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Abstract

Using a general equilibrium model in which both capital productivity and temper-
ature are uncertain, we show that the social discount rate (SDR) will decline from
1% in 2010 to 0.6% in 2300 under the conventional, quadratic specification of the
damage function, and to −2.0% under the reactive specification of the damage func-
tion. Moreover, interaction between economic and climate risks further lowers this
estimate of the SDR by 0.9%. Surprisingly, the decline of the SDR never starts before
2100. We attribute this to the slow response of the earth’s climate to increases in
radiative forcing, thus highlighting the critical importance of properly taking into
account the long-term dynamics of the climate system for the SDR. Interestingly, a
substantial part of the decrease in the SDR under the reactive specification can be
attributed to the presence of a term premium in long-run bonds.
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1 Introduction

Recent work shows that the social discount rate may escape the logic of exponential dis-
counting, when shocks on capital productivity are permanent instead of transitory. Here,
the social discount rate is defined as the certainty-equivalent rate of return on a take-it-
or-leave-it marginal investment at time 0 with a certain payoff at time t. For example,
using a simple Ramsey optimal growth model with an immediate and once-and-forever
shock to capital productivity, Weitzman (2010) finds that the social discount rate for three
centuries hence equals 0.6% even though the expected rate of return in his model equals
6% per year. Intuitively, permanent shocks imply that the riskiness of consumption is
exponentially increasing over time, giving even moderately risk-averse consumers a strong
incentive to increase their savings. Although the message from Weitzman’s paper is crystal
clear - in cost-benefit analysis, the far-distant future should be discounted far less heav-
ily than is done by standard exponential discounting at a constant rate - any practical
implementation within climate-change CBA’s hinges crucially on the availability of social
discount rates that incorporate actual climate risks.

To that end, this paper employs the stochastic A2 scenario of Roe and Bauman (2012)
to study the impact of climate risk on the social discount rate between 2010 and 2300.
This stochastic A2 scenario emulates the climate forcing of the IPCC A2 scenario in the
21st century, after which a decline in forcing is assumed at a rate which approximately
stabilizes temperature for the median trajectory. It not only recognizes that the thermal
inertia of the ocean will prevent too abrupt warming of the earth’s climate, but also that
the earth’s climate sensitivity and its response time are positively related: whereas it will
take 50 years to reach two-thirds of the equilibrium impact when climate sensitivity equals
1.5 ◦C, it will take 5000 years when climate sensitivity equals 15 ◦C. Taken together, these
considerations imply that the transient response of the earth’s climate system to increases
in greenhouse gases is limited (Roe and Bauman, 2012). Nonetheless, it is conceivable,
although unlikely, that we might see double-digit increases in temperature three centuries
hence. For example, the 2-sigma temperature range for the stochastic A2 scenario employed
in this paper equals [3.2, 6.2] ◦C in 2100, but [3.3, 10.8] ◦C in 2300.

To access the impact of the ‘gradual’ dynamics of the earth’s temperature on the social
discount rate, we employ a stochastic version of a Ramsey optimal growth model, which was
originally developed by Cox, Ingersoll and Ross (1985a). Our paper thus fits into a small
number of papers that have used this CIR-model as a motivation to establish a schedule
of declining discount rates by using historical data (Newell and Pizer, 2003; Groom et al.,
2007; Masoliver, Montero and Perelló, 2013). In contrast, our model is forward looking and
not only incorporates the above-mentioned climate-change-related stylized facts, but also
uses the idea of rare macro-economic disasters (Rietz, 1988; Barro, 2009) to adequately
capture key features of financial markets data. Thus, in a world unaffected by climate
change, the expected rate of return on capital and the social discount rate are constant
over time and equal to 6% and 1% respectively, implying an equity premium of 5%.
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Our main results are fourfold. First, climate-change related risks will not have a sizeable
effect on the social discount rate in this century. Intuitively, the earth’s inertia prevents
‘catastrophic’ states of nature to be reached with sufficient probability before 2100. Second,
the social discount rate may see a rapid decline after the turn of this century, where the
extent of the decline primarily depends on the size of the damage in ‘catastrophic’ states of
nature. For example, under the reactive specification of the damage function proposed by
Weitzman (2012), the social discount rate reaches sub-zero levels as of 2180, after which it
declines to -2.0% in 2300. The decrease of the social discount rate is more moderate under
the more conventional quadratic specification of the damage function used by Nordhaus
(2008), reaching 0.7% in 2200 and 0.6% in 2300. All in all, our simulations reveal that
relatively moderate deviations from the quadratic damage function are sufficient for a sub-
zero social discount rate by 2300. Third, the addition of interaction between economic
and climate risks significantly lowers our estimate of the social discount rate by about
0.9% by 2300. Fourth, the social discount rate under the stochastic scenario deviates
significantly from its deterministic counterpart, signifying that the proper treatment of
far-distant uncertainty is critically important. To illustrate, by 2300 the social discount
rate under the stochastic scenario is 0.1 percentage point (13%) lower for the quadratic
damage function, but more than 2.3 percentage points (767%) lower for the reactive damage
function.

Surprisingly, our results show that Weitzman’s stylized example with an immediate and
once-and-forever shock to capital productivity is actually at the upper end of our estimates
of the social discount rate. Under the stochastic A2 scenario, any deviation from the
frequently used quadratic damage function will result in lower, and in many cases negative,
estimates of the social discount rate by 2300. Notice that negative real discount rates are
relatively common and may occur over extended periods of time (Reinhart and Sbrancia,
2011; Masoliver, Montero and Perelló, 2013). For example, in times of a crisis, investors
may have such a desire to avoid risk that they are willing to accept a negative yield on
riskless investments.1 Our results do not necessitate unrealistically low assumptions on
either the pure rate of time preference or the coefficient of relative risk aversion, as, in our
base case, these have values of 0.015 and 4, respectively. Instead, it is the combination of
the reactive damage function and the risk of high temperatures under the A2 scenario that
is crucial for obtaining negative social discount rates three centuries hence.

Interestingly, a substantial part of the difference between our results and Weitzman’s styl-
ized example can be attributed to the fact that the expected rate of return on the take-
it-or-leave-it investment with a certain payoff at time-t contains a term premium. This
term premium measures an investments’ potential to hedge against shifts in temperature
and can be traced back to the desire of non-log-utility consumers to hedge against changes
in temperature (cf. Cox, Ingersoll and Ross (1981)). As a result, the discount rate to be
used at each instant for this take-it-or-leave-it-investment will in general not be equal to
the prevailing risk-free rate. In our results, this desire to hedge results in a decrease of the

1In the aftermath of the financial crisis of 2007, both 2-year German government bonds and 1-month
US Treasury bills have been sold at a negative real rates (U.S. Department of the Treasury, 2014).
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SDR of 0.04 percentage points for the quadratic and 0.9 percentage points for the reactive
damage function.

To date, there is, to the best of our knowledge, no study tying the stochastic development
of temperatures under a realistic emissions scenario, such as the IPCC A2 scenario, to the
level of the social discount rate. Using the parable of a once-and-forever shock to capital
productivity, Weitzman (2010) obtains an analytical solution for the social discount rate in
the context of a simple Ramsey optimal growth model. In a standard Lucas tree economy,
Gollier (2014) shows that efficient discount rates are decreasing with maturity, i.e., contain
a term premium, when growth rates are serially correlated, but he does not explicitly
model temperature. Nordhaus (2008) and Stern (2007) use assumptions on the pure rate
of time preference and the coefficient of relative risk aversion (which they refer to as the
elasticity of marginal utility) to obtain a social discount rate, but they do not establish a
formal link between uncertainty and the social discount rate. In a study on the optimal
level of environmental investment within a setting of economic and environmental disasters,
Barro (2013) stresses the importance of gauging (fat-tailed) uncertainty based on empirical
evidence. Using a database of 185 economic rare disasters for 40 countries over periods
going back as far as 1870, he is able to explain the observed equity premium on financial
markets without invoking unrealistically low assumptions on either the pure rate of time
preference and the coefficient of relative risk aversion. He extends the model to include
environmental rare disasters, but the present-day probability of an environmental disaster
under the baseline calibration does not concord with the fact that the thermal inertia of
the ocean will prevent too abrupt warming of the earth’s climate. Cai, Judd and Lontzek
(2013) extend the DICE model of Nordhaus (2008) to a stochastic setting, but they do
not include fat-tailed uncertainty based on empirical evidence on rare macro-economic
disasters.

The outline of this article is as follows. In Section 2, we present our model of choice
and derive the corresponding social discount rate. Section 3 presents and discusses the
calibration of the model’s economic and physical parameters. The results are presented in
Section 4. Section 5 discusses some policy implications and concludes.

2 The optimal portfolio model and the social discount

rate

In this section, we explain our stochastic general equilibrium model, which is based on the
general equilibrium model of asset pricing by Cox, Ingersoll and Ross (1985a). Consider
an economy in which a single production sector produces the consumption good C(t).
The time-t value of an initial investment in this production sector is denoted by K(t).
Under continuous reinvestment of the output, this value evolves according to the following
stochastic differential equation
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dK(t) = (α(T (t))− κλ)K(t)dt+K(t)G(t)dω(t) +K(t)κdq(t), (1)

G(t)dω(t) =
[
G1(t) G2(t)

] [dω1(t)
dω2(t)

]
. (2)

Here, ω(t) denotes a two-dimensional Wiener process. The increments dωi are independent
normally distributed with mean zero and standard deviation

√
dt. This Wiener process

evolves continuously over time: whereas random process ω1(t) represents ‘normal’ economic
fluctuations, random process ω2(t) represents fluctuations in the earth’s climate. G(t)
denotes the return volatility, which may be time-dependent. We extend the model of Cox,
Ingersoll and Ross (1985a) with jumps, as in Ahn and Thompson (1988). Let q(t) be a
Poisson process with intensity rate λ, while κ < 0 is its fixed jump size. This Poisson
process is discontinuous and reflects that from time to time macroeconomic disasters, such
as wars, depressions and revolutions, may hit the economy (cf. Barro (2009)). In our
model, these investments have stochastic constant returns to scale with expected value
α(T (t)). Note that we explicitly allow the expected rate of return α to depend on the
temperature T (t), which follows the following stochastic differential equation

dT (t) = µ(t, T (t))dt+ s2(t, T (t))dω2(t), T (t0) = T0. (3)

Here, µ is the drift of temperature and s2 is the temperature volatility. Note that un-
expected changes in the economy do not affect temperature as we set s1 = 0. Thus,
equations (1) to (3) describe an economy that is confronted with exogenous temperature
risk: unexpected changes in temperature and unexpected changes in the rate of return
on capital are correlated with covariance Cov(dK(t), dT (t))/dt = K(t)G(t)s(t, T (t))′, with
s = [0, s2].

The consumer allocates a share a of his wealth W (t) to the physical production opportunity
(with expected return α(T )) and the remaining part 1 − a to the riskless opportunity for
borrowing and lending (with a risk-free return r).2 Thus, aW (t) denotes the amount
of time-t wealth invested in the physical production sector. In addition, he chooses his
consumption flow C(t) as to maximize the expected discounted utility over the interval
[t, t∗], where t∗ denotes the terminal time. We use the univariate CRRA utility function

U(C) = C1−η/(1− η), η > 0, η 6= 1, (4)

where η is the constant coefficient of relative risk aversion. The value function is

J(t,W, T ) = max
{a,C}

Et,W,T
[∫ t∗

t

e−δ(τ−t)U(C(τ))dτ + e−δ(t
∗−t)U(W (t∗))

]
, (5)

2In general, the risk-free rate will depend on temperature T (t), wealth W (t) and time t.
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with δ, the pure rate of time preference, capturing the consumer’s impatience. The wealth
dynamics evolve according to

dW (t) = aW (t)
dK(t)

K(t)
+ (1− a)rW (t)dt− C(t)dt

= (a(α(T (t))− κλ− r) + r − p(t))W (t)dt+ aW (t)G(t)dω(t) + aW (t)κdq(t), (6)

where p := C/W denotes the proportion of wealth consumed. The corresponding Hamilton-
Jacobi-Bellman equation reads (Cox, Ingersoll and Ross, 1985a; Ahn and Thompson, 1988))

0 = max
C≥0,a>0

[
U(C) + JW (a(α− κλ− r)W + rW − C) + 1

2
JWWa

2W 2GG′

+ JTµ+ 1
2
JTT ss

′ + JWTaWGs′ + Jt − δJ + (J(t,W + aκW, T )− J)λ
]

:= max
C≥0,a>0

ψ(C, a|t,W, T ), (7)

where subscripts of the value function denote partial derivatives. The optimal values of
the control variables are denoted by Ĉ and â. An economic equilibrium is defined as a set
of stochastic processes (r, â, Ĉ) satisfying the first order conditions ψC = 0 and ψa = 0,
and the market clearing condition a = 1. We get

0 = UC − JW , (8)

0 = JW (α− κλ− r)W + JWWaW
2GG′ + JWTWGs′ + JW (t,W + aκW, T )Wκλ. (9)

The first order condition for consumption gives Ĉ = J
−1/η
W . With separation of variables,

it follows from Cox, Ingersoll and Ross (1985b) that the value function takes the form

J(t,W, T ) = f(t, T )U(W ) (10)

and

−WJWW

JW
= η, −JWT

JW
= −fT

f
= η

CT
C
. (11)

This implies that the optimal consumption policy Ĉ(t,W, T )/W = f(t, T )−1/η = p̂(t, T )
does not depend on the wealth level. The choice of the utility function implies that the
equilibrium risk-free rate r(t, T ) (hereafter simply denoted by the risk-free rate) is inde-
pendent of the wealth level too. It can be derived as in Cox, Ingersoll and Ross (1985a)
and Ahn and Thompson (1988), and equals

r(t, T ) = α− ηGG′ − η ĈT
Ĉ
Gs′ + [(1 + κ)−η − 1]κλ, (12)

where ĈT represents the derivative of optimal consumption with respect to temperature.
Inspection of Eq. (12) reveals that the risk free rate is equal to the expected rate of
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return α minus the risk premium on aggregate wealth ηGG′+ η ĈT

Ĉ
Gs′− [(1 + κ)−η − 1]κλ.

The risk premium on aggregate wealth can be associated with the presence of ‘normal’

economic fluctuations ηGG′, temperature risk η ĈT

Ĉ
Gs′, and the presence of macroeconomic

disasters −[(1 + κ)−η − 1]κλ. When wealth and temperature are uncorrelated, that is
Gs′ = 0, the second term in the risk premium will cancel out. The risk premium associated
with macroeconomic disasters is proportional to the disaster probability λ, but depends
nonlinearly on the disaster size κ and the coefficient of relative risk aversion η.

The social discount rate The prime interest of this paper lies with the social discount
rate, which is defined as the certainty-equivalent rate of return on a take-it-or-leave-it
investment at time t0 with a certain payoff at time t (cf. Weitzman (2010)). Notice that
this social discount rate is not equal to the risk-free rate r(t, T (t)) in Equation (12), which
is the instantaneous rate of return on an riskless investment in the interval (t, t + dt).
Instead, the social discount rate R(t) is given by

R(t) = − 1

t− t0
ln(Φ(t)). (13)

Here, the time-t expected discount factor Φ(t) denotes the current (time t0) price of a pure
discount bond promising to pay one euro at time t. According to Cox, Ingersoll and Ross
(1985a, Lemma 3), the value of this bond is given by

Φ(t) = E
[
exp

(
−
∫ t

t0

β(τ, T (τ))dτ

)]
, (14)

where the expectation is taken over the actual temperature process (3) and β(τ, T (τ))
denotes the expected rate of return on our pure discount bond. Equation (14) states
that the present value of this bond equals the expected discounted value of the promised
payment of one euro at time t, where the relevant discount rate is given by its rate of return
β(τ, T (τ)). Unfortunately, it does not provide a constructive way of finding Φ(t), since the
randomly varying rate of return β(τ, T (τ)) is in general not known in advance (cf. Cox,
Ingersoll and Ross (1985a)). In particular, notice that the rate of return β(τ, T (τ)) will
in general not be equal to the risk-free rate r(τ, T (τ)), since the rate of return on long-
term pure discount bonds will in general contain a term premium. This term premium
can either be positive of negative and measures the extra compensation for the bond’s
potential to hedge against shifts in the expected rate of return α(T (t)) resulting from
shifts in temperature T (t) (cf. Cox, Ingersoll and Ross (1981)). Only in the special case
where we have equality of local expected rates of return on all bonds, we have β(τ, T (τ)) =
r(τ, T (τ)).3 In fact, equation (14) provides a generalization of the social discount concept

3In the asset pricing literature, this condition is known as the Local Expectations Hypothesis, see Cox,
Ingersoll and Ross (1981). They show that a primary requirement for the Local Expectations Hypothesis
to hold is that utility is logarithmic, i.e., U(C) = ln(C). In that case, the value function is separable
in wealth and temperature, i.e., JWT = 0 (see Cox, Ingersoll and Ross (1985b)), and consumers have no
desire to hedge against changes in temperature.
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employed by Weitzman (1998). To see this, consider his case where the risk-free rate rj(τ)
is drawn from a known distribution at time t0 = 0 for τ ≥ t0 and all uncertainty is resolved

immediately after the draw. From (14), we have that Φ(t) = E[e
−

∫ t
t0
rj(τ)dτ

], which is equal
to Weitzman’s formula (5) on page 203.

Fortunately, Lemma 4 of Cox, Ingersoll and Ross (1985a) does provide us with a practical
way of determining the price of a pure discount bond promising to pay one euro at time t.
It reads

Φ(t) = E
[
exp

(
−
∫ t

t0

r(τ, T (τ))dτ

)]
, (15)

where the expectation in (15) is taken with respect to

dT (t) = [µ(t, T (t))− φT ]dt+ s2(t, T (t))dω2(t), T (t0) = T0, (16)

and where φT = ηGs′ + ηĈT/Ĉss
′ is the temperature risk premium.4 Intuitively, equa-

tion (15) states that the price of a pure discount bond promising to pay one euro at time t
is equal to its expected discounted value, where the discount rate is equal to the risk-free
rate and the expectation is taken with respect to the risk-adjusted temperature process
in (16). The risk adjustment is done by subtracting the temperature risk premium φT
from the drift of the actual temperature process (3). Since the expressions in (14) and (15)
measure the same value, the special case of φT = 0 implies that the expected rate of return
on our pure discount bond must be equal to the risk-free rate in that case, i.e., we have
β(τ, T (τ)) = r(τ, T (τ)). This confirms our claim that equation (14) provides indeed a
generalization of the social discount rate concept of Weitzman (1998).

3 Calibration of the Model

The basic idea underlying the calibration of our model is that it should be able to explain
a number of important stylized facts regarding asset returns or, equivalently, discount
rates. More specifically, we require that - given reasonable values for the pure rate of time
preference and the coefficient of relative risk aversion - the model is able to get into the
right ballpark regarding the historically observed values for both the risk-free rate and
the expected rate of return on assets. In other words, we impose the not unreasonable
assumption that at the initial time t0 = 2010, climate change has not yet affected the rate
of return on assets. Thus, the expected rate of return α(T0) is set equal to 6% per year.
This is somewhat below the expected rate of return in Barro (2006, 2009), but concords
with the value chosen by Weitzman (2010). In addition, the risk-free rate r(t0, T0) is set
equal to 1% per year. The risk premium is then equal to 5% per year.

4From Cox, Ingersoll and Ross (1985a, equation (20)), we have φT = −JWW

JW
WGs′− JWT

JW
ss′. Using (11),

gives φT = ηGs′ + ηĈT /Ĉss
′.
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Parameter Value
η : coefficient of relative risk aversion 4
G : return volatility vector [0.02, 0]
s : temperature volatility vector [0, s2]
λ : macroeconomic disaster probability 0.017
κ : effective macroeconomic disaster size -0.406
α(T0) : expected rate of return absent climate change 0.06
δ : pure rate of time preference 0.015
δK : rate of depreciation 0.05

Table 1: Parameters in the baseline calibration.

Next, we calibrate the parameters in Equation (12) for the case of Gs′ = 0. As noticed by
Barro (2006), the usual view in the finance literature is that η is in the range of something
like 2 to 5. Weitzman (2010) uses a value of 3, while Nordhaus (2008) uses a value of 2.
However, Barro (2009) finds that values lower than 3 do not accord with observed equity
premia and risk-free rates. In our baseline calibration, we use η equal to 4. This and
subsequent calibration parameters are collected in Table 1. We take the return volatility
vector G equal to [0.02, 0]. The value of G1 accords with Barro (2006, 2009), but notice
that its value is quantitatively unimportant in the calibrations, as ηG1G1 = 0.16%.5 This is
the famous risk-premium puzzle. However, the disaster probability λ and the contraction
proportion κ are nontrivial in the calibrations: −[(1 + κ)−η − 1]κλ equals 4.85%, when
λ = 0.017 per year and κ = −0.406. Here, λ = 0.017 corresponds to the observed frequency
at which macroeconomic disasters, such as wars, depressions, and financial crises, have
occurred during the last century (Barro, 2009). Instead of using Barro’s (2009) empirical
distribution of κ with impacts ranging from 15% to 64% and a mean of 29%, we use the
effective average value of a contraction, which is equal to 40.6%. As noted by Barro (2009),
this effective average value generates about the same equity premium and welfare effects as
the empirical observed frequency distribution. Figure 1 displays the iso-risk-free-rate lines
for r(t0, T0) and shows which choices of κ and η keep the level of the risk-free rate constant
(given the calibrated values of the other parameters G1 = 0.02, α = 0.06 and λ = 0.017).
In the figure, our baseline calibration is indicated by a star. In the sensitivity analysis, we
will vary κ and η such that the risk-free rate r(t0, T0) remains unchanged. Finally, we set
the pure rate of time preference equal to 0.015, but notice that, in the baseline calibration,
its choice is immaterial for the level of the risk-free rate, because Gs′ = 0.6

To visualize the role of the return volatility G1, the disaster probability λ and the contrac-

5We have not been able to find any empirical information on the value of G2. Hence, we set this
parameter to zero in the baseline calibration.

6Notice that this is an artifact of our specific modeling assumptions: with constant stochastic returns
to scale and power utility, changes in the pure rate of time preference have no effect on the expected rate
of return, the risk-free rate, and the equity premium (cf. Barro (2009)).
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Figure 1: Risk-free rate r(t0, T0) as function of κ and η.

tion proportion κ in the level of the risk premium, Figure 2 displays twenty-five randomly
drawn wealth paths for the period 2010 to 2200 satisfying Eq. 6 and the parameter val-
ues of Table 1.7 The Figure clearly displays the contrast between the almost negligible
influence of the return volatility G1, which is associated with the ‘wiggling’ behavior of
the wealth paths, and the huge impact of contractions, which is associated with the large
discontinuous jumps in wealth.

2050 2100 2150 2200
0

0.5

1

1.5

2
x 10

4

Year

W

Figure 2: Simulated wealth paths.

Next, we specify the dependence of the expected rate of return α(T ) on temperature T .
Tol (2009) provides a comprehensive list of the welfare effects of climate change. None of
the thirteen studies in his review has looked at the welfare effects of temperature increases
beyond 3 ◦C. Moreover, these studies show that considerable uncertainty exists regarding
the welfare impact of climate change, even for ‘moderate’ temperature increases. For

7Notice that in these simulations (only), we assumed that climate change has no effect on the rate of
return α(T ), i.e., ∀T : α(T ) = α(T0). Consequently, optimal consumption is a fixed percentage of wealth.
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example, the estimates for a 2.5 ◦C warming range from -1.9 percent to +0.9 percent of
GDP. The absence of more-than-three-degrees studies implies that any estimate of the
welfare impacts of climate change beyond 3 ◦C is, by necessity, based on extrapolation.
And although we may be fairly confident about a damage extrapolation for a warming
of 4 ◦C, that confidence will be greatly reduced for damage extrapolations to 10 ◦C or
even 15 ◦C. Essentially, we have no objective way to determine the magnitude of high-
temperature damages (Weitzman, 2012). Therefore, in this study, we use a ‘range’ of
damage functions, encompassing both the low- and high-end of the available appraisals.
Specifically, the damage function employed by Nordhaus (2008) serves as our low-end
damage function, whereas the damage function employed by Weitzman (2012) serves as
our high-end damage function, i.e.,

ΩN(T ) =1/(1 + (T/20.46)2), (17)

ΩW (T ) =1/(1 + (T/20.46)2 + (T/6.081)6.754). (18)

Above, ΩN(T ) and ΩW (T ) denote the ‘Nordhaus’- and ‘Weitzman’-damage function re-
spectively. Notice that these damage functions are not readily comparable, as Nordhaus
defines his damage function ΩN(T ) over gross output, whereas Weitzman defines his dam-
age function ΩW (T ) over net output. For practical reasons that will become clear below,
we choose to retain these differences. Hence, the expected rates of return for our low- and
high-end cases are given by

αN(T ) =− δK + (α(T0) + δK)ΩN(T ), (19)

αW (T ) =α(T0)ΩW (T ), (20)

where δK denotes the rate of depreciation in the economy and is taken to be equal to 5%.
Figure 3 displays the range of our assumptions on the expected rate of return. Observe
that the expected rates of return αN and αW are almost indistinguishable for temperature
increase less than 3 ◦C, but differ markedly for larger increases in temperature. For exam-
ple, an increase of 6 ◦C results in an expected rate of return of 5.1% (Nordhaus) and 3.0%
(Weitzman), whereas an increase of 10 ◦C results in an expected rate of return of 3.9%
(Nordhaus) and 0.2% (Weitzman). Finally, notice that these differences would have been
much larger, had we chosen to define the Weitzman damage function ΩW (T ) over gross,
instead of net, output.

We calibrate our temperature process on the A2 scenario of Roe and Bauman (2012),
who employ a simple climate model to describe the interactions between the atmosphere,
the surface and deep ocean layer, thereby capturing three material characteristics of global
warming. First, the thermal inertia represented by the deep ocean slows down the response
of surface temperatures on global warming. Second, climate sensitivity is assumed to be
normally distributed, which results in a skewed density for the temperature response.
Third, the response time, i.e., the time needed to reach the equilibrium temperature given
a certain level of forcing, is positively related to climate sensitivity: whereas it will take

11



0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

T

a
lp

h
a
(T

)

 

 

alpha
N

alpha
W

Figure 3: The low- and high-end expected rates of return αi(T ).

approximately one hundred years to achieve equilibrium, when climate sensitivity is low,
it will take thousands of years to achieve equilibrium when climate sensitivity is high.
Figure 4 presents the simulation results of Roe and Bauman (2012). In their scenario,
the climate forcing is chosen to emulate the IPCC A2 scenario (Nakićenović et al., 2000),
where after a decline in forcing is assumed at a rate that approximately stabilizes the
temperature for the median trajectory. In Figure 4, the shadings represent the 1-, 2-, and
3-sigma ranges for climate sensitivity.

Figure 4: Quantile functions of Roe and Bauman (2012), their Fig. 4b.

We take initial time t0 = 2010 and terminal time t∗ = 2300 and calibrate functions µ(t, T )
and s2(t, T ) in Eq. (3) such that the quantiles of our simulations resemble the results of Roe
and Bauman (2012).8 Figure 5a shows a number of simulated temperature paths together
with our simulated ranges for climate sensitivity, which resemble the results of Roe and
Bauman (2012) rather well. The shape of the temperature distribution at particular times

8Details on the calibration procedure are provided in Appendix A.
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is shown in Figure 5b, which clearly illustrates the time evolution of uncertainty under
the stochastic A2 scenario: even though temperature increases of more than 6 ◦C are very
unlikely to occur before 2100, such increases are much more likely to occur after 2100.
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(a) Temperature paths T (t) and sigma ranges.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T

 

 

Year=2050

Year=2100

Year=2150

Year=2200

Year=2300
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Figure 5: Calibrated temperature process.

4 Results

Using the parameters in the baseline calibration displayed in Table 1, we determine the
social discount rate for both our low-end and high-end damage functions.9 For sake of
reference, the dashed blue lines in Figure 6 show the development of the social discount
rate at the median value of temperature, i.e., the temperature on the (deterministic) A2
path of the IPCC, under both the low-end (left figure) and high-end damage function (right
figure). These figures reveal immediately that the social discount rate on the deterministic
A2 path does not differ markedly between these damage functions. Intuitively, this follows
from the observation that on the IPCC A2 path the temperature increase is limited to
5 ◦C. At these temperature increases, the low- and high-end damage functions are still
rather similar (see Figure 3). Finally, notice that the social discount rate on the IPCC
A2 path decreases only mildly from 1% in 2010 (our starting year) to respectively 0.7%
(‘low-end’ damage function) and 0.3% (‘high-end’ damage function) in 2300.

9Our procedure to obtain the social discount rate is as follows. First, we solve the optimal consumption
problem of Eq. (5) by using the 2D-COS method, which is described in detail in Appendix B. Substitution
of the optimal consumption policy in Eq. (12) gives the risk-free rate r(t, T ). Finally, we approximate the
expected value in equation (15) by means of a Monte Carlo simulation of the temperature and corresponding
risk-free rate paths.
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Next, the red lines in Figure 6 show the development of the social discount rate under
our stochastic A2 scenario for both the low-end and high-end damage function. A number
of striking results appear from this Figure. First of all, comparison of Figure 6a and 6b
shows that in both cases the social discount rate is almost stable over the course of this
century. The intuition is that the earth’s inertia prevents strong increases in temperature
- and thereby high damages - before the end of this century. From this, however, it does
not follow that climate change damages are immaterial for the social discount rate. To
the contrary, Figure 6a shows that under the low-end damage function, the social discount
rate slowly declines from 0.9% in 2100 to 0.6% in 2300, which is just under the SDR on the
(deterministic) IPCC A2 path of 0.7%. However, under the high-end damage function the
decline is much more pronounced: the social discount rate declines from 0.9% in 2100 to
-2.0%(!) in 2300 (see Figure 6b). Thus, under our stochastic A2 scenario and the high-end
damage function, the net present value of 1 euro in 2300 would be equal to 350 euros today.
Comparison of the social discount rates in Figure 6a and 6b reveals that this ‘discounting
reversal’ must be attributed to the choice for the high-end damage function, as the social
discount rate is still positive under the low-end damage function. Notice, however, that
even under the low-end damage function, the logic of exponential discounting is strongly
diminished: 1 euro in 2300 would be equal to 0.18 euro today, instead of 0.13 (using the
social discount rate that corresponds to the median value of temperature as the relevant
discount rate) or zero (using the expected rate of return of 6% as the relevant discount
rate).10
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(a) low-end case, αN
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(b) high-end case, αW .

Figure 6: The social discount rate R(t) in the baseline calibration.

To further apprehend our results, Figure 7a presents 25 randomly drawn temperature paths
from Equation (3). On these paths, the global mean temperature in 2300 varies between
3 and 8.5 ◦C. The corresponding risk-free rates are shown in Figures 7b and 7c for our
low-end and high-end damage function, respectively. From these figures, it is immediately

10All these present value calculations follow by taking the relevant discount rate R(2300), and calculating
e−290R(2300). We have e−290∗−0.02 = 350, e−290∗0.006 = 0.18, e−290∗0.007 = 0.13, and e−290∗0.06 ≈ 0.
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apparent that the negative values of the risk-free rate on high-temperature paths are driving
our results. As in Weitzman (2010), low-probability states of the world play an important
role in long-term discounting, if they are associated with a sufficiently high and persistent
impact. Under our stochastic A2 scenario, the persistency of the impacts follows from
the inertia of the climate system and the shape of the damage function: when today’s
temperature and damages are high, it is very likely that tomorrow’s temperature and
damages will be high as well. Surprisingly, our estimates of the social discount rate turn
out to be much lower than in Weitzman’s stylized example, even though in our case - and
in contrast to the immediate and once-and-forever shock considered by Weitzman (2010) -
high-impact states of the world do not occur before the end of this century. Intuitively, this
can be explained by the observation that under our stochastic A2 scenario low-probability,
high impact states of the world are actually much more likely than in Weitzman’s stylized
example. For example, the probability that the expected rate of return is no larger than
1%, equals 0.49% in the case considered by Weitzman (2010),11 but nearly 10% under the
stochastic A2 scenario and the high-end damage function.
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Figure 7: Simulated temperature paths (left) and the corresponding risk-free rates (middle
and right).

To access the sensitivity of our results with respect to the damage function, Figure 8 shows
the social discount rate for the intermediate expected rate of return αI = 0.5(αN + αW ).
This figure reveals that - even for this intermediate case - the social discount rate becomes
negative just after 2250. This can be explained by the fact that the probability that the
expected rate of return is no larger than 1% is still 1.9% under the stochastic A2 scenario
and the intermediate case, which remains much higher than Weitzman’s 0.49%. Hence,
the prime factor driving our results is not the damage function per se (although damage
must surely be sizeable), but the relatively large probabilities of extreme climate change
under the stochastic A2 scenario.

Table 2 shows that the term premium in the pure discount bond underlying the SDR
explains a substantial part of the SDR’s decreasing term structure, at least for the inter-

11See his Table 2 on page 9.
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Damage function 2010 2050 2100 2150 2200 2250 2300
Low-end 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Intermediate 0.0 0.0 0.0 0.0 −0.1 −0.2 −0.4
High-end 0.0 0.0 0.0 −0.3 −0.9 −1.0 −0.9

Table 2: The decrease in the SDR resulting from the term premium in the pure discount
bond.

mediate and the high-end damage functions.12 Whereas, even in 2300, the contribution of
the term premium to the SDR is almost negligible for the low-end damage function, it is
sizeable for both the intermediate and high-end damage functions. For example, in 2300,
the impact of the term premium in the pure discount bond on the SDR is 0.9 percentage
points for the high-end and 0.4 percentage points for the intermediate damage function.
Thus the term premium accounts for almost 29% of the total decrease in the SDR for the
high-end and 25% for the intermediate damage function.13 Intuitively, the term premium
will only effect the SDR when temperature has a sizeable impact on aggregate risk, since,
under those circumstances, a bond’s potential to hedge against shifts in temperature has
value. Obviously, this is the case under both the intermediate and the high-end damage
function, but not so under the low-end damage function. This can also be confirmed di-
rectly from Figure 6a, where the narrow margin between the SDR on the deterministic and
stochastic paths is a clear signal that aggregate risk is only changing slowly in that case.
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Figure 8: The social discount rate R(t) under the intermediate case, αI .

Under our baseline assumption that unexpected changes in temperature are uncorrelated
with unexpected changes in wealth, changes in the coefficient of relative risk aversion η do
not affect the social discount rate. To see why, use Gs′ = 0 and rewrite (12) as

r(t, T ) = r(t0, T0) + α(T )− α(T0), (21)

12In the Table, a ‘-0.0’ denotes a negative number which is rounded of to one decimal.
13As measured from the no-climate-change value of the SDR of 1.0%.
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which states that the risk-free rate at time t equals the risk-free rate at time t0, r(t0, T0),
plus the expected change in the rate of return on assets between t0 and t, α(T ) − α(T0).
Subsequently, substitution of (21) into (15) and (13) gives

R(t) = r(t0, T0)− α(T0)− 1

t− t0
lnE

[
exp

(∫ t

t0

−α(T (τ))dτ

)]
, (22)

from which it immediately follows that the social discount rate R(t) is indeed independent
of the level of risk aversion η. Eq. (22) states that the time-t social discount rate equals the
time-zero risk-free rate r(t0, T0) minus the time-0 expected rate of return on assets α(T0)
plus the time-t certainty-equivalent rate of return on assets. Intuitively, the surprising result
that the social discount rate is independent from the coefficient of relative risk aversion can
be understood by realizing first of all that the risk-free rate at t0 is not affected by changes
in the coefficient of relative risk aversion η: the requirement that r(t0, T0) = 0.01 implies
that we are moving along the iso-risk-free-rate line indicated by a star in Figure 1. Hence,
any change in the coefficient of relative risk aversion must be fully offset by an appropriate
change in the disaster size κ, leaving the risk-free rate at t0 unchanged.14 In addition,
changes in risk aversion do not affect the expected rate of return on assets α(T ). Hence,
the social discount rate is unaffected by changes in risk aversion, whenever unexpected
changes in temperature are uncorrelated with unexpected changes in wealth.

Inspection of Eq. (22) shows that high values of the expected rate of return will discount
themselves out of existence, which implies that the certainty-equivalent rate of return on
assets tends to the lowest possible value when t goes to infinity (cf. Weitzman (1998)). In
terms of our stochastic A2 scenario, this means that the expected rates of return belonging
to low temperature paths become less important over time, whereas the expected rates of
return belonging to high temperature paths become more important over time. Eventually,
the expected rates of return on the highest temperature path will come to dominate the
social discount rate R(t).

Finally, we explore the sensitivity of our results with respect to G2(t), which captures the
impact of unexpected changes in temperature on the rate of return on assets. Given the
lack of empirical evidence on this parameter, we let G2(t) decline linearly from zero in
2010 to -0.025 in 2050, after which its value remains constant. This choice implies that,
as of 2050, an unexpected increase of temperature by 0.5 ◦C decreases the rate of return
by 12.5%. So, in case the expected rate of return would have been 0.06, an unexpected
temperature increase of 0.5 ◦C would have resulted in a 0.06 ∗ 0.125 = 0.0075 percentage
point decrease of the rate of return on assets. Figure 9 shows that - under the high-
end damage function and compared to our baseline calibration - such a return volatility
decreases the social discount rate in 2300 from -2.0% to -2.9%.15 Moreover, the impact of

14Notice that the derivative of r(t, T ) with respect to η equals −GG′ − ln(1 + κ)κλ(1 + κ)−η. Hence, in
general, higher risk aversion will lower the risk-free rate.

15Under the low-end damage function, the correlation between unexpected changes in temperature and
unexpected changes in wealth has a negligible impact on the social discount rate. Results are available
from the authors upon request.
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the return volatility G2(t) on the social discount rate is increasing over time until 2200,
after which it roughly stabilizes. Since the return volatility itself is constant from 2050
onwards, this implies that the additional uncertainty associated with this return volatility
matters more when wealth is low (and climate damages are high). Given that the risk-free
rate r(t, T ) now depends on the level of risk aversion η, as can be seen from Eq. (12), it
is to be expected that the social discount rate will depend on the level of risk aversion as
well. Indeed, Figure 10 confirms that higher risk aversion is associated with a (somewhat)
lower social discount rate.16
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Figure 9: The social discount rate R(t) under the high-end damage function for the case of
time-dependent (red continuous line) and non-time-dependent (dashed green line) return
volatility G2(t).

2050 2100 2150 2200 2250 2300
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Year

 

 

eta=3.5, kappa=−0.44
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Figure 10: The social discount rate R(t) under the high-end damage function and time-
dependent return volatility G2(t) for the case of low risk aversion η = 3.5;κ − 0.44 (con-
tinuous red line) and high risk aversion η = 4.5;κ− 0.38 (dashed green line).

16In order to preserve the notion that the model should be in accordance with historically observed levels
of the risk-free rate, we simultaneously vary the level of risk aversion η and the effective disaster size κ,
keeping the risk-free rate at time t0 at 1%, i.e., we are moving along the iso-risk-free-rate line indicated
by a star in Figure 1.
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5 Discussion and Conclusion

This paper has shown that the far-distant future may be crucially important for long-term
discounting. Even though the inertia of the earth’s climate prevents a too rapid increase
of surface temperature, our results suggest that a small, but non-negligible probability of
an extreme temperature response in the far-distant future may drive the social discount
rate to sub-zero levels. As a result, the present value of one euro three centuries hence
may be everywhere between 0.18 and 350 euros.17 Notwithstanding the extremely wide
margin in this present value, what stands out is that it is much, much larger than the
present value under standard exponential discounting at a constant rate. For example,
taking the discount rate three centuries hence based on our low-end (Nordhaus) damage
function results in a present value that is almost ten times larger than the present value
that is obtained by using the much-criticized, and supposedly too low, discount rate of
1.4% of the Stern Review.18

Importantly, our results suggest that the key issue determining the level of the social
discount rate is not how large damages are or might be (although they surely must be
substantial to invoke a sizeable response in the social discount rate), but how large the
probability of extreme climate change is. Under our stochastic A2 scenario, this probability
is sufficiently large to make the logic of exponential discounting in the far distant future
(almost) completely irrelevant. Importantly, our limited state of knowledge regarding the
high-temperature damages does not interfere with this conclusion, as the logic of exponen-
tial discounting is severely diminished under both the quadratic and reactive specification
of the damage function. The shape of the damage function is, however, critically impor-
tant for the occurrence of negative discount rates. Whereas the social discount rate will be
strictly positive under our low-end, quadratic damage function, it may reach sub-zero levels
under more extreme specifications of the damage function, such as the reactive damage
function proposed by Weitzman (2012). In that respect, it must be noticed that in the
‘short’ run, i.e., this century, the impact of the damage function on the social discount rate
seems to be severely constrained by the inertia of the earth’s climate system. In particular,
our results suggest that the probability of a high-enough temperature response under our
stochastic A2 scenario is insufficient to drive this century’s social discount rate away from
its conventional, no climate change, level.

Thus, our results seem to imply that, by and large, exponential discounting will still
produce consistent valuations in this century. This surprising result is, however, counter-
balanced by the observation that the SDR in the next century will be hugely affected by
climate change unless we are more or less certain that damages from climate change will be
relatively low. In many instances, it might even become negative. If it does, the social cost
of carbon will explode to infinity, thus providing a clear signal that society should reduce
emissions whatever the cost. Of course, the price signal of a discount rate on the IPCC A2

17From R(2300) = 0.006 and −0.02, we have e−290∗0.006 = 0.18 and e−290∗−0.02 = 350, respectively.
18e−290∗0.0061 = 0.17 is about ten times larger than e−290∗0.014 = 0.017.
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path is valid only for marginal mitigation projects, i.e., for investment projects that do not
affect aggregate welfare, aggregate emissions and global temperature. When considering
non-marginal investment projects, the probability of extreme climate change will decline,
and it is likely that the SDR will increase from the levels reported in this paper. As a
result, the social cost of carbon will decline, thereby reducing the value of the marginal
mitigation project on the new emissions path. The extent to which our results carry over
to more moderate emission scenarios, such as the IPCC B2 scenario, is therefore crucial for
cost-benefit analysis of climate change and remains a interesting topic for further research.

Appendix

A Construction temperature process

In this section we explain our procedure to calibrate the temperature dynamics,

dT (t) = µ(t, T (t))dt+ s2(t, T (t))dω2(t). (23)

We consider a time horizon [t0, t
∗] = [2010, 2300] years and set T (t0) = 0.7 ◦C. For the

construction of functions µ(t, T ) and s2(t, T ) we use so-called ‘reference paths’. The refer-
ence paths are represented by the black lines in Figure 11. The slopes of the reference paths
are known and for each year and temperature the value of function µ(t, T ) is interpolated
using the three reference paths and their slopes.

During the first years, the volatility s2(t0, T ) equals 0.03. For temperature values close
to the lowest reference path, volatility will stay close to this value. For temperatures
along the mid reference path, volatility will increase moderately and linearly in time, up
to s2(2100, T ) = 0.045 after 90 years and will stay constant thereafter. Along the highest
reference path, volatility will increase linearly in time up to the high value s2(2100, T ) =
0.2. After 90 years the volatility is assumed to decreases to the value s2(t∗, T ) = 0.08 at
the terminal time t∗.

The lowest and mid reference paths tend to an equilibrium temperature, while equilibrium
is not reached yet on the highest reference path. Again interpolation with three reference
paths is used to find the value s2(t, T ). With this, we capture the feature of high uncertainty
on high temperature paths (Roe, 2009).
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Figure 11: The three reference paths (black lines) used for construction of the temperature
model together with twenty five simulated temperature paths.

B Numerical method

Our numerical method to solve the optimal portfolio problem is based on the dynamic
programming principle and Fourier cosine series expansions, called the COS method (Fang
and Oosterlee, 2008, 2009; Ruijter and Oosterlee, 2012). In this section we give some
details of this method.

We use utility function U(C) = C1−η/(1 − η), so p = p(t, T ) (see Section 2). The value
function under economic equilibrium is given by

J(t,W, T ) = max
{C≥0}

Et,W,T
[∫ t∗

t

e−δ(τ−t)U(C(τ))dτ + e−δ(t
∗−t)U(W (t∗))

]
. (24)

W and T represent the current wealth and temperature level, respectively, and the wealth
dynamics evolve according to

dW (t) = (α(T (t))− κλ− p(t, T (t)))W (t)dt+W (t)Gdω(t) +W (t)κdq(t). (25)

We switch to the log-domain, X(t) := lnW (t), with

dX(t) =
(
α(T (t))− κλ− p(t, T (t))− 1

2
GG′

)
dt+Gdω(t) + ln(1 + κ)dq(t). (26)

The corresponding value function is

I(t, x, T ) := max
{p≥0}

Et,x,T
[∫ t∗

t

e−δ(τ−t)U(eX(τ)p(τ))dτ + e−δ(t
∗−t)U(eX(t∗))

]
. (27)
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x and T represent the current log-wealth and temperature level, respectively. We take
an equidistant grid of control times t0 < t1 < . . . tm < . . . < tM = t∗, with time-step
∆t := tm+1− tm and approximate processes by their discrete variants. The log-wealth and
temperature processes are discretized by an Euler scheme (see, for example, (Platen, 2010;
Korn, Korn and Kroisandt, 2010)).

We approximate the value function by (see (Kushner and Dupuis, 2000))

I(tm, x, T ) = max
{pi}

Etm,x,T
[
M−1∑
i=m

e−δ(ti−tm)U(eXtipi)∆t+ e−δ(tM−tm)U(eXtM )

]
. (28)

The discrete-time value function converges in M to the continuous-time variant. The
dynamic programming principle gives us

I(tm, x, T ) = max
pm

Etm,x,T
[
U(expm)∆t+ e−δ∆tI(tm+1, X(tm+1), T (tm+1))

]
:= max

pm

[
F (x, pm) + c(tm, x, T, pm)

]
. (29)

The first part in the maximization operator is called the running utility function, the second
part is the continuation value. The continuation value can be approximated by using the
2D-COS formula (Ruijter and Oosterlee, 2012) and the problem is solved backwards in
time (Bellman’s principle of optimality). The method parameters are

[a1, b1], [a2, b2] computational domain log-wealth (1th dimension)

and temperature (2nd dimension), respectively, (30)

N1, N2 number of Fourier cosine coefficients in 1th and 2nd dimension, respectively,
(31)

J1, J2 number of control regions in 1th and 2nd dimension, respectively. (32)

Function c(tm, x, T, pm) is called the continuation value and is approximated by a two-
dimensional COS formula

ĉ(tm, x, T, pm) = e−δ∆t
N1−1∑′

k1=0

N2−1∑′

k2=0

1

2

[
Re
(
ϕlevy

(
k1π
b1−a1 ,+

k2π
b2−a2

∣∣∣x, T, pm) eik1π x−a1
b1−a1 e

ik2π
T−a2
b2−a2

)
+ Re

(
ϕlevy

(
k1π
b1−a1 ,−

k2π
b2−a2

∣∣∣x, T, pm) eik1π x−a1
b1−a1 e

−ik2π T−a2
b2−a2

)]
Vk1,k2(tm+1).

(33)

Re (.) denotes taking the real part of the input argument. ϕ(., .|x, T, pm) is the bivariate
conditional characteristic function of (X(tm+1), T (tm+1)), given (X(tm), T (tm)) = (x, T ).
The Fourier cosine coefficients of the value function are given by

Vk1,k2(tm) := 2
b1−a1

2
b2−a2

∫ b2

a2

∫ b1

a1

I(tm, y, ς) cos
(
k1π

y−a1
b1−a1

)
cos
(
k2π

ς−a2
b2−a2

)
dydς. (34)
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We divide the domain [a1, b1] × [a2, b2] into rectangular subdomains Dq1,q2 = [zq1 , zq1+1] ×
[wq2 , wq2+1]. For each subdomain we determine the optimal control value pq1,q2 , then

Vk1,k2(tm) = 2
b1−a1

2
b2−a2

∑
q1,q2

∫∫
Dq1,q2

F (y, pq1,q2) cos
(
k1π

y−a1
b1−a1

)
cos
(
k2π

ς−a2
b2−a2

)
dydς

+ 2
b1−a1

2
b2−a2

∑
q1,q2

∫∫
Dq1,q2

c(tm, y, ς, p
q1,q2) cos

(
k1π

y−a1
b1−a1

)
cos
(
k2π

ς−a2
b2−a2

)
dydς

:=
∑
q1,q2

Uk1,k2(Dq1,q2 , pq1,q2) +
∑
q1,q2

Ck1,k2(tm,Dq1,q2 , pq1,q2). (35)

The terms Uk1,k2 are time-independent and known analytically or approximated. The term
Ck1,k2 are approximated by using an FFT algorithm. With this we can recover the coeffi-
cients Vk1,k2(tm) backwards in time and solve the optimal portfolio problem. All parameters
are chosen such that the numerical approximations give rise to converged solutions, values
and functions of interest.
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