as a one-time reduced-form shock and iterate on the reduced-form

VAR model to determine the impulse response function
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Second, to back out the full history of the structural tax shock we need the constant-of-proportionality,

which was not needed for the derivation of the impulse response function. For the case discussed here,

with one proxy for the identification of one structural shock, the constant-of-proportionality is available

without additional identification assumptions. Start the derivation by partitioning the impact matrix as

B =

βTT βTO

βOT βOO

 (6)

where, in the case discussed here, the upper left block is a scalar, the lower left block is a column vector,

the upper right block is a row vector, and the lower right block is a square matrix. The covariance matrix

of the reduced-form shocks is partitioned analogously, where in addition ΣTO = Σ′OT . Mertens and Ravn

(2013a) provide an expression for the upper left block, which in the scalar case discussed here can be

simplified to

βTT =

√
ΣTT −

(
ΣOT − βOTβ−1TTΣTT

)′
Γ−1

(
ΣOT − βOTβ−1TTΣTT

)
(7)

where Γ = βOTβ
−1
TTΣTT

(
βOTβ

−1
TT

)′−ΣOT
(
βOTβ

−1
TT

)′−βOTβ−1TTΣ′OT+ΣOO.7 The essential ingredients for

this expression are the various blocks of Σ and the term βOTβ
−1
TT . The latter term is pinned down by βT ,

the first column of the impact matrix, even though we do not yet know the constant-of-proportionality.

In appendix A, I provide a derivation for the expression of Mertens and Ravn (2013a).

Now that we have an expression for the scalar in the upper left block, we can back out the constant-

of-proportionality and in turn the rest of the first column of the impact matrix. To back out the full

history of the structural tax shock, express the structural shocks in terms of the reduced-form shocks

εt = B−1ut (8)

which reveals that we need the first row of the inverse impact matrix. In appendix B, I show how to

derive the first row of the inverse impact matrix without making additional identification assumptions.

Finally, the proxy identification procedure seems to be an appealing methodology as it integrates the

7Mertens and Ravn (2013a) provide the following general expression for the upper left block

βTT β
′
TT = ΣTT −

(
ΣOT − βOT β−1

TTΣTT

)′
Γ−1

(
ΣOT − βOT β−1

TTΣTT

)
which can only be simplified to the expression in the main text in the case that βTT is a scalar and otherwise additional

identification assumptions are needed to back out βTT .
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narrative approach in the standard structural VAR framework and combines the attractive features of

the two approaches. Relative to the narrative approach, it allows for measurement error in the narrative

series which seems like a good idea as it is unlikely that a narrative series can be constructed perfectly

and without any judgement. Relative to the structural VAR approach, the informational content of a

narrative series is exploited rather than having to make identification assumptions on which there is no

consensus.

2.3 Full-sample results

I have applied the proxy structural VAR methodology to the full sample and I can successfully replicate

the proxy structural VAR results of Mertens and Ravn (2013b). In my reporting, I focus on the dynamic

effects of unanticipated changes in tax policy, as summarized by the impulse response function of the

structural tax shock.

Figure 2 plots the impulse response function of the structural tax shock and is basically identical to

the figure presented by Mertens and Ravn (2013b). The impulse to the structural tax shock is scaled

such that it amounts to a 5.7% decrease in tax revenues, which is on average one percent of GDP. In

response to the structural tax shock, GDP increases on impact by 2.0% and reaches its peak after five

quarters with a 3.2% increase over its trend. As explained in the previous subsection, these numbers can

be interpreted as tax multipliers and lie at the higher end of the range of existing estimates for the US

tax multiplier. For a more extensive comparison, see Mertens and Ravn (2013b) who reconcile their own

estimate for the US tax multiplier with the pre-existing ones.

2.4 Sample-split results

I have applied the proxy structural VAR methodology to the pre-1980 period and the post-1980 period

and I can successfully replicate the sample-split results of Mertens and Ravn (2013b). As for the full

sample, I only report on the impulse response function of the structural tax shock.8

Figure 3 plots the impulse response function of the structural tax shock for the pre-1980 period and

the post-1980 period and is basically identical to the figure presented by Mertens and Ravn (2013b). For

both periods, the impulse to the structural tax shock is scaled such that it amounts to a decrease in tax

revenues of one percent of GDP. This amounts to a decrease in tax revenues of 5.8% and 5.6% for the

8The pre-1980 sample runs from 1950Q1 up to and including 1979Q4. The post-1980 sample runs from 1980Q1 up to

and including 2006Q4.
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pre-1980 and post-1980 period, respectively. Although the impact on GDP has not changed much, the

response of GDP reaches its peak much quicker in the post-1980 period than in the pre-1980 period and

the peak is also much lower (2.0% increase over trend after four quarters as opposed to 2.7% increase

over trend after six quarters). Moreover, the reversion to the trend is also much quicker in the post-1980

period than in the pre-1980 period. This suggests that there is time variation in the dynamic effects of

unanticipated changes in tax policy (which is why I extend the analysis of Mertens and Ravn (2013b) by

allowing for time variation in the model parameters, to which the remainder of this paper is dedicated).

Nevertheless, it turns out that the evidence for time variation put forward by Mertens and Ravn

(2013b) is not robust. In particular, their sample-split figure, which is replicated here as figure 3, is very

sensitive to the timing of the split of the sample. For example, if the early sub-sample had lasted one more

year, the impulse response function of the structural tax shock would have looked rather different, which

is demonstrated in figure 4. With the extra year, the early sub-sample would have included the nonzero

proxy element for 1980Q2, which is a high-leverage point (only three elements are further away from the

mean and many elements are much closer to the mean) that turns out to be influential. The sensitivity

is not really surprising given the low number of nonzero elements in the proxy, with just sixteen of them

for the pre-1980 period. Clearly, the sample-split results of Mertens and Ravn (2013b) are not robust,

although the question whether or not there is time variation can still be answered in the affirmative.

2.5 Alternative strategy for the sample split

In this subsection, I propose an alternative strategy for the sample split that generates sample-split results

that are robust, in contrast to the sample-split results of Mertens and Ravn (2013b). The key idea is to

use the sample split for the estimation of the reduced-form VAR model but not for the identification of

the structural tax shock. In particular, the estimation of the covariance between the reduced-form shocks

and the narrative series, which is the main ingredient in the proxy identification procedure, should be

based on the two sub-samples stacked together, so as to avoid that this covariance is estimated on the

basis of too few nonzero proxy elements (which is, in fact, the Achilles’ heel of the Mertens and Ravn

(2013b) strategy). Furthermore, the scaling part of the proxy identification procedure can again be dealt

with separately for the two sub-samples.

Figure 5 plots the impulse response function of the structural tax shock for the pre-1980 period and

the post-1980 period based on my alternative sample-split strategy. Despite the sensitivity of the Mertens

and Ravn (2013b) sample-split figure, the alternative impulse response function actually turns out to be
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very similar. The impact of the structural tax shock on GDP has again not changed much over time,

while the dynamic patterns after the impact actually depend only on the reduced-form VAR models,

which are, by construction, unaffected relative to the Mertens and Ravn (2013b) sample-split strategy.

3 Time-varying VAR model specifications

In this section, I give the two time-varying VAR model specifications used in this paper. The first one

does not include stochastic volatility, whereas the second one does. The two model specifications only

differ to the extent that the covariance matrix of the reduced-form shocks is time-invariant in the case

without stochastic volatility and time-varying in the case with stochastic volatility. Henceforth, the two

model specifications are referred to as TV-VAR-NO and TV-VAR-SV, respectively. Before presenting

the two model specifications (in the next two subsections), I have three general remarks.

First, the identification of the impulse response function of the structural tax shock, which is based

on the proxy identification procedure as described in section 2.2, does not depend on the covariance

matrix of the reduced-form shocks.9 Therefore, allowing for time variation in the covariance matrix of

the reduced-form shocks would not contribute directly to the time variation in the impulse response

function of the structural tax shock. The main results of this paper are, for this reason, based on the

TV-VAR-NO specification. Nevertheless, I also present results based on the TV-VAR-SV specification,

which is an important robustness check as the incorporation of stochastic volatility could possibly matter

in an indirect manner (as explained in section 4.3.1).

Second, the covariance matrix of the innovations to the time-varying parameters is, in both specifica-

tions, assumed to be of reduced rank. In particular, I use the reduced-rank model setup as developed in

De Wind and Gambetti (2014). The reduced-rank model setup is more parsimonious than the standard

(full-rank) model setup, and this is particularly advantageous for analyzing larger models including more

variables and/or more lags. In the current application, I include four lags in the model which is stan-

dard in the fiscal VAR literature, yet rather large for time-varying VARs. For an extensive discussion

of time-varying VARs, the benefits of the rank reduction as well as the Bayesian estimation procedures,

see De Wind and Gambetti (2014). Besides, apart from the rank reduction, the model setup is basically

identical to the time-varying VAR model setup of Primiceri (2005) except for one minor difference as

9In fact, the reduced-form shocks themselves enter the proxy identification procedure and their covariance matrix is

only needed to back out the constant-of-proportionality (which is not needed to identify the shape of the impulse response

function).
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explained in footnote 10.

Third, the deterministic components (linear and quadratic time trends as well as a dummy for 1975Q2)

that are included in the VAR model specification of Mertens and Ravn (2013b) are excluded from the time-

varying VAR model specifications used in this paper. Instead I have pre-filtered the data, implemented

by a linear regression of the data on a constant and the time trends. I also present results based on other

trend specifications and the results are robust along this dimension.

3.1 TV-VAR-NO

Consider the model with n variables and p lags

yt = ct +

p∑
i=1

Bi,tyt−i + ut (9)

where yt is an n × 1 vector of observed endogenous variables, ct is an n × 1 vector of time-varying

constants, {Bi,t}pi=1 are n × n matrices of time-varying autoregressive parameters, and ut is an n × 1

vector of shocks. Shocks are assumed to be distributed according to the normal distribution ut ∼ N (0,Σ).

Let θt ≡ vec([ct, {Bi,t}pi=1]′) denote the vector of time-varying parameters, where vec is the column

stacking operator. The dimension of θt is k by 1 with k = n+ pn2. The law of motion for θt is assumed

to be equal to

θt = θt−1 + νθ,t (10)

where νθ,t is a k × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution νθ,t ∼ N (0, Qθ), where the covariance matrix Qθ is assumed to be of reduced rank, i.e. the

rank is chosen to be equal to rank (Qθ) = qθ ≤ k. The rank reduction implies cross-equation restrictions

that amount to a reduction in the number of underlying factors driving the time-varying parameters. In

particular, the qθ × 1 vector of underlying factors θ̃t can, without loss of generality, be defined implicitly

by

θt ≡ Λθ θ̃t +Mθθ0 (11)

where Λθ is a k × qθ matrix of factor loadings and Mθ = Ik − Λθ(Λ
′

θΛθ)
−1Λ

′

θ is the projection matrix

onto the left null space of Λθ. The law of motion for the underlying factors is given by

θ̃t = θ̃t−1 + υθ,t (12)
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where υθ,t is a qθ × 1 vector of standard normally distributed shocks, which is assumed to be uncorrelated

with the reduced-form shocks in the VAR equation. For details on the derivation of the underlying factor

structure as well as intuition on the decompositions, see De Wind and Gambetti (2014).

Next, define the n × k matrix of regressors X ′t ≡ In ⊗ [1,
{
y′t−i

}p
i=1

], where ⊗ denotes the Kronecker

product, and rewrite the VAR equation in concise matrix form. Together with the law of motion for the

underlying factors and the implicit definition of the underlying factors, the model specification can now

be represented by the following state-space representation

yt = X ′tθt + ut (13a)

θ̃t = θ̃t−1 + υθ,t θt ≡ Λθ θ̃t +Mθθ0 (13b)

Finally, the Bayesian estimation procedure is outlined in De Wind and Gambetti (2014). For the

priors and number of underlying factors used in the current application, see section 3.3.

3.2 TV-VAR-SV

The model specification with stochastic volatility is similar to the model specification without stochastic

volatility, aside from the covariance matrix of the reduced-form shocks in the VAR equation which is now

time-varying Σt rather than time-invariant Σ. Introducing stochastic volatility requires restrictions to

make sure that the covariance matrix is always positive definite.

Cholesky decompose the covariance matrix Σt =
(
A−1t Ωt

) (
A−1t Ωt

)′
where A−1t is a lower triangular

matrix with ones on the main diagonal and Ωt is a diagonal matrix. Let αt be the vector of elements

below the main diagonal of the matrix At stacked by rows. The dimension of αt is r by 1 with r = n(n−1)
2 .

The law of motion for αt is assumed to be equal to

αt = αt−1 + να,t (14)

where να,t is an r × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution να,t ∼ N (0, Qα).10 Let σt denote the vector of diagonal elements of the matrix Ωt. The

10Here, Qα is a dense matrix, in contrast to Primiceri (2005). The reason why I have relaxed the block-diagonal

assumption of Primiceri (2005) is explained in De Wind and Gambetti (2014).
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dimension of σt is n by 1. The law of motion for σt is assumed to be equal to

log (σt) = log (σt−1) + νσ,t (15)

where νσ,t is an n × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution νσ,t ∼ N (0, Qσ). As opposed to the time-varying parameters, I do not impose an underlying

factor structure (reduce the rank of the covariance matrices) in the stochastic volatility part of the model

setup. Note that the dimensions of the state vectors αt and log (σt) are much smaller than the dimension

of the state vector θt so that the benefits would have been much smaller.

Next, use the above Cholesky decomposition in order to decompose the shocks in the VAR equation

as ut = A−1t Ωtεt, where εt is an n × 1 vector of standard normally distributed shocks, and rewrite

the time-varying VAR in concise matrix form. Together with the laws of motion for the time-varying

parameters (in terms of the underlying factor structure) and stochastic volatility, the model specification

can now be represented by the following state-space representation

yt = X ′tθt +A−1t Ωtεt (16a)

θ̃t = θ̃t−1 + υθ,t θt ≡ Λθ θ̃t +Mθθ0 (16b)

αt = αt−1 + να,t (16c)

log (σt) = log (σt−1) + νσ,t (16d)

where, besides, the four vectors of shocks are assumed to be mutually uncorrelated.

Finally, the Bayesian estimation procedure is outlined in De Wind and Gambetti (2014). For the

priors and number of underlying factors used in the current application, see section 3.3.

3.3 Prior settings

I have allocated a period of twelve years (from 1951Q3 up to and including 1963Q2) to calibrate the

priors.11 In particular, the training sample is used to estimate a time-invariant VAR from which the

priors are constructed, which is the standard approach in the time-varying VAR literature. There is,

however, an important improvement in the sense that I have used a Bayesian regression to estimate the

11The training sample, which consists of only twelve years of data, is somewhat sensitive to the data from 1950Q1 up to

and including 1951Q2. Therefore, I have excluded these first six data points from the Mertens and Ravn (2013b) sample.
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time-invariant VAR as opposed to the standard classical regression.12 This is particularly important for

the current application given the more than usual number of lags included in the model.13 Apart from

the Bayesian regression, the strategy for calibrating the priors is standard. The various prior components

are discussed in turn, first for the main specification without stochastic volatility (TV-VAR-NO) and

then for the alternative specification with stochastic volatility (TV-VAR-SV).

3.3.1 Prior settings TV-VAR-NO

The marginal prior on the covariance matrix of the reduced-form shocks in the VAR equation (Σ) is

assumed to be an inverse-Wishart distribution with n × n scale matrix R̄ and n+ 1 degrees of freedom.

The scale matrix R̄ is chosen to be equal to n+1 times the time-invariant point estimate of the covariance

matrix of the reduced-form shocks in the VAR equation in the training sample. Note that the multipli-

cation with the degrees of freedom is because the scale matrix has a sum-of-squares interpretation in the

inverse-Wishart distribution.

Next, the marginal prior on the starting values of the time-varying parameters (θ0) is assumed to be

a normal distribution with mean θ̄ and covariance matrix P̄θ. The mean θ̄ is chosen to be equal to the

time-invariant point estimate of the vector of VAR parameters in the training sample and the covariance

matrix P̄θ is chosen to be equal to four times the covariance matrix of the time-invariant estimate of the

vector of VAR parameters in the training sample.

Finally, the marginal prior on the covariance matrix of the shocks driving the time-varying parameters

(Qθ) needs a bit more explanation because of the rank reduction. It is my intention to follow the time-

varying VAR literature as much as possible. Therefore, I start off from a prior on Qfull
θ for the full-rank

model version and based thereon I construct the prior on Qred
θ for the reduced-rank model version to

imply the same amount of time variation in the parameters, just like in De Wind and Gambetti (2014).

12Regarding the Bayesian VAR, I have used a natural conjugate version of the so-called Minnesota prior, see e.g. Koop

and Korobilis (2010) for an excellent survey article on Bayesian VARs. I have set the hyperparameter on the overall tightness

to 0.2, as recommended by Sims and Zha (1998). Furthermore, I have centered the prior around univariate AR(1) processes

with autocorrelation parameters of 0.9 as opposed to the more standard univariate random walks, which makes sense given

that the data is pre-filtered.

13The Bayesian regression approach is more attractive than using a (much) longer training sample, as the training sample

cannot be recycled in the main estimation of the time-varying VAR. Nevertheless, a much longer training sample is used by,

for example, Baumeister and Peersman (2013). In their model with four variables and four lags, they use a training sample

that is more than twice as long and throw away valuable data from the main estimation (which is particularly undesirable

given their rather large model).
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For the full-rank model version, the prior on Qfull
θ is standard. In particular, the prior is assumed to

be an inverse-Wishart distribution with k × k scale matrix Q̄full
θ —with full rank—and τ fullθ,0 degrees of

freedom. The degrees-of-freedom parameter τ fullθ,0 is chosen to be equal to the number of periods in the

training sample, which is 44 after accounting for initialization. The scale matrix Q̄full
θ is chosen to be

proportional to the covariance matrix of the time-invariant estimate of the vector of VAR parameters in

the training sample. The constant-of-proportionality is calibrated to 4.4E-4 multiplied with the degrees of

freedom, where the number 4.4E-4 is calibrated to imply the same amount of time variation per parameter

as the prior in De Wind and Gambetti (2014).

For the reduced-rank model version, the prior is likewise assumed to be an inverse-Wishart distribu-

tion, yet now with singular scale matrix Q̄red
θ , where rank(Q̄red

θ ) = qθ. The main results of this paper are

based on the setting qθ = 7 and, in addition, the results are shown to be robust along this dimension.

The singular scale matrix Q̄red
θ is constructed from the non-singular scale matrix Q̄full

θ by selecting the qθ

most important eigenvalues, i.e. by replacing the k − qθ smallest eigenvalues by zeros in the eigenvalue

decomposition. The prior for the reduced-rank model version is supposed to imply the same amount of

time variation in the parameters as the prior for the full-rank model version. This requires an upscaling

since the sum of the eigenvalues—which measures the amount of time variation—has decreased by the

rank reduction. This is exactly offset by multiplying the scale matrix with the sum of all the eigenvalues

divided by the sum of the qθ largest eigenvalues. Moreover, the degrees of freedom are chosen to be equal

to τ redθ,0 = τ fullθ,0 −k+ qθ in order to match exactly the expected sum of the eigenvalues in the reduced-rank

model version with the full-rank model version, see De Wind and Gambetti (2014) for details.

3.3.2 Prior settings TV-VAR-SV

The prior settings regarding the time-varying parameters part of the model are exactly the same as in the

TV-VAR-NO specification and the prior settings regarding the stochastic volatility part of the model are

basically identical to the baseline prior settings of Primiceri (2005) except for one minor difference. As

explained in footnote 10, Primiceri (2005) imposes a block-diagonal structure on the covariance matrix

of the shocks driving the off-diagonal elements and therefore has to specify separate priors for the various

blocks, whereas I do not impose a block-diagonal structure on this matrix and therefore can simply specify

one prior for the whole matrix. The strategy for constructing the prior is nevertheless identical, using

one plus the dimension as degrees of freedom and using the same constant-of-proportionality.
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4 Results

I have estimated the time-varying VAR model (without stochastic volatility, i.e. the TV-VAR-NO spec-

ification) and I have used the proxy identification procedure to identify the structural tax shock.14 In

this section, I present the results, first on the time variation in the cyclicality of fiscal policy and then on

the time variation in the dynamic effects of unanticipated changes in tax policy. I conclude this section

with various robustness checks, among which the TV-VAR-SV robustness check.

4.1 Time variation in the cyclicality of fiscal policy

In this subsection, I present systematic evidence on the time variation in the cyclicality of fiscal policy.15

The time variation in the comovement between the fiscal variables and GDP can be determined by the

time-varying covariance matrix implied by the time variation in the VAR coefficients.16 However, I am

interested in the response of the fiscal variables to the fluctuations in the economy, except those fluctu-

ations that are originally caused by shocks in fiscal policy—after all, the causal relationship would then

have been the other way around. The key object for measuring the cyclicality of fiscal policy is therefore

the conditional covariance matrix between the fiscal variables and GDP conditional on only non-policy

shocks. I have used the proxy identification procedure to identify the structural tax shock and with one

additional identification assumption (that government expenditure cannot respond contemporaneously

to non-policy shocks) I can also identify the structural government expenditure shock. The rest of the

fluctuations in the economy are assumed to be caused by non-policy shocks, on which the rest of this

subsection is conditioned.

Regarding US tax policy, figure 6 plots the time-varying covariance between tax revenues and GDP

conditional on non-policy shocks. The figure shows that the conditional covariance between tax revenues

and GDP has been positive during the post World War II period. The positive conditional covariance

14The Bayesian estimation is based on four Markov chains of 20, 000 draws each and the first 50% of each chain is thrown

away as burn-in period. For the current application, this is sufficient for the Markov chains to converge to the posterior

distribution, which I have confirmed by comparing the results of various Markov chains that have started from different

initial conditions. The results are constructed from the median time paths of the VAR parameters.

15The VAR model does not contain sufficient information to distinguish between automatic stabilizers and discretionary

policy, and the results in this subsection are therefore for the two policy components together.

16The time-varying covariance matrix can be obtained from a simulation or by a so-called local approximation (that

approximates the covariance matrix at each point in time by imposing that the VAR coefficients will remain constant in

the future). Here, the local approximation is used as in most time-varying VAR papers.
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implies that tax policy including both automatic stabilizers as well as discretionary tax policy has been

countercyclical (recall that the VAR model does not contain sufficient information to distinguish between

the two policy components). The figure also shows that the countercyclicality has become stronger over

time with a peak around the turn of the millennium. Note that the 2007–2008 financial crisis and the

subsequent stimulus packages are not included in the sample period, so that we might expect another

peak.17 I have also calculated the time-varying correlation between tax revenues and GDP as well as

the coefficient of the regression of tax revenues on GDP, both conditional on non-policy shocks. These

statistics are closely related to the conditional covariance between tax revenues and GDP and support

the exact same story, as shown in figure 7.

Regarding US spending policy, figure 8 plots the time-varying covariance between government expen-

ditures and GDP conditional on non-policy shocks. The figure shows that spending policy used to be

procyclical and has become countercyclical after the beginning of the 1990s. This result is consistent

with the sample-split results of Auerbach (2008), who shows that fiscal policy has become (more) coun-

tercyclical after the introduction of the Budget Enforcement Act of 1990, both regarding spending as well

as tax policy. I have also calculated the time-varying conditional correlation and regression coefficient

between government expenditures and GDP, and these statistics support the exact same story, as is clear

from figure 9.

4.2 Time variation in the dynamic effects of unanticipated changes in tax

policy

Given the increased use of countercyclical fiscal policy, it is important to understand the dynamic effects

of changes in fiscal policy. In this subsection, I present results on the dynamic effects of unanticipated

changes in tax policy, and in particular how the effects have changed over time. The analysis is based on

the time-varying impulse response function of the structural tax shock, where the structural tax shock

is identified as in Mertens and Ravn (2013b). The distinctive difference with Mertens and Ravn (2013b)

is the time variation in the impulse response function that arises from the time variation in the reduced-

form parameters of the VAR model, i.e. I extend their analysis by allowing for time variation in the

17The time-varying VAR model setup is designed to capture structural changes and is not well-suited to capture changes

at business-cycle frequencies, which is confirmed by figure 6 that displays no interesting time variation in the shaded NBER

recessions. Nevertheless, even though the 2007–2008 financial crisis and the subsequent stimulus packages are business-cycle

phenomena, we might expect another peak given that the stimulus packages have been rather large in absolute terms.
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reduced-form parameters.18

Figure 10 plots the impulse response function of the structural tax shock for various points in time.

The response on impact is, by construction, time-invariant and, as a matter of fact, somewhat larger than

in Mertens and Ravn (2013b), at least for GDP. From the second period onwards, the time variation in

the reduced-form parameters of the VAR model enters the impulse response function of the structural

tax shock.

In this paper, I focus on the response of GDP and, for convenience, I have magnified the response

of GDP in figure 11. The figure produces two interesting results. First, there has been a permanent

decline in the tax multiplier, from more than four at the beginning of the sample period to around three

at the end of the sample period. Despite the permanent decline, the estimated tax multiplier is still at

the higher end of the range of existing empirical estimates, which is consistent with Mertens and Ravn

(2013b). Second, the response of the economy has become much faster, reaching its peak response after

six quarters at the beginning of the sample period as opposed to four quarters at the end of the sample

period. Correspondingly, the effects of the structural tax shock also fade out somewhat faster.

The permanent decline in the tax multiplier and faster response of the economy found in this paper

are consistent with the sample-split results of Mertens and Ravn (2013b). I have replicated their impulse

response function for the pre-1980 period and the post-1980 period, see section 2.4 and in particular

figure 3. The economy reaches its peak response after six quarters in the early sub-sample as opposed to

four quarters in the later sub-sample and also the tax multiplier has declined considerably, just like with

my time-varying VAR.

Finally, it should be noted that the structural tax shock is identified based on a narrative series of

unanticipated changes in tax policy that are motivated either as ideological or as arising from inherited

debt concerns, see Romer and Romer (2009) and Mertens and Ravn (2013b) for more details. Therefore,

the results presented in this subsection apply to tax policy that is motivated independent of the state of

the business cycle. In contrast, the results in the previous subsection apply to tax policy that is motivated

as response to fluctuations in the economy. It is important to be cautious with this distinction. Of course,

it is quite possible that the permanent decline in the tax multiplier and faster response of the economy

found in this subsection carry over to tax policy that is motivated by the state of the business cycle (e.g.

stimulus in downturn), but this is still undetermined and should be investigated, which is left for future

18The identification step itself is time-invariant as in Mertens and Ravn (2013b). There are too few nonzero elements in

the narrative series of unanticipated tax changes to reliably introduce time variation in the identification step.
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research.

4.3 Robustness checks

I have checked for robustness along various dimensions and the main results of this paper are very robust.

In particular, I have generated results with the TV-VAR-SV specification (i.e. the model specification

with stochastic volatility), investigated the influence of the settings regarding the covariance matrix of

the shocks driving the time-varying parameters (in particular, the chosen rank and the prior settings),

and estimated a model version with only two lags. For space considerations, I only present figures on

the time variation in the response of GDP to the structural tax shock and the time-varying covariance

between tax revenues and GDP conditional on non-policy shocks. The various robustness checks are

presented in turn.19

4.3.1 Stochastic volatility

Allowing for time variation in the covariance matrix of the reduced-form shocks (i.e. stochastic volatility)

does not contribute directly to the time variation in the impulse response function of the structural

tax shock. Nevertheless, the TV-VAR-SV specification serves as an important robustness check as the

incorporation of stochastic volatility could possibly matter in an indirect manner. In particular, many

model properties depend both on the reduced-form parameters of the VAR model and the covariance

matrix of the reduced-form shocks, so that wrongly leaving out time variation in the latter may lead to

spurious time variation in the former (or the other way around).20 The figures presented in this subsection

suggest that this is not a problem for the current application, i.e. the TV-VAR-NO and TV-VAR-SV

results are consistent with each other.

Figure 12 plots the response of GDP to the structural tax shock for various points in time. The

19For all robustness checks, the Bayesian estimation is based on four Markov chains of 20, 000 draws each and the first

50% of each chain is thrown away as burn-in period. This is sufficient for the Markov chains to converge to the posterior

distribution, which I have confirmed by comparing the results of various Markov chains that have started from different

initial conditions. The results are constructed from the median time paths of the VAR parameters.

20For example, consider the simplest possible AR model, yt = %yt−1+εt with εt ∼ N
(
0, σ2

)
. The unconditional variance

of yt depends on both model parameters, that is var (yt) = σ2

1−%2 . Suppose that the variance of the shocks σ2 has increased

over time. Then, if we estimate a time-varying version of the AR(1) allowing only for time variation in the autoregressive

parameter %, we will find that the persistence of yt has increased over time, which is a spurious result. Allowing for time

variation in both model parameters helps to avoid such spurious results. This argument was put forward by Stock (2001).
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permanent decline in the tax multiplier and faster response of the economy found in this paper are

confirmed by the TV-VAR-SV specification, at least in qualitative terms. Yet, in quantitative terms,

there is somewhat less time variation, which is not surprising given that some of the time variation that

was previously captured by the time-varying parameters will now be absorbed by the stochastic volatility

(which will not be reflected in the impulse response function of the structural tax shock), see De Wind

(2013) for an extensive discussion.

The left panel of figure 13 plots the time-varying covariance between tax revenues and GDP condi-

tional on non-policy shocks. The conditional covariance depends directly on the stochastic volatility and

is, in fact, dominated by movements in the covariance matrix of the reduced-form shocks (high-frequency

movements as well as the Great Moderation). To filter out the high-frequency movements, I have con-

structed a two-sided moving average with ten quarters on each side, as plotted in the right panel of figure

13. It seems that the results are not inconsistent with the TV-VAR-NO specification.

4.3.2 Number of factors

I have no formal procedure for choosing how many factors to include in the reduced-rank model. There-

fore, it is important to check for robustness along this dimension. I have generated results for all possible

ranks up to ten as well as for the full-rank model. For a selection of the ranks, I have plotted the response

of GDP to the structural tax shock for various points in time (figure 14) and the time-varying covariance

between tax revenues and GDP conditional on non-policy shocks (figure 15).

There are 39 parameters in the trivariate VAR with four lags and constant, yet it is evident from the

figures that much less underlying factors are needed to capture the bulk of time variation that is present

in the full-rank model. As few as three factors are sufficient to replicate the time patterns found with

the full-rank model, albeit only qualitatively. With five factors, the differences are already quite small in

quantitative terms. And from seven factors onwards, the differences are hardly distinguishable. It seems

that including seven factors is the sweet spot for the current application, and was therefore chosen as the

benchmark case.

4.3.3 Prior tightness and informativeness

One of the conclusions of De Wind (2013) was that the inverse-Wishart prior on the covariance matrix

of the shocks driving the time-varying parameters has much influence on the estimated amount of time

variation. Checking for robustness along this dimension is therefore important. I have played around
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with the constant-of-proportionality that was used to scale the scale matrix and also with the degrees-

of-freedom parameter.

Regarding the constant-of-proportionality, I have generated results with constants-of-proportionality

that are ten times tighter (×0.1), five times tighter (×0.2), two times tighter (×0.5), two times looser

(×2), and five times looser (×5). As before, I have plotted the response of GDP to the structural tax shock

for various points in time and the time-varying covariance between tax revenues and GDP conditional on

non-policy shocks in figures 16 and 17, respectively. The constant-of-proportionality has some influence

on the estimated amount of time variation, yet the main results even survive the ten times tighter prior,

at least in qualitative terms.

Regarding the degrees-of-freedom parameter, I have played around with a less informative prior (less

degrees of freedom) as well as with a more informative prior (more degrees of freedom). Figure 18 plots

the results, the response of GDP to the structural tax shock for various points in time in the left column

and the time-varying covariance between tax revenues and GDP conditional on non-policy shocks in the

right column. The degrees-of-freedom parameter has some influence on the estimated amount of time

variation, yet the main results are robust, at least in qualitative terms.

4.3.4 Two lags

As a final robustness check, I have estimated a model version with only two lags.21 A confirmation from

this model version is an important piece of evidence that my results are robust, given that the risk of

overfitting is much lower with only 21 parameters in the trivariate VAR. Besides, it is interesting to see

whether four lags are really needed in the standard fiscal VAR analyzed here, which was advocated by

Blanchard and Perotti (2002).

As before, I have plotted the response of GDP to the structural tax shock for various points in time

and the time-varying covariance between tax revenues and GDP conditional on non-policy shocks in

figures 19 and 20, respectively. It is questionable whether four lags are really needed in the standard

fiscal VAR analyzed here. In particular, the shape of the dynamic response of GDP to the structural tax

shock is very similar as in the model version with four lags. The impact response of GDP is estimated

to be slightly lower, yet the estimated amount of time variation is very close, quantitatively.

21I have re-calibrated the prior on the covariance matrix of the shocks driving the time-varying parameters to imply the

same amount of time variation per parameter as in the model version with four lags.
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5 Concluding remarks

Using a structural vector autoregression with time-varying parameters, I have analyzed to what extent

the dynamic effects of unanticipated changes in tax policy have changed structurally over the post World

War II period in the United States, and I have also produced results on the time variation in the cyclicality

of fiscal policy.

Regarding the time variation in the dynamic effects of unanticipated changes in tax policy, the analysis

is based on the time-varying impulse response function of the structural tax shock, where the structural

tax shock is identified as in Mertens and Ravn (2013b) using the same (time-invariant) identification

assumptions and narrative series of unanticipated tax changes. All the time variation in the impulse

response function arises from the time variation in the reduced-form parameters of the VAR model,

while the identification step itself is time-invariant. Clearly, this is unfortunate since this causes the

response on impact to be time-invariant.22 It is left for future research to introduce time variation in

the identification step, which will be challenging given that there are only a few nonzero elements in the

narrative series of unanticipated tax changes. Potential routes are combining multiple proxies, combining

the proxy identification procedure with other identification procedures, and exploiting the informational

content of the zero elements in the proxy (of which there are many).

The estimated time variation points to a permanent decline in the tax multiplier as well as a faster

response of the economy. It should be noted, however, that the permanent decline in the tax multiplier

does not suggest that tax cuts are a bad policy instrument for stimulating the economy, as the estimated

tax multiplier is still at the higher end of the range of existing empirical estimates (which is consistent

with Mertens and Ravn (2013b), whose identification strategy I have followed). Moreover, the time-

varying VAR model setup is designed to capture structural change in the effects of fiscal policy, and is

not well-suited to capture the business-cycle dependence of the effects. There is a large literature that

argues that fiscal multipliers are larger when the economy is in recession. It would be very useful to

model both types of time variation in one unified framework.

Finally, regarding the time variation in the cyclicality of fiscal policy, the estimated time variation

22At the same time, given that all the time variation in the impulse response function arises from the time variation in

the reduced-form parameters of the VAR model, it is likely that the direction of the time variation carries over to other

identification assumptions. In fact, suppose that the impact response of GDP would have been half as large, the estimated

time variation would have pointed in the exact same direction. Of course, this example cannot replace a proper analysis of

other identification assumptions.
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suggests that fiscal policy has become more countercyclical over time. In particular, spending policy used

to be procyclical and has become countercyclical after the beginning of the 1990s (around the introduction

of the Budget Enforcement Act of 1990), whereas tax policy already used to be countercyclical and has

become even more countercyclical over time. These results are consistent with the sample-split results of

Auerbach (2008).
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A Derivation of βTT

In this appendix, I provide a derivation for the βTT expression that was given in the main text for the

scalar case. Actually, I provide a derivation for the more general βTTβ
′
TT expression that was given by

Mertens and Ravn (2013a), which in the scalar case can in turn be simplified to the βTT expression.

My derivation starts with the set of restrictions implied by

Σ = BB′ (17)

which, with the same partitioning as in the main text, can be written as

ΣTT ΣTO

ΣOT ΣOO

 =

βTT βTO

βOT βOO


β′TT β′OT

β′TO β′OO

 (18)

which in turn can be expanded to the following set of restrictions

ΣTT = βTTβ
′
TT + βTOβ

′
TO (19a)

ΣOT = βOTβ
′
TT + βOOβ

′
TO (19b)

ΣOO = βOTβ
′
OT + βOOβ

′
OO (19c)

where I have omitted the redundant equation for ΣTO, i.e. the equations for ΣTO and ΣOT are just the

transpose of each other.

The next ingredient for the derivation is the term βOTβ
−1
TT , for which we already have an expression

in terms of quantities that we can estimate. This term, from now onwards denoted by Z, can be used to

substitute out βOT from the above set of restrictions, yielding

ΣTT = βTTβ
′
TT + βTOβ

′
TO (20a)

ΣOT = ZβTTβ
′
TT + βOOβ

′
TO (20b)

ΣOO = ZβTTβ
′
TTZ

′ + βOOβ
′
OO (20c)

Now equation (20a) is the logical starting point for solving βTT , which can be rewritten as

βTTβ
′
TT = ΣTT − βTOβ′TO (21)
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which suggests that we need to uncover an expression for βTOβ
′
TO. By taking the difference between

equation (20b) and Z times equation (20a), we get

ΣOT − ZΣTT = βOOβ
′
TO − ZβTOβ′TO = (βOO − ZβTO)β′TO (22)

from which we can derive the following expression

βTOβ
′
TO = (ΣOT − ZΣTT )

′ (
(βOO − ZβTO) (βOO − ZβTO)

′)−1
(ΣOT − ZΣTT ) (23)

where the inverse term in the middle still consists of quantities that are unknown. We can, however,

uncover an expression for the inverse term in the middle by subtracting equation (20b) times Z ′ and Z

times the transpose of equation (20b) from Z times equation (20a) times Z ′ and adding equation (20c),

which yields the following expression

ZΣTTZ
′ − ΣOTZ

′ − ZΣ′OT + ΣOO = ZβTOβ
′
TOZ

′ − βOOβ′TOZ ′ − ZβTOβ′OO + βOOβ
′
OO (24)

which can be rewritten by completing the squares, yielding

ZΣTTZ
′ − ΣOTZ

′ − ZΣ′OT + ΣOO = (βOO − ZβTO) (βOO − ZβTO)
′

(25)

Putting all the steps together, we now have an expression for the inverse term in the middle of

equation (23) which we can use in turn to substitute out βTOβ
′
TO from equation (21). This completes

the derivation of the general βTTβ
′
TT expression that was given by Mertens and Ravn (2013a). In the

scalar case, it is possible to simplify the expression by taking the square root, which yields the required

expression

βTT =

√
ΣTT − (ΣOT − ZΣTT )

′
Γ−1 (ΣOT − ZΣTT ) (26)

where Γ = ZΣTTZ
′−ΣOTZ

′−ZΣ′OT + ΣOO. Finally, the equation in the main text can be obtained by

substituting back βOTβ
−1
TT for Z.
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B Derivation of the first row of B−1

In this appendix, I show how to derive the first row of the inverse impact matrix B−1. The derivation

also makes clear that there are no additional identification assumptions needed.

The derivation starts with the block-wise matrix inversion formula, which applied to the inverse impact

matrix gives the following expression

βTT βTO

βOT βOO


−1

=

 (
βTT − βTOβ−1OOβOT

)−1 −
(
βTT − βTOβ−1OOβOT

)−1
βTOβ

−1
OO

−β−1OOβOT
(
βTT − βTOβ−1OOβOT

)−1
β−1OO + β−1OOβOT

(
βTT − βTOβ−1OOβOT

)−1
βTOβ

−1
OO

 (27)

It turns out that all the blocks of the impact matrix show up in the first row of the block-wise inverted

impact matrix. We already have expressions for the two left blocks of the impact matrix, i.e. βTT and

βOT , but not for the two right blocks, i.e. βTO and βOO.

It should be noted, however, that although the two right blocks show up in the first row of the block-

wise inverted impact matrix, they only show up in the particular combination βTOβ
−1
OO. The next step

in the derivation is therefore to uncover an expression for βTOβ
−1
OO. Now decompose this term as

βTOβ
−1
OO = (βOOβ

′
TO)

′
(βOOβ

′
OO)

−1
(28)

after which the first and second term on the right-hand side can be uncovered via equation (20b) and

(20c), respectively, yielding the following expression

βTOβ
−1
OO = (ΣOT − ZβTTβ′TT )

′
(ΣOO − ZβTTβ′TTZ ′)

−1
(29)

which completes the proof that we can back out all the terms in the first row of the inverse impact matrix

without making additional identification assumptions.

Note that, in contrast, it is not possible to back out all the terms in the second row of blocks of the

inverse impact matrix since we would need an expression for βOO. Via equation (20c), we can get an

expression for βOOβ
′
OO, yet this does not uniquely pin down βOO itself.
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Figure 1: Mertens and Ravn (2013b) proxy for unanticipated changes in tax policy and the
revenues-GDP ratio; the NBER recession periods are indicated by the shaded areas
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Figure 2: Impulse response function of the structural tax shock for the full sample, impulse
scaled such that it amounts to a decrease in tax revenues of one percent of GDP
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Figure 3: Impulse response function of the structural tax shock for the pre-1980 period and
the post-1980 period, impulse scaled such that it amounts to a decrease in tax revenues of
one percent of GDP
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Figure 4: Sample sensitivity of the impulse response function of the structural tax shock,
impulse scaled such that it amounts to a decrease in tax revenues of one percent of GDP
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Figure 5: Impulse response function of the structural tax shock for the pre-1980 period and
the post-1980 period, based on the alternative sample-split strategy, impulse scaled such
that it amounts to a decrease in tax revenues of one percent of GDP
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Revenues−GDP covariance conditional on non−policy shocks
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Figure 6: Time-varying covariance between tax revenues and GDP conditional on non-
policy shocks; the NBER recession periods are indicated by the shaded areas
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Revenues−GDP correlation conditional on non−policy shocks
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Figure 7: Time-varying correlation between tax revenues and GDP as well as the coefficient
of the regression of tax revenues on GDP, both conditional on non-policy shocks; the NBER
recession periods are indicated by the shaded areas
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Expenditures−GDP covariance conditional on non−policy shocks
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Figure 8: Time-varying covariance between government expenditures and GDP conditional
on non-policy shocks; the NBER recession periods are indicated by the shaded areas
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Expenditures−GDP correlation conditional on non−policy shocks
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Figure 9: Time-varying correlation between government expenditures and GDP as well as
the coefficient of the regression of government expenditures on GDP, both conditional on
non-policy shocks; the NBER recession periods are indicated by the shaded areas
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Figure 10: Time variation in the impulse response function of the structural tax shock,
impulse scaled such that it amounts to a decrease in tax revenues of one percent of GDP
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Figure 11: Time variation in the response of GDP to the structural tax shock, impulse
scaled such that it amounts to a decrease in tax revenues of one percent of GDP
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Figure 12: Robustness check, stochastic volatility; time variation in the response of GDP to
the structural tax shock, impulse scaled such that it amounts to a decrease in tax revenues
of one percent of GDP
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Figure 13: Robustness check, stochastic volatility; time-varying covariance between tax
revenues and GDP conditional on non-policy shocks; symmetric two-sided moving average
with ten quarters on each side in right panel; the NBER recession periods are indicated by
the shaded areas
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Figure 14: Robustness check, number of factors; time variation in the response of GDP to
the structural tax shock, impulse scaled such that it amounts to a decrease in tax revenues
of one percent of GDP
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Figure 15: Robustness check, number of factors; time-varying covariance between tax rev-
enues and GDP conditional on non-policy shocks; the NBER recession periods are indicated
by the shaded areas
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Figure 16: Robustness check, prior tightness; time variation in the response of GDP to the
structural tax shock, impulse scaled such that it amounts to a decrease in tax revenues of
one percent of GDP
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Figure 17: Robustness check, prior tightness; time-varying covariance between tax revenues
and GDP conditional on non-policy shocks; the NBER recession periods are indicated by
the shaded areas
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Figure 18: Robustness check, prior degrees of freedom; left column: time variation in
the response of GDP to the structural tax shock; right column: time-varying covariance
between tax revenues and GDP conditional on non-policy shocks
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Figure 19: Robustness check, two lags; time variation in the response of GDP to the
structural tax shock, impulse scaled such that it amounts to a decrease in tax revenues of
one percent of GDP
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Figure 20: Robustness check, two lags; time-varying covariance between tax revenues and
GDP conditional on non-policy shocks; the NBER recession periods are indicated by the
shaded areas
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