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Abstract 

In response to the challenge of managing the risks of a changing climate, there is no single optimal 

transition path for energy technology due to uncertainty in several dimensions.   In this paper, we use 

the MERGE model, a long-term optimization model of the global energy and climate systems with 

regional and technological detail, enhanced in this paper with a more detailed representation of 

investment and dispatch detail in Europe’s electric sector, to explore a wide range of possible 

technology futures under alternative emissions reduction goals.  We find that, based on the revised 

modeling approach, wind energy is attractive for Europe in all scenarios, but to a varying extent ranging 

from under 15% to over 75%. One of its key disadvantages is to impose lower capacity factors on other 

technologies, an effect that can be partially mitigated with flexible operations such as joint production 

of hydrogen and electricity via gasification with CCS.  Solar PV is almost never attractive for Europe as a 

whole, unless CCS and other technologies are significantly limited. 

  

                                                           
1
 This paper has benefited from the remarks and suggestions given by Paul Koutstaal, Jan Ros, and two anonymous 

referees on an earlier version of this paper. The authors are grateful for all the suggestions given by these referees. 
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Introduction 

In response to the challenge of managing the risks of a changing climate, the European Union has set 

several goals for the reduction of greenhouse gases over the coming decades, primarily through 

decarbonisation of its energy system.  While many technological options for emissions abatement have 

been identified, most are in early stages of deployment, and all are subject to uncertainty about future 

costs, performance, and availability.  Moreover, the role of one region with respect to the global 

ambition for limiting atmospheric greenhouse gas concentrations depends on choices and outcomes in 

other parts of the world.  Thus Europe’s political commitment to emissions reductions cannot be 

mapped unambiguously to a single optimal transition path for energy technology. 

Recent inter-model comparison studies have explored the sensitivity of mitigation strategy to 

assumptions about technology cost, performance, and availability.   In particular, two studies organized 

by the Stanford Energy Modeling Forum (EMF), one with a global scope (EMF27) and one focusing on 

Europe (EMF28), specified coordinated scenarios run by participating models with variation along both 

policy and technology dimensions.  In EMF27, Krey et al (2014) found a wide range of decarbonisation 

strategies in the electric sector and emphasized electrification at the end-use and the role of bioenergy 

with CCS (BECCS) deployment in the long run for meeting very tight targets.  In EMF28, Knopf et al 

(2013) found that wind energy plays a significant role in decarbonisation scenarios for Europe, and that 

solar PV achieves a comparatively modest share in the electricity mix.  They also concluded that CCS 

plays an important role when available but is not necessarily required to meet the mitigation target of 

reducing greenhouse gas (GHG) emissions by 80% by 2050, and finally that BECCS will only become 

important beyond 2050. 

The focus of EMF28 was on the primary energy mix and the share of low-carbon electricity, rather than 

on the interactions between specific electric generation technologies.  Most (though not all) models in 

EMF28, and large-scale integrated assessment models in general, account for variability of renewable 

energy as it impacts electric sector investments only implicitly through stylized constraints (Edenhofer et 

al, 2013).   Global models are beginning to introduce more sophisticated formulations, such as Sullivan 

et al (2013), but there is a fundamental trade-off between the breadth of coverage and detail of 

specification.  Single-region or single-sector models can afford more detailed modeling approaches, but 

can also miss important interactions with mitigation in other parts of the global economy.  For Europe, 

examples include Hirth (2013a), who employs a stylized numerical dispatch and investment model of the 

interconnected Northwestern European power system, and Ueckerdt et al (2014), who demonstrate a 

reduced-form approach for Germany.  

In this paper, we use the MERGE model to extend this area of the literature. MERGE is a long-term 

optimization model of the global energy and climate systems with regional and technological detail, with 

several innovations designed to improve the representation of interactions in the energy system while 

retaining a compact formulation.  In particular, we introduce a new electricity generation module similar 

in design to that described by Ueckerdt et al (2014) that explicitly accounts for the intermittency of 

renewable resources and is linked to the supply and demand of hydrogen as an intermediate and end-

use fuel.  The new version of MERGE includes the detailed electric module in Europe will retaining its 
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conventional formulation in other global regions.  A wide range of technology and policy scenarios is 

explored using this enhanced modeling framework. 

Our results confirm that wind generation capacity will very likely be an attractive investment in Europe 

under any policy limiting carbon, with some variation in the extent to which it is optimally deployed in 

alternative technology cases.  On the other hand, solar photovoltaic generation is much less likely to be 

an attractive investment in Europe, even with aggressive policy targets, notwithstanding certain local 

situations below the level of aggregation of our model.  Coal-based generation with carbon capture and 

storage (CCS), if it is available, could be a valuable complement to wind energy, especially if it can be 

combined with hydrogen production for end use.  We also find that bioenergy with CCS is potentially 

valuable both as a complement to wind, particularly at higher carbon prices due to its negative emission 

flow.  Both coal and bioenergy CCS have an advantage over nuclear in a system with heavy penetration 

of wind, which inevitably lowers capacity factors for other generation assets, because of their lower 

fixed to variable cost ratio.  When CCS is not available, we observe a more diverse and more expensive 

energy mix relying on other technologies with more steeply decreasing returns to scale. 

Model 

Our starting point is the MERGE model as applied in the EMF27 global study (see Blanford et al, 2014a).  

In MERGE, the economy is represented by a nested production function of capital, labor, and electric 

and non-electric energy, with consumption defined as an aggregate of macro consumption and 

passenger vehicle services.   There is a bottom-up representation of the energy supply sector, in which 

choices are made among specific activities for the generation of electricity and for the production of 

non-electric energy, including an option to produce electricity from bioenergy with carbon capture and 

storage (BECCS), thereby creating a negative emissions flow.  Non-CO2 and non-energy-related 

emissions are also modeled using marginal abatement cost curves, and aerosol emissions are calculated 

based on exogenous assumptions about air pollution policies and fossil emissions rates.  The 

accumulation of gases in the atmosphere and the subsequent effects on radiative forcing and 

temperature are described in a simple climate module.   The time horizon extends to 2200, although we 

focus on results in the first century and in particular on the transition through 2050.   

Modeling Electricity 

For this study, we significantly extend MERGE by re-formulating the electric generation sector.  To 

replace the conventional linear process model in which technologies are characterized only by levelized 

costs and the mix is governed to a large extent by limits on expansion and decline rates and other share 

constraints, we introduce a reduced-form capacity and dispatch formulation.  Instead of specifying, for 

technology i in region r in year t, one decision variable for total electric energy supplied, the new 

formulation specifies one variable for installed electric capacity and a separate set of variables for 

dispatch of installed capacity to meet load in each segment s.  This is a standard formulation for detailed 

electric system models, but it is less frequently employed in large global models due to the additional 

computational costs.  A key advantage of this formulation is that the capacity factor is an endogenous 

outcome and the timing of dispatch is explicitly considered, whereas in the previous simple MERGE 
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implementation, levelized cost parameters were calculated based on an exogenously assumed average 

capacity factor with no consideration of dispatch.   Though certainly many aspects of electricity markets 

are still omitted, as discussed below, this is a more realistic setting and better reflects the economics of 

the sector.  The primary challenge with implementing this type of formulation in a large model is to 

capture sufficient information about the intra-annual variation of both electricity demand and the 

availability of intermittent renewable resources in a computationally tractable number of segments. 

Electricity demand varies both diurnally and seasonally, which given the relatively high cost of electricity 

storage is a fundamental driver of the economics of power generation investments.  Consistent with 

minimization of total costs, current systems have evolved to include a mix of high-fixed-cost / low-

variable-cost technologies (often called “base load” capacity) and low-fixed cost / high-variable cost 

technologies (often called “peaking” capacity).   To capture this pattern in a model, it is sufficient to 

introduce only a small number of segments, say three to five, describing base, peak, and intermediate or 

“shoulder” load conditions, often in “typical” days for winter and summer.  However, to accurately 

reflect the economics of intermittent renewable technologies, such a setting is inadequate due to the 

much greater and interdependent variation in wind and solar availability.  Including a segment for all 

8,760 hours of the year would be ideal, but it is not practical in the context of a large, multi-sector, 

multi-region model. 

Instead we employ an approach based on the method introduced by Ueckerdt et al (2014), which 

characterizes the variability of renewable resources in a reduced-form model in terms of their effect on 

the residual load duration curve.   A duration curve refers to an annual hourly series sorted in decreasing 

order.  Residual load refers to electricity demand less output from intermittent resources, that is, load 

that must be met with dispatchable resources.  Thus the residual load duration curve is re-sorted load 

after deducting the contribution of renewables. It is determined by the installed capacity of wind and 

solar and their co-variation with load; it in turn determines the capacity factors for other technologies.  

In our approach we first derive hourly residual load curves for several intermittent resource types in the 

Europe model region, and second develop parameterized estimates of the shape of those curves as a 

function of installed intermittent capacity.  Our estimation procedure is similar in purpose but 

analytically distinct from that used by Ueckerdt et al (2014).  Our approach is summarized here and 

described in detail in the Appendix B. 

Three classes of wind are considered:  one series describing standard continental Europe on-shore wind, 

one for premium on-shore locations bordering the North Sea, and one for off-shore locations in both the 

North Sea and Baltic Sea.  We consider a single solar series, based mainly on Southern Europe.  Our 

hourly load series is a sum over countries (as reported by ENTSO-E, 2014), while the wind and solar 

series are weighted averages across potential resource locations of profiles constructed from 

meteorological reanalysis data (see Appendix A for a detailed description).  Hourly residual load duration 

curves are calculated for the hypothetical introduction of each class of wind and solar respectively in 

increments of 100 GW up to 1000 GW by re-sorting the resulting residual load series for each increment 

in renewable capacity. These curves are plotted for the continental wind class in Figure 1(a).  

Corresponding plots for other resource types are provided in Appendix B. 
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The key input to the model is the contribution to load of renewable output at each point along the 

sorted hourly distribution, or “contribution to sorted load,”  defined as the amount by which residual 

load in each sort position is decreased relative to full load, expressed as a percentage of installed 

capacity.  This result, a simple transformation of the residual load duration curve, is illustrated for the 

continental wind class in Figure 1(b) (and for other renewable categories in Appendix B). The intercept 

with the y-axis reflects the contribution to the residual peak (the 100th percentile of residual load), while 

the values on the right side reflect the contribution to the residual minimum.  The area underneath each 

“contribution to sorted load” curve equals the annual potential average capacity factor and is constant 

in increasing capacity.  However, as wind capacity increases, the contribution is increasingly skewed 

toward hours with low residual load.  A similar pattern holds for solar (see corresponding plots in 

Appendix B).  Our approach is to estimate the “contribution to sorted load” at each sort position as a 

polynomial function of installed capacity for each resource class.  We also account for interaction 

between wind and solar, although the underlying hourly data suggests this is a minor effect.  A detailed 

description of the estimation procedure is provided in Appendix B.   

 

 

Figure 1.  Residual Load Duration Curves (a) and Contribution to Sorted Load (b) for different levels of 

wind penetration in the EU (based on hourly data).  The color spectrum reflects increasing installed wind 

capacity, with dark green indicating 100 GW, and purple indicating 1000 GW.  The black line in panel (a) 

reflects the total load duration curve. 

To enable a compact implementation, we estimate the contribution to load for 21 points corresponding 

to every 5th percentile (beginning with the peak or 100th %-ile, the 95th, 90th, … , 5th, and minimum or 0th 

%-ile). The estimated contributions to each percentile, illustrated in Appendix B, are a close 

approximation to the actual hourly contributions shown in Figure 1(b).  In each segment, corresponding 

to percentiles of sorted load, the residual load is equal to full load less the sum across intermittent 

resource classes of the contribution fraction multiplied by installed capacity (an endogenous variable).  

Note that the contribution from intermittent resources is incorporated as an inequality constraint, so 
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that curtailment or “spill” in segments with surplus output is possible.  Dispatchable generation is 

subject to availability factors to capture maintenance in the case of thermal technologies and resource 

utilization patterns in the case of hydro.  These factors are always less than 1 but are higher in high load 

segments.  

This formulation is comparatively parsimonious and can be shown to reproduce closely key summary 

statistics about the viability of wind and solar investments, such as a marginal value curve, derived from 

hourly data (see Blanford, 2014).  In particular the low contribution of wind and solar capacity to peak 

ensures that sufficient dispatchable or “back-up” capacity is present (either retained from the extant 

endowment or added in future time steps), and the high contribution to low-load hours ensures that 

possible “spill” events are accounted for.  Our implementation also offers more granularity in capturing 

the shape of the residual load curve than that suggested by Ueckerdt et al (2014), who use a more 

stylized representation with only four segments that vary in both width and height.  Nonetheless the 

approach has several shortcomings.  Because the duration curve is sorted, hourly chronology is lost, 

which makes the approach unsuitable in a multi-region context, since transmission between regions 

cannot be modeled if the hours in each region are sorted differently.2  Thus we implicitly assume a fully 

connected network across Europe, which is assuredly not the case.  However, this simplification is 

countered by the introduction of a quadratic cost term as a function of renewable penetration, implying 

a rising cost of grid integration (in terms of incremental transmission investments) with a rising share of 

intermittent generation.  This term can be calibrated so that the marginal value curve matches results 

from an underlying hourly model that does include inter-regional transmission.  Still, value opportunities 

specific to certain sub-regions will be missed by the aggregation and must be modeled in a more 

detailed context. 

Another consequence of the loss of chronology is that electricity storage cannot be explicitly modeled – 

although the model could be allowed to shift load from one segment to the next, the accumulation of 

the dynamic storage balance cannot be tracked, thus precluding explicit accounting of the 

corresponding storage capacity requirement.  However, the underlying hourly model does include the 

option for storage in the value calculation, and the calibration of the reduced-form model’s marginal 

value curve can in principle implicitly reflect the impact of storage.  Analysis with the hourly model 

suggests that unless electricity storage becomes far cheaper than it is today, this option does not 

fundamentally change the economics of intermittent renewable energy.  Still, there are potentially 

important interactions between storage and intermittent renewable energy, particularly solar, and 

representing this relationship explicitly is a key direction for future work.  Finally,  the model cannot 

explicitly capture the increased size and frequency of ramping and shut-down cycles to which 

dispatchable thermal technologies would be subjected in the presence of a large deployment of 

intermittent resources, which would likely have the effect of increasing costs for coal and nuclear 

technologies.  A still more detailed formulation employing unit-level detail and integer variables 

describing unit commitment is required to account for these costs and constraints, although they are 

                                                           
2
 For example, an alternative reduced-form approach was developed for US-REGEN, a multi-region dynamic 

optimization model, in which roughly 100 representative hours are selected and weighted.  See EPRI (2013) and 
Blanford et al (2014b) for details. 
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sometimes handled with a simple cost mark-up (e.g. Ueckerdt et al, 2013, Hirth et al, 2013).  These 

studies suggest that the additional costs associated with ramping, as well as other effects such as short-

term balancing, are small compared to the first-order effect on capacity utilization, which is treated 

explicitly by the residual load duration curve approach. 

Modeling Hydrogen 

This version of MERGE has also added a hydrogen production activity integrated with the electricity 

dispatch formulation.  Like electricity, hydrogen is a potential energy carrier, requiring energy inputs for 

conversion but resulting in a higher value end-use fuel.  We consider five conversion technologies:  coal 

gasification with and without CCS, natural gas steam-reforming with and without CCS, and electrolysis.  

These technologies have two close links with electricity production.  First, hydrogen production from 

coal is essentially equivalent to the first stage of an integrated gasification and combined cycle (IGCC) 

electric plant.  Thus one may envision an IGCC technology producing a steady stream of syngas with the 

option either to deliver it to a second stage turbine or create a flow of hydrogen than can be stored 

relatively cheaply (see for example Domenichini et al, 2012).  This configuration allows the gasification 

plant to achieve a higher capacity factor by producing hydrogen directly when the price of electricity 

falls below its dispatch cost.  By representing the co-production technology in an optimization 

framework with segment-level resolution, the value of this option can be assessed.  The second link is 

with the electrolysis technology, which uses electricity as an input.  The new formulation allows the 

model to choose which segments to use electric output to produce hydrogen and to weigh capital costs 

against the endogenous capacity factor of the electrolysis plant (a similar approach is used by Ueckerdt 

et al, 2014).  This formulation implicitly assumes that it is essentially costless to maintain an inventory of 

hydrogen, as the shape of its end-use demand is not modeled.  Hydrogen can either be used in the non-

electric sector to offset liquids and gas or as a fuel in passenger transportation.  To reflect infrastructure 

needs, expansion constraints are placed on the penetration of hydrogen as an end-use fuel and a cost 

premium is added for non-electric use.  Additionally, we assume that it cannot supply more than half of 

non-electric, non-passenger-transport energy demand. 

Despite the compactness of the new electricity-hydrogen module, in the context of a multi-region, 

intertemporal optimization problem over a long time-horizon, it still imposes a significant computational 

burden (the model is solved in GAMS using CONOPT with a starting basis specified).  For this reason, in 

this paper we apply the new module only in the model region describing Europe (covering EU27 plus 

EFTA countries).  Furthermore we describe the rest of the global economy using only four other regions:  

USA, Other OECD, China, and Rest of World (ROW).  In the other four regions, electricity production 

follows previous model versions, and hydrogen production is not explicitly modeled (although a non-

electric backstop technology is included).  As the new formulation is further refined, and as the 

performance of computational software and hardware continually improves, it is expected that future 

versions of MERGE will extend the new formulation to all regions.  One promising approach for 

improved solve time is the decomposition algorithm described by Rutherford and Böhringer (2009). 
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Scenarios 

In this analysis we define a range of scenarios in both the policy and technology dimensions.  In the 

policy dimension, we include (1) a baseline with no greenhouse gas (GHG) policies; (2) a “weak” policy 

case based on the Reference Policy scenario design in the AMPERE project (Kriegler et al, 2014) in which 

current pledges for the 2020 timeframe are extended into the future but no long-term target is 

enforced; and (3) a globally harmonized policy scenario aiming for a long-run target for atmospheric 

GHG concentrations of 550 ppm CO2-e (for Kyoto gases only).  This is roughly consistent with a likely 

maximum global average surface temperature increase of between 2 and 2.5 °C (see Clarke et al, 2014).  

Along the technology dimension, we first define a default case with mainly optimistic assumptions about 

technology costs and availability, and then consider many sensitivity cases in which cost decline paths 

and availability constraints for particular technologies are varied.  Some of these binary switches may 

have no effect on scenario results when explored relative to the default case, but in the presence of 

other variants may turn out to be influential.  Our scenario space is designed to explore combinations 

that result in qualitatively different energy mix results. This represents a methodological extension from 

previous technology scenario analyses, e.g. recent EMF studies, in which only a few prescribed 

combinations were analyzed.  The resulting sensitivity analysis thus covers a wide range of possible 

outcomes that demonstrates both heterogeneity and robustness of certain elements with respect to 

technological uncertainty for a given policy scenario. 

Table 1 summarizes our default assumptions for electric generation technologies, which are based on 

(though not identical to) assumptions in the World Energy Outlook (IEA ,2012).  The capital costs are 

applied directly in the Europe model region, while in other regions using the simpler electricity 

formulation levelized costs based on these figures are used.  The sensitivity dimensions in which the 

technology scenarios will be constructed (see Table 2 below) are summarized as follows: 

On-shore wind:  with installed capacity already in excess of 100 GW, wind’s on-shore footprint in 

densely populated European countries is under increasing scrutiny.  We consider the impact of an upper 

bound on on-shore wind capacity of 400 GW based on local siting opposition. 

Off-shore wind:  off-shore wind sites offer higher capacity factors and to a certain extent more valuable 

profiles, but they come with a cost premium for both initial investment and ongoing maintenance and a 

potentially shorter lifetime.  While in the default case, declining costs make off-shore wind attractive 

relative to on-shore in the long run, we also consider the possibility of no significant cost improvements. 

Solar:  manufacturing costs for photovoltaic panels have fallen steeply in recent years, and further 

improvements seem likely, if not at the same rate.  In the default case we assume costs fall from roughly 

$2000/kW to $1000/kW over the next three decades.  We also consider a case in which costs fall faster 

and further, reaching $1200/kW in 2030 and $750/kW in 2050. 

Integration costs:  the penetration of intermittent renewable sources must be accompanied by 

expanded transmission infrastructure to accommodate their spatial and temporal variability.  Although 

our model does not have high enough resolution to capture transmission explicitly, we include as a 
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proxy a cost term that rises linearly with the share of wind and solar.  In the default case this cost 

reaches $15/MWh at high penetration levels.  If the expansion of transmission is limited due to siting 

difficulties, the implicit cost of integrating intermittent supply with demand could rise much more 

steeply. Thus we also consider a case in which this cost is doubled.  Note that the implications of 

temporal variation for the value of energy and capacity are explicitly modeled in the Europe region. 

Table 1.  Default Scenario Technology Capital Cost Assumptions ($/kW) 

 2020 2030 2040 2050+ 

Coal (Pulverized) $2,100 $2,100 $2,100 $2,100 

Coal Integrated Gasification 
Combined Cycle (IGCC)  

$2,400 $2,300 $2,200 $2,200 

Coal IGCC with CCS $3,500 $3,000 $2,700 $2,700 

Gas Single Cycle $625 $625 $625 $625 

Natural Gas Combined Cycle 
(NGCC) 

$900 $900 $900 $900 

NGCC with CCS $1,620 $1,500 $1,350 $1,350 

Nuclear (Gen III) $4,000 $4,000 $4,000 $4,000 

Nuclear (Gen IV) N/A N/A N/A $5,600 

Biomass $2,300 $2,200 $2,100 $2,100 

Biomass with CCS $3,400 $3,200 $3,000 $3,000 

Wind On-shore $1,700 $1,700 $1,700 $1,700 

Wind Off-shore $2,500 $2,200 $2,100 $2,000 

Solar PV $2,000 $1,600 $1,200 $1,000 

Note:  costs are expressed in year 2005 USD. 

Bioenergy:  large-scale annual production flows of bioenergy will have major impacts on land use and 

land-related activities such as agriculture and forestry.  We assume a maximum of biomass production 

of 275 EJ, which is based on the average of 100-450EJ, see  PBL (2012). Ultimately these interactions will 

limit the extent to which bioenergy can be sustainably produced, that is, without indirect carbon 

emissions from land cover change.  Although MERGE does not explicitly model land use, we model the 

supply of purpose-grown energy crops with a rising supply curve and place an upper bound on the 

annual total in each region based on estimates in the literature.  Trade in biofuels is allowed, although 

biomass for electric generation may be more difficult to transport due to low energy density and high 

costs.  In the default case, biomass must be consumed in the region in which it is produced,  implying an 
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upper bound on biomass-based generation (with or without CCS) in Europe of around 1000 TWh.  We 

also consider a case in which solid biomass can be traded among regions with a transport cost of $2/GJ.   

Nuclear:  while new investments in nuclear in Europe may not be cost-effective in the default case, 

nuclear plays a much larger mitigation role in fast-growing regions such as China and other non-OECD 

countries.  Because the deployment of nuclear depends on a range of political and social decisions that 

extend beyond private investment economics, we consider a case in which nuclear expansion is limited 

to projects currently under construction.  On the other hand, expanded deployment of nuclear requires 

scaling up the extraction of uranium, at least until an advanced reactor able to recycle fuel is available 

(which we assume does not occur until 2050).  We also consider a case in which constraints on this 

scale-up are relaxed, significantly slowing the rate at which global uranium prices rise with increased 

production. 

CCS:  despite some commercial experience with carbon capture and long-term underground storage, the 

viability of this technology at large scale remains uncertain.  The model includes regional constraints on 

geologic reservoir capacity (roughly 400 billion tons of CO2 for Europe) with rising unit costs with 

cumulative storage.  To reflect the possibility that for technical or public acceptance reasons, the 

practice is simply not viable, we consider a case in which CCS options for electric generation, hydrogen 

production, and cement manufacture are omitted. 

Co-production of hydrogen:  while it is straightforward from a design perspective to envision the flexible 

IGCC configuration outlined above, it remains unproven and may encounter unforeseen technical 

obstacles.  We therefore consider a case in which the co-production technology is not available, that is, 

the ability for hydrogen production and electricity generation to “share” the same gasification plant.  In 

this case both IGCC and hydrogen from coal gasification are available individually. 

Demand for hydrogen:  it is also unproven whether hydrogen can become a widespread end-use fuel, 

either in transportation or stationary applications such as industrial process heat.  In contrast to the 

default case in which the costs of fuel-cell passenger vehicles decline rapidly and hydrogen can supply 

up to 50% of non-electric, non-passenger-transport demand (with a price premium for delivery 

infrastructure), we consider a case in which fuel-cell vehicles remain expensive relative to other options 

and hydrogen can supply up to only 10% of other non-electric demand. 

Demand for electricity:  the future pathway for electricity demand depends on several uncertain factors, 

such as the rate of economic growth, the rate of decline in energy intensity, and the extent of 

electrification.  While it is not possible in this study to consider a comprehensive scenario space covering 

possible ranges for this collection of factors, we did explore the cost of battery technology for electric 

vehicles, a potentially important avenue for substitution with non-electric energy.  The result is a small 

increase in overall electricity demand without significant effects on the supply-side mix. 
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Table 2.  Key Technology Sensitivity Cases 

Label on Figures 9 & 10 Description (see Scenarios section above) 

Bio Trade Solid biomass can be traded internationally 
Default Default scenario 
Pes. On-Shore On-shore wind is limited to 400 GW total 
Pes. Off-Shore Off-shore wind costs do not decline over time 
Hi Int. Costs Integration cost term is doubled relative to default scenario 
No New Nuc No new nuclear capacity is allowed 
No Co-H2 IGCC+CCS with co-production of hydrogen is not allowed 
No CCS CCS is not allowed 
… + Opt. Solar No CCS plus optimistic assumptions about the cost of solar PV 
… + Off-shore No CCS + Opt. Solar plus no decline in off-shore wind costs 
… + No Nuc No CCS + Opt. Solar + Pes. Off-shore plus no new nuclear 
… + On-shore No CCS + Opt. Solar + Pes. Off-shore + No New Nuc + limited on-shore wind 

 

Results 

Emissions 

We first present results on global total greenhouse gas (GHG) emissions for each policy scenario in the 

left panel of Figure 3.3  In the case of the weak policy scenario, emissions targets are prescribed in each 

region (banking is not allowed), so the pathway for global emissions is the same regardless of the 

resolution of technological uncertainty.  By contrast, in the harmonized stabilization scenario, the 

emissions path depends on technology, as the path can shift in time while satisfying roughly the same 

total budget.4  The baseline scenario is largely independent of the dimensions of technological 

uncertainty discussed here; only the pathway for the default technology scenario is shown.  In the weak 

policy case, emissions roughly return to recent levels by the end of the century.  In the more stringent 

stabilization case, global emissions fall to half their recent level by 2050, which corresponds roughly to 

the goal articulated by the former G8 group of countries (G8, 2009).  Because the potential reduction in 

non-CO2 emissions is assumed to be limited to a relatively small fraction of their baseline, particularly 

for agricultural sources (USEPA, 2014), the scenarios entail greater proportional reductions in carbon 

emissions than in the carbon-equivalent total, reaching near-zero levels by the end of the century in the 

stabilization scenario.  

                                                           
3
 Emissions reporting in MERGE excludes carbon emissions due to anthropogenic land-use change.  However, the 

carbon cycle is calibrated using the assumption that this emissions flow is offset by fertilization-induced increases 
in the terrestrial biosphere. 
4
 Note that if the policy scenarios had been specified in terms of prices rather than quantities, there would be 

more variation in the emissions path with respect to technological uncertainty.  With a quantity-based policy 
implementation, variation in technology realizations translates instead into variation in costs.   
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Figure 2:  Global CEQ Emissions (left) and Europe CEQ Emissions (right).   

We now turn the focus on to the Europe region in the first half of the century, shown on the right panel 

of Figure 2.  The baseline emissions path for Europe reflects the evolution of an energy system with no 

further control of greenhouse gas emissions.  Note that this is not necessarily a likely future, given the 

many political commitments to the contrary; rather it is a hypothetical “counterfactual” or “counter-

expectation” scenario used to illustrate the magnitude and impact of efforts to reduce emissions.  In this 

setting, continued fossil fuel use keeps carbon intensity roughly constant, while energy intensity 

declines at a rate similar to historical experience (more slowly than economic growth), leading to growth 

in total energy use and rising emissions.  In the weak policy scenario, the targets for Europe follow in 

broad terms its articulated goals:  a 20% reduction relative to 1990 by 2020, and an 80% reduction by 

2050.  However, trade in emissions credits is allowed with other regions in the weak policy scenario, the 

extent of which varies across the range of technology scenarios – essentially, Europe imports more 

credits with more pessimistic assumptions about technology.  Thus while the global path is fixed, there 

is variation at the regional level, and Europe is always a net importer, leading to realized emissions 

above the nominal goal.  Still, the target implies significant mitigation relative to baseline for Europe and 

thus is not necessarily “weak” per se – the label refers to the global level of ambition relative to that 

required for stringent long-term climate scenarios.  In the 550 ppm CO2-e scenario, total GHG emissions 

in Europe fall even more rapidly, with net carbon emissions becoming negative by mid-century in some 

technological instances. 

Electric Generation 

To meet current objectives for emissions reductions, or even more ambitious pathways consistent with 

stringent global climate outcomes, a transformation must occur in the electric generation mix.  Although 

emissions from fossil use in the electric sector account for only a third of total emissions, there are more 

and better options for alternatives than in most other sectors, thus the relative cost of abatement is 

lower.  Studies of cost-efficient mitigation strategies nearly always indicate a larger share of reductions 

in electric generation than in the economy as a whole (see for example Krey et al, 2013 and Knopf et al, 

2013).  However, abatement costs for electricity are nonetheless convex, and in particular renewable 

energy technologies exhibit decreasing returns to scale as they penetrate the market due primarily to 

their temporal variation (Blanford, 2014; Mills and Wiser, 2014; Hirth, 2013b).  In the updated 
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formulation described here, these effects can be captured, revealing a broad range of the optimal levels 

of deployment of the various low-carbon electric options depending on the technological scenario. 

Default Technology Scenario 

In the default case, for both the weak and stringent policies, we find that wind energy plays a major role, 

complemented by a combination of CCS technologies (see Figure 3).  Wind provides low-cost carbon-

free energy with a profile that in Europe is better correlated with electricity demand than in other 

regions.  Nonetheless its contribution to capacity needs is limited, and its energy is delivered 

disproportionately in low-value segments.  Dispatchable technologies provide capacity and energy to fill 

in wind’s gaps.  These include integrated coal gasification and combined cycle (IGCC) with CCS and 

bioenergy with CCS (BECCS).  Both of these technologies, in addition to providing firm capacity to 

counter wind’s inconvenient profile, provide other benefits as well.  While the presence of wind in the 

system drives down the capacity factor of dispatchable technologies, in the case of IGCC the co-

production of hydrogen allows the gasification phase to operate at full capacity.  Thus when hydrogen 

has value as an end-use fuel, and when it can be relatively cheaply stored, the economics of this option 

for electric generation are improved.  Nonetheless, the residual emissions of fossil-based CCS diminish 

its role in our stringent policy scenario.  In the case of BECCS, provided that the feedstock is carbon-

neutral with respect to induced land-use change, a negative emissions flow is created, which in a carbon 

policy scenario represents an additional revenue stream.  At high carbon prices, this stream may 

dominate the value of electricity produced.  Even at modest carbon prices it confers on BECCS an 

advantage over competing technologies, regardless of whether total net emissions are negative.. 

 

  

Figure 3.  Electric Generation in Europe under Default Technology Scenario. 

To illustrate the implications of temporal variation for the economics of renewable energy in the electric 

generation mix, Figure 4 shows electricity dispatch across the load segments corresponding to 

percentiles of the ranked load duration curve for both 2010 (simulated) and 2050 in the weak policy 
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case under the default technology scenario.5  The 2010 panel illustrates the current conventional system 

in which coal operates mainly in base load, gas in shoulder and peaking mode, with only a minor effect 

on the shape from wind and solar.  In the 2050 policy case, installed wind capacity has expanded to 

approximately 550 GW by 2050 (as compared to less than 100 GW in 2010) and constitutes 25% of 

electricity generation.  Peak load is roughly 970 GW, and peak residual load (net of the contribution of 

wind), is 870 GW.  That is, firm capacity needs are reduced by 100 GW or roughly 18% of installed wind 

capacity.  The shift in the residual load curve from the contribution of wind results in lower capacity 

factors for the remaining technologies, in particular the nearly 200 GW of gas-fired capacity, which is 

essentially used only during the peak.  A dispatchable technology’s capacity factor can be roughly 

inferred from the chart by comparing the average height of dispatch across all segments to the height in 

the peak segment, during which all available capacity is fully dispatched as a condition of optimality.  

However, only 80-90% of installed capacity is available at the peak.  The left panel of Figure 5 illustrates 

the capacity factor for coal with CCS in the 2050 weak policy case, which is 51%.  In the 550 CO2-e 

scenario (described below), installed capacity and capacity factor for coal with CCS are both half as large, 

implying only a quarter of generation, while installed wind capacity (and generation) are nearly double. 

      
Figure 4.  Electricity Dispatch in Europe in 2010 vs. 2050 Weak Policy Scenario (default technology).  

Note:  the width of the peak segment is exaggerated for illustrative purposes.  In the model it is 

weighted with a single hour. 

                                                           
5
 Note that the peak load segment is weighted by a single hour, with the second-highest segment weighted by 437 

hours.  The remaining 19 segments are weighted by 438 hours each for a total of 8760.  Thus the graphics in Figure 
5 and Figure 7 are slightly mis-scaled as the width of the peak segment is exaggerated for illustrative purposes. 
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Figure 5.  Dispatch and Capacity Factor of Coal with CCS in 2050 in Weak Policy and 550 CO2-e Scenarios 

(default technology).  The dashed line reflects installed capacity adjusted for an availability factor in 

each segment as discussed above.  Note the width of the peak segment is exaggerated for illustrative 

purposes.  In the model it is weighted with a single hour. 

Absent from the default generation mix are solar and natural gas-fired generation, and nuclear’s share 

does not expand.  In Europe, solar is a particularly difficult technology from a value perspective, given 

the low capacity factor due to Europe’s northern latitudes and frequent cloud cover as well as its profile 

relative to load, which is even more inconvenient than wind.  In particular, solar provides zero capacity 

value given Europe’s winter evening peak in electricity load (driven by heating demand).  While it is 

currently heavily supported by subsidies in several European countries, when carbon mitigation is 

efficiently priced, solar struggles to compete with other options even under default assumptions of 

rapid cost declines to $1000/kW by 2050.  In the case of nuclear, its high capital costs become a 

significant penalty when the presence of wind in the system forces lower capacity factors on other 

technologies.  Moreover, rising global prices of uranium increase its variable costs as well.  Although the 

model considers a public cost that rises with the share of nuclear to reflect acceptability concerns, this 

factor is dominated in the default case by private investment economics.  Natural gas plays a transitional 

role in the near to medium term, but in the long run it is not viable without CCS under moderate or 

stringent carbon prices.  With CCS it is out-competed by coal-based technology, particularly given the 

value of the co-production of hydrogen available with IGCC.  However, single cycle gas turbines continue 

to play an important role in providing capacity, albeit with very few operating hours. 

Alternative Technology Scenarios 

While wind, CCS, bioenergy, and hydrogen emerge as the main elements of a least-cost decarbonisation 

pathway for Europe with a default set of assumptions, many future parameter values are uncertain.  

Given the significant role played by CCS technologies in the default case, we begin with the sensitivity 

scenario in which CCS is not available.  In this case, electric generation from coal and bioenergy with CCS 

is replaced by a combination of energy efficiency (i.e. reduced demand), natural gas, and a much heavier 

reliance on wind, both on-shore and off-shore.  Additionally, there is a larger initial investment in 

advanced nuclear in 2050, although the build-out of new conventional nuclear capacity before 2050 is 
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similar.  One key consequence of a larger share from wind is low capacity factors for gas and some 

remaining coal, but also for nuclear and even for wind itself.  This interaction is fundamental to the 

economics of intermittent renewable technologies, but can only be captured with a more detailed 

representing of the electric sector such as the one implemented here.  .  Notably, even under these 

circumstances solar capacity is not “in the money” with its default cost trajectory.  We return to the 

issue of solar below. 

Another scenario in which CCS plays a smaller role is with limitations on either the co-production of 

hydrogen or the market for hydrogen as an end-use fuel.  Without the enhanced economics of co-

production, coal-based CCS is still in the mix, but at around half its level in the default case.  Without the 

opportunity to produce hydrogen during non-dispatch hours, coal-based CCS needs a higher capacity 

factor in the electricity market to be a viable investment.  Interestingly, this leads not only to less coal 

with CCS but also slightly less wind energy, because its intermittent profile is less easily absorbed and 

thus less valuable without the flexible co-production technology.  Instead, BECCS and conventional 

nuclear have expanded roles, and there is a small increase in natural gas.  This pattern is also observed 

when the co-production technology is available but the share of hydrogen in non-electric end-use 

demand is assumed to be limited.  Without such constraints, hydrogen produced from coal gasification 

with CCS is an attractive alternative to liquid fuels under a carbon policy on the basis of price, even 

accounting for a storage and delivery premium of $3/GJ. 

In a sensitivity case combining the constraint on CCS with the fast cost decline path for solar, a relatively 

small block of solar capacity (around 30 GW) is added by 2050 when costs have fallen to $750/kW.  

Adding to this case also the sensitivity that off-shore wind costs do not improve much, the contribution 

of solar grows a little larger to around 50 GW, but the main effect is an increase in on-shore wind.  

Adding to this further a restriction on new nuclear builds, around 120 GW of solar is added by 2050.  Still 

it provides less than 5% of the energy provided by wind in this case.  The most solar deployment occurs 

in a case with all of the above restrictions, plus the pessimistic upper bound of 400 GW on on-shore 

wind, in the 550 CO2-e policy scenario.  In this case there are 300 GW of installed solar, accounting for 

8% of energy.  The extent of solar deployment in 2050 across the various technology sensitivity cases is 

shown in Figure 6.  The dispatch of electricity for the extreme case of 300 GW is shown in Figure 7. 
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Figure 6.  Solar Deployment in 2050 in Europe with default costs of $1000/kW and optimistic costs of 

$750/kW under alternative policy scenarios.  In the highest deployment level of 300 GW on the far right, 

solar provides 8% of electric generation. 

Next we explore a branch of sensitivity cases in which wind energy is limited, first by higher integration 

costs, and second by assuming that potential capacity additions of on-shore wind in Europe are limited 

to 400 GW or approximately 1000 TWh.  With higher integration costs, optimal deployment of wind falls 

from roughly 500 GW in 2050 to 250 GW, with the difference made up by coal with CCS and BECCS.  By 

contrast, when potential additions are limited, deployment is reduced by roughly 100 GW with the 

difference made up mainly by off-shore wind and a slight increase in BECCS.  If we add pessimistic 

assumptions about off-shore wind and a constraint on new nuclear builds to this scenario, the CCS share 

becomes even larger. 

In a policy environment mandating faster reductions consistent with a global stabilization effort, some 

of the insights described above remain valid while some distinct patterns emerge.  First, the transition 

away from existing coal begins much sooner, with a large fraction replaced by gas in the first decision 

period, i.e. by 2020.  By contrast, in the weak policy case, only about 40% of coal capacity is retired 

early, and this occurs in 2040 and 2050.  In the default case for the stringent target, wind and BECCS 

expand more quickly, while coal with CCS expands more slowly and there are very few additions of 

conventional nuclear.  The value of the BECCS negative emissions stream and its lower capital intensity 

relative to nuclear make it a better match with large amounts of wind in a deep decarbonisation 

scenario.  Figure 7 shows the dispatch of electricity in the 550 CO2-e scenario under both the default 

technology case and the limited case described above (and in the last row of Table 2) in which solar’s 

role emerges.  In this case excess electricity produced at the lower end of the residual load curve is used 
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for hydrogen production via electrolysis.  However, some energy is still spilled, as it is not cost-effective 

to over-build electrolysis capacity to absorb large amounts of excess energy for a small number of hours. 

 

Figure 7.  Electricity Dispatch in Europe in 2050 in 550 CO2-e Policy Scenario for default technology and 

the “limited” case with no CCS, no new nuclear, no cost improvements in off-shore wind, and an upper 

bound of 400 GW for on-shore wind, but with more rapid cost declines for solar.  Electric generation 

above the black dotted line, excluding the “spill” quantities, is used for hydrogen production via 

electrolysis.  Note:  the width of the peak segment is exaggerated for illustrative purposes.  In the model 

it is weighted with a single hour. 

 

A final dimension to consider is that of price.  In Figure 8, the average wholesale electricity price in 2050 

is plotted against the 2050 carbon price for each technology scenario listed in Table 2.  In the weak 

policy scenarios, the price of electricity is roughly twice the baseline price with carbon prices more or 

less than $100/tCO2.  The most expensive cases in the upper right of the group correspond to the No 

CCS cases.  For the 550 CO2-e scenarios, carbon prices are much higher in the range of $400-$500/tCO2, 

and electricity prices are also higher, though not proportionally with the carbon price as most of the 

system has become carbon-free.  Still, the most expensive no-CCS cases, such as that depicted as 

“limited” in Figure 7, are in the upper right corner with electricity prices more than three times the 

baseline level. 
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Figure 8.  2050 Europe Electricity price (average wholesale price) plotted against carbon price for all 

technology scenarios in the Weak Policy and 550 CO2-e policy sensitivity analysis.  Solid dots reflect 

scenarios in which CCS is available; open dots reflect scenarios in which CCS is not available. 

Discussion and Conclusions 

We have explored a wide range of potential decarbonisation scenarios in the context of a global model 

with an explicit representation of investment and dispatch detail in Europe’s electric sector.  The 

emphasis of our analysis is on the heterogeneity of potential outcomes in terms of technology mix over 

the next several decades as a result of uncertainty about costs and constraints on available options.  A 

wide range of technology scenarios have been explored under alternative policy specifications.  Figure 9  

and Figure 10 summarize the key sensitivity cases explored for the weak policy and 550 CO2-e scenarios, 

respectively, in terms of the 2050 generation mix (see Table 2 for precise definitions of the sensitivity 

cases).  From the analysis a number of robust results emerge. 

One robust finding is that wind energy is a prominent feature of essentially every scenario.  The profile 

of wind energy in Europe provides a better match to the shape of load than in other regions, such as the 

US (see for example EPRI, 2013), and although its average capacity factor is lower than in the US, its 

advantageous shape means that the marginal value of incremental capacity erodes more slowly with 

increased penetration.6 

                                                           
6
 This confirms the results of Hirth (2013), who showed that high wind shares will result if there are high CO2 

prices, restrictions on nuclear, and large cost reductions for wind. In the default case there are no restrictions on 
nuclear. Nevertheless we see no nuclear expansion in Europe. The nuclear expansion in other regions than Europe 
depletes the uranium resource and pushes the price nuclear power and thus limits the use of nuclear in Europe. 
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Still, wind faces challenges, such as transmission requirements and public siting opposition, which could 

limit its deployment.  Moreover, its shape is only relatively advantageous:  it nonetheless contributes 

disproportionately to low-load hours, forcing dispatchable technologies to operate at lower capacity 

factors and lowering the value of energy when they are operating.  For this reason wind’s presence in 

the system makes flexible technologies like co-production of electricity and hydrogen from coal 

gasification more valuable and capital-intensive technologies like nuclear less valuable. 

 

 

Figure 9.  2050 Generation Mix in Europe under Weak Policy Scenario for a range of Technology Cases. 

Another robust finding is that CCS is the preferable complement to wind, if it is available.  This result 

arises in our model because CCS technologies have more value at low capacity factors than alternatives 

such as nuclear, rather than because of operational flexibility (discussed further below).  Particularly for 

moderate (rather than stringent) emissions reduction goals, the best application of CCS is with coal in 

co-production mode.  If this is not possible, due either to supply or demand side limitations on 

hydrogen, coal-based CCS is considerably less attractive while BECCS is more attractive. 7  Especially if 

there is a policy goal to rapidly reduce emissions, BECCS is the best application, contingent on sufficient 

capacity to produce sustainably carbon-neutral bioenergy, along with the potential for international 

trade.  When developing regions with large potential bioenergy production but smaller electric systems 

can supplement Europe’s supply through trade, BECCS plays a much more significant role, especially in 

                                                           
7
 In this analysis, gas with CCS only enters the mix in the 550 CO2-e case when co-production of hydrogen is not 

allowed.  However, we do not fully explore alternative cost assumptions (or alternative gas price scenarios) that 
might make it more attractive. 
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the 550 CO2-e case (see Figure 10). This is consistent with Knopf et al. (2013), who find that BECCS will 

play a limited role to 2050 as long as there is no or little trade in bioenergy.  In terms of its effect on the 

character of the optimal energy mix in a decarbonized European electric sector, CCS is a pivotal 

technology.  If it is not available, a different system emerges with a much greater reliance on renewables 

and stronger price signals for energy efficiency investments. 

 

Figure 10.  2050 Generation Mix in Europe under 550 CO2-e Scenario for a range of Technology Cases. 

 

In Knopf et al (2013) nuclear energy becomes more important if no CCS is allowed in electricity 

generation.  In this analysis, new nuclear energy plays a more muted role than CCS.  A major reason is 

that the opportunity for base load generation, nuclear’s traditional role as a high-fixed-cost, low-

variable-cost technology, is squeezed by the penetration of wind energy as more and more of its 

potential hours are supplanted by the steeply falling residual load curve (an argument lacking in most of 

the models applied in Knopf et al., 2013).  That is, even assuming the possibility of flexible operation, a 

low capacity factor discourages investment in nuclear on capacity utilization grounds alone.  Another 

reason is that variable costs rise as the price of uranium responds to a large increase in demand globally, 

especially in the stabilization scenario, further undercutting its traditional advantage.  Nonetheless in 

the default case there are new investments in 2020 and 2030 in conventional (i.e. third generation) 

nuclear plants, partially replacing the retirement of existing units.  Perhaps counter-intuitively, more 

new nuclear is built under a moderate policy than under a stringent policy because of increased 

competition with wind and BECCS in the latter case.  In the long run, an advanced nuclear technology 
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with a closed fuel cycle could be important, especially if CCS is limited and if carbon emissions in Europe 

are to be eliminated by 2050. 

Finally, we find that solar PV, in a least-cost setting with efficient pricing of carbon and electricity, is 

unlikely to play a significant role in Europe’s decarbonisation.  Its profile is more inconvenient than 

wind’s, and its capacity factor lower, suggesting that only with the combination of pessimistic 

assumptions about several other technologies is it economically attractive, and then only when its costs 

fall well below $1,000 per kW. 

An important caveat to these results, particularly concerning the value of wind, is that even though they 

have been derived from a representation of electric generation that is much more sophisticated and 

closer to reality than previous versions of the MERGE model and similar energy-economy models, they 

nonetheless omit an important effect of intermittent generation, namely operational constraints.  The 

first-order effect of reducing capacity factors is effectively captured by the residual load curve.  

However, additional costs and constraints associated with low-capacity-factor dispatch may be incurred 

at the unit level, below the aggregation of our model.  Although unit commitment modeling is an active 

area of research, a tractable method for incorporating the implied economics of unit commitment into a 

reduced-form intertemporal investment and dispatch model is not yet available. 

In addition to this important next step, the electric sector formulation applied here for Europe should be 

extended to other model regions.  This step requires an underlying regional model with hourly and 

spatial detail for calibration, which presents data challenges for a global application.  Extending the 

formulation to the US or possibly other OECD countries is likely straightforward, but data availability is 

more complicated for countries such as China and India.  Additionally, aggregate regions that are not 

geographically contiguous or electrically interconnected could be difficult to represent.  Finally, a 

representation of endogenous technical change through learning, research, and spillovers could provide 

important insights given the strong dependence of the results on cost reductions over time; carbon 

technologies are likely to improve faster in a policy environment where more abatement effort is being 

undertaken. Nonetheless, the methodology and results presented build upon recent advances in the 

ability of models to portray the economics of decarbonisation in the electric sector. 
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Appendix A:  Data Development for Wind and Solar Profiles in MERGE 

The newly developed version of the electric sector in MERGE (currently applied only in the Europe 

region) used a reduced-form representation of intra-annual variability to reflect intermittent renewable 

resources such as wind and solar.  The underlying data is based on hourly time series for solar and six-

hour average time series for wind at the grid cell level in 2011.  The series reflect output as a percentage 

of nameplate capacity based on observed meteorology and technological parameters. 

 

Construction of wind data 

For wind, we use the 2011-ECMWF's ERA-40 reanalysis data at 10 m height as our primary resource.8 

The wind speeds at 10 meter height, 𝑉10, were derived from the 10 meter height wind speed in the U 

(10U) and V (10V) direction with magnitude √(10𝑈)2 + (10𝑉)2. Subsequently, we converted these 10-

meter-height wind speeds to the wind speed at hub height, 𝑉𝐻, using the logarithmic wind profile for 

neutral conditions (Hoogwijk et al., 2004) 

𝑉𝐻 = 𝑉10 (
ln(𝐻 𝑧0⁄ )

ln(10 𝑧0⁄ )
) 

Here, 𝐻 denotes the hub height in meters and z0 denotes the roughness length expressed in meters. 

Expected hub heights are based on recent practice and are 100m onshore and 120m offshore. The 

roughness length 𝑧0 is based on the Corine Land Cover database 2000 (CLC) as in EEA (2009).9 From 

these wind speeds at hub height, we constructed for each grid point in the reanalysis dataset the 

generated power (kW) using a power-velocity curve of a 2 MW wind turbine.10 

 

Construction of solar data 

For solar, we use the 2011-KNMI’s radiation dataset as our primary resource.11 Using data on direct and 

indirect (diffuse) radiation on the horizontal plane, we first construct an estimate of the hourly radiation 

on a titled plane for each grid point and time unit in the data set. Subsequently, we use this estimate 

together with ambient temperature, to determine the output of a south-facing hypothetical PV module. 

 

 

                                                           
8
 ECMWF ERA-40 = European Centre for Medium-Range Weather Forecasts Reanalysis40. 

9
 EEA = European Environmental Agency. 

10
 We used curve P_nom = 2.0_3 depicted in Figure 2.2 of EEA (2009). 

11
 KNMI = Koninklijk Nederlands Meteorologisch Instituut. See 

http://msgcpp.knmi.nl/mediawiki/index.php/MSG_Cloud_Physical_Properties_%28CPP%29 for a more detailed 
description. 

http://msgcpp.knmi.nl/mediawiki/index.php/MSG_Cloud_Physical_Properties_%28CPP%29
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Let 𝑁 denote the day of the year, 𝑁 = 1, . . . ,365. The solar declination, 𝛿, which is the angular distance 

of the sun’s rays north of the equator, is then given by  

 𝛿 = 23.45 sin {
2𝜋

365
(284 + 𝑁)}. (1) 

Notice that declinations north of the equator are positive. At the spring and autumn equinoxes the 

declination is 0°, whereas it is +23.45° at the summer solstice and −23.45° at the winter solstice. Next, 

determine the hour angle ℎ in degrees by 

 ℎ = 0.25(Number of minutes from local solar noon), (2) 

where the local solar noon is equal to 12.00 hours (winter time). Thus the hour angle at the local solar 

noon is zero and 1 h is equivalent to 0.25 ∗ 60 = 15°, afternoon hours designated as positive. The time 

in the KNMI database is UTC irrespective of longitude. Local time 𝑡𝑙𝑜𝑐𝑎𝑙 is given by 

 𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑡𝑈𝑇𝐶 + (𝑙𝑙𝑜𝑐𝑎𝑙 − 𝑙𝑈𝑇𝐶)
24

360
, (3) 

where 𝑡𝑈𝑇𝐶  is the time in the KNMI database, and 𝑙𝑖 is the respective longitude. To illustrate, suppose 

𝑡𝑈𝑇𝐶 = 13, 𝑙𝑈𝑇𝐶 = 0° and 𝑙𝑙𝑜𝑐𝑎𝑙 = 18°. Then, 𝑡𝑙𝑜𝑐𝑎𝑙 is 14 hours and 12 minutes. The KNMI data base 

contains beam (sds) and diffuse (sds_diff) radiation on the horizontal plane. Denote these variables by 

𝐺𝐵 and 𝐺𝐷 respectively. Total radiation on a titled plane at time 𝑡, 𝐺𝑡, is then given by  

𝐺𝑡 = 𝐺𝐵𝑡 + 𝐺𝐷𝑡 + 𝐺𝐺𝑡 

 = 𝐺𝐵

𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝛷)
+ 𝐺𝐷[

1 + 𝑐𝑜𝑠(𝛽)

2
] + (𝐺𝐵 + 𝐺𝐷)𝜌𝐺[

1 − 𝑐𝑜𝑠(𝛽)

2
] (4) 

where 𝐺𝐵𝑡 , 𝐺𝐷𝑡 and 𝐺𝐺𝑡 have been defined implicitly and denote the beam, diffuse and ground reflected 

solar radiation on the titled plane at time 𝑡, respectively. In Eq. (4), 𝜃 denotes the incidence angle, which 

is the angle between the sun’s rays and the normal on a surface. The solar zenith angle Φ is defined as 

the angle between the sun’s rays and the vertical (the normal on a horizontal plane). The surface tilt 

angle 𝛽 measures the angle of the PV module with the horizontal plane. Finally, 𝜌𝑔 is ground albedo. 

The incidence and solar zenith angles are related to the latitude 𝐿, the surface tilt angle 𝛽, the solar 

declination 𝛿, the hour angle ℎ and the surface azimuth angle 𝑍𝑠. Assuming a south-facing module, we 

have  

 
𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝛷)
=

𝑠𝑖𝑛(𝐿 − 𝛽)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝐿 − 𝛽)𝑐𝑜𝑠(𝛿)𝑐𝑜𝑠(ℎ)

𝑠𝑖𝑛(𝐿)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝐿)𝑐𝑜𝑠(𝛿)𝑐𝑜𝑠(ℎ)
. (5) 

The output of a PV module at time 𝑡 is now calculated as  

 𝑃𝑡 = 𝐴𝑐𝐺𝑡𝜂𝑃𝑉,𝑡(𝐺𝑡 , 𝑇𝑐𝑡), (6) 
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where 𝐴𝑐 is the surface area of the PV panel (which we will take to be 1 m2), 𝜂𝑃𝑉,𝑡 is the conversion 

efficiency in the solar sell, which depends on radiation 𝐺𝑡 and cell temperature 𝑇𝑐𝑡 as follows:  

 𝜂𝑃𝑉,𝑡 = 𝜂𝑟𝜂𝑝𝑐[1 − 𝛾(𝑇𝑐𝑡 − 𝑇𝑐𝑟𝑒𝑓)], (7) 

where 𝜂𝑟 is the reference module efficiency which is set to 15%, 𝑇𝑐𝑟𝑒𝑓 is the reference cell temperature, 

𝛾 is the so-called generator efficiency temperature coefficient, and 𝜂𝑝𝑐 is the power condition efficiency. 

Finally, the temperature of the solar cell can be obtained through  

 𝑇𝑐𝑡 = 30 + 0.0175(𝐺𝑡 − 300) + 1.14(𝑇𝑎𝑡 − 25), (8) 

where 𝑇𝑎𝑡 is the ambient temperature at time 𝑡. As hourly temperature data is not available for Europe, 

we construct country-specific estimates of hourly temperature from the minimum, maximum and daily 

average temperature by using Method 1 in Reicosky et al. (1989).12 Table A1 summarizes all parameters 

and data values that have been used in the computations. 

  

Table A1.  Parameters and Data used for Solar Output Calculations 

Parameter/Data  Value  Source  

𝑳,𝑮𝑩 and 𝑮𝑫   KNMI: See ftp://msgcpp-ogc-

archive.knmi.nl/ (for 2011-today)  

𝜷   Fixed Tilt Table on 

www.macslab.com/optsolar.html#other   

𝝆𝑮  0.2  Van der Borg and Wiggelinkhuizen 

(2012)  

𝒁𝒔  0  Assume optimal facing  

𝑨𝒄  1  Standardization  

𝑻𝒂   www.ecad.eu/ensembles  

𝜸  0.0045  Average value as listed in Skoplaki 

(2009)  

𝑻𝒄𝒓𝒆𝒇  25  Kalogirou (2009), Ch. 9, p. 480.  

𝜼𝒑𝒄  1  We implicitly assume the use of a 

perfect maximum power tracker.  

 

 

 

 

 

                                                           
12

 The temperature data was downloaded from http://www.ecad.eu/download/ensembles/ensembles.php.  

http://www.ecad.eu/download/ensembles/ensembles.php
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Aggregation of Gridded Data 

Grid cells were aggregated into categories referring to top 10%, bottom 10%, and middle 80% in each 

European country.  For the wind and solar technologies included in MERGE, a representative series was 

constructed as a weighted average from the categories of gridded data.  The weights were chosen based 

on ad hoc judgment with the intention of reflecting a plausible distribution across countries and sites 

below the level of aggregation in the model.  Factors such as resource quality, geography, population 

density, economic activity, and national policy priorities were considered in the selection of weights. 

Three classes of wind are considered:  one series describing standard continental Europe on-shore wind, 

one for premium on-shore locations bordering the North Sea, and one for off-shore locations in the 

North Sea.  One class of solar PV corresponding to deployment on the European continent is considered.  

These classes were constructed as follows: 

 

Standard (Continental) On-Shore Wind 

For this class, an equal weighting on the top 10% and middle 80% categories was applied to a weighted 

average across countries in western and central continental Europe.  The weighting excluded countries 

with inaccessible terrain (e.g. Switzerland) and very low-quality resources (e.g. land-locked southeastern 

Europe).  Finally, the constructed average series was reduced uniformly by 10% to reflect wake effects 

and losses between the turbine and the grid. 

 Weight Top 10% CF Mid 80% CF 
Germany 0.21 37% 17% 
Spain 0.21 36% 13% 
France 0.21 43% 17% 
Italy 0.10 38% 13% 
Poland 0.10 32% 17% 
Netherlands 0.05 43% 24% 
Greece 0.05 38% 17% 
Portugal 0.05 29% 12% 
Belgium 0.02 27% 19% 
Resulting Weighted Average: 30%  
Resulting Weighted Average -10%: 27%  
 

Premium (North Sea) On-Shore Wind 

For this class, a 2:1 weighting on the top 10% and middle 80% categories respectively was applied to a 

weighted average across countries in the North Sea area.  The middle 80% category was included in the 

weighting based on the assumption that not all of the land in the best grid cells will be accessible for 

development.   Finally, the constructed average series was reduced uniformly by 10% to reflect wake 

effects and losses between the turbine and the grid.   
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 Weight Top 10% CF Mid 80% CF 
Norway 0.20 46% 19% 
Sweden 0.20 42% 21% 
England 0.20 51% 34% 
Denmark 0.12 47% 34% 
Ireland 0.12 51% 34% 
Northern Ireland 0.04 47% 34% 
Scotland 0.04 53% 37% 
Estonia 0.04 45% 28% 
Latvia 0.04 43% 25% 
Resulting Weighted Average: 44%  
Resulting Weighted Average -10%: 39%  
 

North Sea Off-Shore Wind 

For this class, an equal weighting on the top 10% and middle 80% categories was applied to a weighted 

average across countries in the North Sea area, including along the southern shore.  The constructed 

average series was reduced uniformly by 10% to reflect wake effects and losses between the turbine 

and the grid. 

 Weight Top 10% CF Mid 80% CF 
Germany 0.17 53% 46% 
France 0.17 46% 34% 
England 0.17 60% 53% 
Norway 0.08 56% 49% 
Sweden 0.08 48% 43% 
Denmark 0.08 47% 43% 
Poland 0.07 45% 43% 
Ireland 0.05 61% 54% 
Netherlands 0.05 49% 45% 
Estonia 0.03 47% 44% 
Latvia 0.03 46% 41% 
Scotland 0.02 61% 57% 
Resulting Weighted Average: 48%  
Resulting Weighted Average -10%: 43%  
 

Standard (Continental) Solar PV 

For this class, an equal weighting on the top 10% and middle 80% categories was applied to a weighted 

average across countries in continental Europe.  Weights were chosen so that the sum across the 

eastern countries equaled the sum across western countries.  Note that the reported capacity factor 

includes a reduction of 25% to account for inverter losses. 
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 Weight Top 10% CF Mid 80% CF 
West    
Germany 0.13 13% 12% 
Spain 0.13 17% 16% 
France 0.13 16% 13% 
Italy 0.07 17% 15% 
Portugal 0.03 17% 16% 
Switzerland 0.01 15% 14% 
East    
Greece 0.13 17% 15% 
Austria 0.06 14% 13% 
Poland 0.06 12% 11% 
Romania 0.06 14% 13% 
Bulgaria 0.06 14% 14% 
Hungary 0.06 14% 13% 
Czech Republic 0.04 13% 12% 
Slovakia 0.03 13% 13% 
Resulting Weighted Average: 14%  
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Appendix B:  Estimation of Load Contribution Coefficients for Wind and Solar 

Hourly residual load series were constructed for each resource type for a range of hypothetical installed 

capacity levels, in increments of 100 GW up to 1000 GW.  For continental wind and solar PV, joint 

residual load series were constructed, i.e. 100 series representing each combination of capacity 

increments in wind and solar.  For the on-shore and off-shore North Sea wind classes, residual load 

series were constructed based on varying the respective capacity in the class individually, i.e. 10 series 

for each class.  These residual load series were each re-sorted, and the resulting values in each sort 

position were subtracted from the full load duration curve to calculate the “contribution to sorted load”, 

the key quantity to be estimated.  Figures B1 – B4 show the residual load curves for increasing capacity 

in each resource class (panel a) and the “contribution to sorted load” (panel b).  (Figure B1 is a re-

production of Figure 1 in the main text.) 

Both wind and solar are delivered disproportionately at low-load hours, with additional skewedness (i.e. 

sloping to the right, implying an increasing share of energy during low-load hours) as penetration 

increases.  The solar pattern is accentuated by the fact that its distribution is effectively truncated to 

zero for roughly half the hours of the year; as installed solar capacity increases, the hours with low 

residual load become predominantly daylight hours.  Overall capacity factors, as well as the contribution 

during peak and near-peak hours, are considerably higher for North Sea wind locations than for the 

average over continental wind locations. 

 

 

Figure B1 (Figure 1 in main paper).  Continental Wind:  Residual Load Duration Curves (a) and 

Contribution to Sorted Load (b) for different levels of wind penetration in the EU (based on hourly data).  

The color spectrum reflects increasing installed wind capacity, with dark green indicating 100 GW, and 

purple indicating 1000 GW.  The black line in panel (a) reflects the total load duration curve. 
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Figure B2.  Continental Solar PV:  Residual Load Duration Curves (a) and Contribution to Sorted Load (b) 

for different levels of solar PV penetration in the EU (based on hourly data).  The color spectrum reflects 

increasing installed solar PV capacity, with dark green indicating 100 GW, and purple indicating 1000 

GW.  The black line in panel (a) reflects the total load duration curve. 

 

 
Figure B3.  North Sea On-Shore Wind:  Residual Load Duration Curves (a) and Contribution to Sorted 

Load (b) for different levels of wind penetration in the EU (based on hourly data).  The color spectrum 

reflects increasing installed wind capacity, with dark green indicating 100 GW, and purple indicating 

1000 GW.  The black line in panel (a) reflects the total load duration curve. 
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Figure B4.  North Sea Off-Shore Wind:  Residual Load Duration Curves (a) and Contribution to Sorted 

Load (b) for different levels of wind penetration in the EU (based on hourly data).  The color spectrum 

reflects increasing installed wind capacity, with dark green indicating 100 GW, and purple indicating 

1000 GW.  The black line in panel (a) reflects the total load duration curve. 

In the preceding figures, only variation against “own-capacity” is shown.  Figure B5 illustrates the extent 

of interaction effects between continental wind and solar, showing the “contribution to sorted load” for 

wind @ 300 GW for increasing solar capacity (panel a) and for solar @ 300 GW for increasing wind 

capacity (panel b).  There is a noticeable effect in both cases shifting hours away from minimum load to 

near-minimum load as high penetration levels of the other technology are reached.  Still, the effect is 

minor compared to the variation with respect to “own-capacity” increases. 
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Figure B5.  Continental Wind vs. Solar PV:  Contribution to Sorted Load for wind @ 300 GW with 

different levels of solar penetration (a) and for solar @ 300 GW with different levels of wind penetration 

in the EU (based on hourly data).  The color spectrum reflects increasing installed capacity (in the 

interacting technology), with black indicating 0 GW, dark green indicating 100 GW, and purple indicating 

1000 GW.  

Next, the 21 points corresponding to every 5th percentile (beginning with the peak or 100th %-ile, the 

95th, 90th, … , 5th, and minimum or 0th %-ile) in the “contribution to sorted load” series were identified.  

The objective of the estimation procedure was to capture the variation across installed capacity in 

“contribution to sorted load” for each of these 21 points in the hourly distribution.  The hourly-based 

functions (of “contribution” vs. installed capacity), against which error for the estimated functions was 

measured, are shown in black for the 100th, 75th, 50th, 25th, and 0th percentile of wind and solar in Figures 

B6 and B7 respectively.  Although the estimation was conducted for installed capacity levels between 

100 and 1000 GW in 100 GW increments, the “contribution to sorted load” for lower capacity levels can 

also be calculated.  The black lines in Figures B6 and B7 include data for the range between 10 and 100 

GW at 10 GW increments.  For both wind and solar there is strong non-linear behavior over this range 

around the high and low percentiles.  However, caution should be used in interpreting this result, as 

small increments are more subject to idiosyncrasies in the hourly data. 

 

   
Figure B6.  Continental Wind:  Contribution to Sorted Load at different percentiles as a function of 

installed wind capacity in the EU.  Solid black line reflects hourly data, dashed red line reflects estimated 

coefficients. 

A least squares error-estimation procedure was used to find polynomial coefficients for which the 

renewable output based on the estimated function of capacity most closely matched the “contribution 

to sorted load” in each of these 21 points.  The results of the estimation are shown in Figures B6 and B7 

as dashed red lines.  Wind output was estimated with linear and quadratic terms, which become 

constant and linear terms respectively when normalized by capacity in Figure B6 and B7.  Solar was 

estimated with an additional cubic term, which becomes a quadratic term when normalized by capacity, 

to better fit the underlying hourly data.13  For continental wind and solar, the estimation was conducted 

                                                           
13

 It is worth noting that the estimation procedure is easier for a region like Europe in which electricity demand 
peaks in winter after sunset, thus implying that solar has a zero contribution to peak regardless of its penetration 
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over the joint residual load curves, so that the coefficients are chosen taking into account interaction 

effects.  Thus for example the estimated contribution in the minimum load percentile for solar does not 

precisely follow the hourly contribution of solar alone because it is designed to best match solar’s 

contribution as it varies over the wind capacity domain.  However, the interaction term itself was found 

to have little effect and hence was omitted in the current simulations.  For the North Sea classes, the 

estimation included only linear and quadratic “own-capacity” terms.  Ideally, all interactions would be 

explored in the estimation, but this proved too dimensionally complex for the initial implementation and 

was left for future work.  Similarly, future work should check for the robustness of the estimation to 

multiple years of data. 

 

    
Figure B7.  Continental Solar PV:  Contribution to Sorted Load at different percentiles as a function of 

installed wind capacity in the EU.  Solid black line reflects hourly data, dashed red line reflects estimated 

coefficients. 

Several additional constraints were placed on the estimation.  First, the coefficients must preserve the 

average capacity factor for any penetration level.   This constraint is typically satisfied by ensuring that 

the linear coefficients have a weighted sum14 equal to the average capacity factor and the higher-order 

coefficients have a weighted sum equal to zero.  Thus the linear term (i.e. constant when expressed as a 

coefficient on capacity) in each segment reflects the contribution to sorted load when capacity is zero, 

or the marginal contribution of the first unit of capacity.  Second, to ensure that the marginal 

contribution to sorted load in all segments remains positive throughout the domain of installed capacity, 

we require the first derivative of the polynomial function of output in each segment to be non-negative.  

This constraint avoids a situation in which adding wind or solar capacity above a certain level could 

require an input of energy in one segment in order to get output in others.  Such a situation cannot 

occur by construction in the hourly series.  Finally we require the linear coefficients to be non-negative, 

and we fix the solar coefficients in the peak segment to zero.  

  

                                                                                                                                                                                           
level.  In a region like the US with a summer afternoon system peak, solar initially contributes significantly to the 
peak, but as penetration increases, the residual peak shifts to a nighttime hour, driving the solar peak contribution 
abruptly to zero.  Such a pattern is more challenging to capture with a polynomial estimator. 
14

 Each segment is weighted by its number of hours, 438 = 8760 / 20 for all but the top two segments, which are 
equal to 1 for the peak and 437 for the second segment.  Thus the sum of the 21 weights equals 8760. 
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