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Abstract in English 

We use a dynamic stochastic general equilibrium model to determine efficient discount rates for 

climate (mitigation and adaptation) and non-climate investment in the face of climate change. 

Our main result is that the non-diversifiable risk in the economy may be related to both shocks 

in aggregate wealth and shocks in global average temperature. Therefore, both aggregate wealth 

and global average temperature will carry a risk premium reflecting their contribution to the 

total amount of non-diversifiable risk. We characterize both climate and non-climate 

investments by means of a contingent claim and show that climate and non-climate investments 

will in general be discounted at different rates. We discuss the conditions under which the 

discount rates of climate investments will be lower than the discount rate of non-climate 

investments.  

 

Key words: discounting, adaptation, mitigation, climate change, risk premia, dynamic 

stochastic general equilibrium model 

 

JEL code: G12, H43, Q5, Q54 

 

Abstract in Dutch 

Door gebruik te maken van een dynamisch stochastisch algemeen-evenwichtsmodel zijn we in 

staat om efficiënte discontovoeten te bepalen voor investeringen in adaptatie en mitigatie. Ons 

belangrijkste resultaat is dat het systematische risico in een economie die geconfronteerd wordt 

met klimaatverandering, bestaat uit twee componenten. De eerste component reflecteert het 

systematische risico verbonden aan (financieel) vermogen, de tweede het systematische risico 

verbonden aan klimaatverandering. Elke component kent zijn eigen risicopremie. Het gevolg 

hiervan is dat de discontovoet voor investeringen in adaptatie en mitigatie over het algemeen af 

zal wijken van de discontovoet voor ‘normale’ investeringen. We bespreken de condities 

waaronder investeringen in adaptatie en mitigatie met een lagere discontovoet gedisconteerd 

moeten worden. 

 

Steekwoorden: disconteren, adaptatie, mitigatie, klimaatverandering, risicopremie, dynamisch 

stochastisch algemeen-evenwichtsmodel 
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1 Introduction 

Suppose we are asked to value two investments which are equally risky in terms of aggregate 

wealth. The only difference between these investments is that the first one is a climate 

investment, i.e. an investment in mitigation or adaptation, whereas the second one is a non-

climate investment. Should we then require these investments to earn the same rate of return at 

each moment in time? That is, should we apply a uniform discount rate to value them?
1
 A 

persuasive argument in favour of a uniform discount rate rests on the notion of the opportunity 

cost of capital and is at the heart of the logic of the descriptive approach to climate change.
2
 

Arrow et al. (1996) describe the basic logic behind this approach as follows. Suppose that the 

rate of return on climate investments lies below the market return of non-climate investments. 

Total welfare can then be improved by increasing the level of non-climate investments at the 

expense of climate investments until the difference in their respective rates of return is 

eliminated.  

 

Although the descriptive approach has been challenged by many inside and outside the 

economic profession for its use of market-based returns, the use of a uniform discount rate for 

climate and non-climate investments has, perhaps surprisingly, hardly received any criticism.
3
 

For example, proponents of the prescriptive approach on climate change, like Cline (1992) and 

Stern (2007, 2008), have argued on ethical grounds that market interest rates should not be used 

as a benchmark for the social discount rate (SDR). However, they never challenged the idea that 

the discount rate should be uniform. This has made the prescriptive approach vulnerable to the 

counterargument that a low SDR would lead to very high saving rates (see f.e. Nordhaus (2007) 

and Dasgupta (2008)). Another strand of literature has questioned the tendency of the 

descriptive approach to extrapolate the level of the current market interest rate (indefinitely) 

into the future, but not the idea that the discount rate should be uniform. For example, 

Weitzman (1998) shows that uncertainty about the appropriate rate of return on capital in the 

far-distant future will lead to a declining discount rate (DDR) over time. Still, all investments 

should be discounted at a uniform rate because in his model the discount rate for any project 

depends solely on the time-horizon of the project’s benefits. 

 

Although (part of) the motivation for using either the SDR or DDR approach lies within risk 

associated with climate change,
4
 neither of them has formally modelled environmental 

 
1
 Note that discount rates for the time frames under consideration are in fact not observable. This does not, however, 

interfere with the issue under consideration in this paper: why use the same discount rate for climate and non-climate 

investments at each point in time? 
2
 The term ‘descriptive approach’ is due to Arrow et al. (1996). The best-known proponent of the descriptive approach is 

Nordhaus (2008). 
3
 Recently, Weitzman (2007) has suggested that that the beta of climate investments might actually be lower than the beta 

of non-climate investments.  
4
 A low value of the SDR has been motivated partly by choosing a low value for the coefficient or relative risk aversion. 
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uncertainty as the central feature of climate change while recognizing that (i) this environmental 

uncertainty is endogenous, i.e. it is generated by our own activities; and (ii) the environment 

may have an (uncertain) feedback on economic activity and welfare. In this paper, we develop a 

stochastic dynamic general equilibrium model that accounts for these drawbacks. In our model 

climate change is uncertain. It affects, and is affected by, economic activity and welfare. The 

model encompasses four ways in which climate change may affect welfare. First, climate 

change may affect welfare indirectly, by changing the marginal value of consumption. Second, 

climate change may affect welfare directly, by changing the amenity value.
5
 Third, climate 

change may affect both the expected rate of return and the volatility of production. Fourth, 

climate change may lead to an increase or decrease in volatility of climate change itself. This 

allows us to study the relationship between the risk premium of an investment on the one hand 

and the presence of economic and environmental risk on the other hand. Our main results are 

twofold. First, we show that the discount rate for any investment can be written as a function of 

(i) the risk free rate; (ii) the risk premium with respect to wealth; and (iii) the risk premium with 

respect to temperature. Second, and this is our main result, we show that climate and non-

climate investments will in general be discounted by a different discount rate. It must be 

emphasized that our result is fully consistent with any argument on the opportunity cost of 

capital provided one recognizes that the opportunity cost of capital may be determined by both 

economic and environmental risk. 

 

This paper is organized in the following way. In Section 2, we present our model and derive 

expressions for the level of the risk-free interest rate and the equilibrium prices of risk. Section 

3 characterizes climate and non-climate investments in terms of contingent claims and shows 

that in general climate investments are discounted at a different rate than non-climate 

investments. In section 4, we discuss the results in terms of current knowledge on (the 

economics of) climate change. Section 5 concludes. 

 
5
 That is, we use a bivariate utility function. Hoel and Sterner (2007) and Gollier (2008) analyze the effect of such a function 

on the risk free rate under certainty and uncertainty, respectively. 
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2 The model 

We consider a simple general equilibrium model with two aggregate consumption goods. The 

first is produced consumption, denoted by ( )C t . The second is an aggregate environmental bad, 

like temperature, ( )T t . The index t  denotes time. The representative consumer maximizes 

expected utility of these consumption goods over time: 

[ ( ), ( )]t

o
J E e U C t T t dtδ

∞
−≡ ∫  (2.1) 

where (.)U  denotes the utility function of the representative consumer and δ is the utility 

discount rate. Utility is increasing in consumption, 0
C

U > , decreasing in temperature, 0
T

U <  

and concave in both consumption and temperature , 0
CC TT

U U < . Production of the aggregate 

consumption good is considered to take place in n  different sectors and is described by the 

following system of stochastic differential equations:
6
 

( ) ( , ) ( , ) ( )
K K

dK t I T t dt I G T t dw tα= +  (2.2) 

Here, ( )K t  is a vector of size n  representing invested capital in each of the n sectors, 
K

I is an 

nxn  diagonal matrix whose ith diagonal element is the ith component of ( )K t  and ( )w t is an 

1n +  dimensional Wiener process in 1nR + . Finally, ( , )T tα is a n dimensional vector and 

( , )G T t is an ( 1)n n× + matrix. ( , )T tα denotes the expected rates of return of these production 

processes, whereas ( , ) ( , )G T t G T t ′ denotes the covariance matrix of the rates of return. Notice 

that (2.2) includes the case in which the n  production processes are a geometric Brownian 

motion. 

 

The environmental bad, temperature, evolves according to the following stochastic differential 

equation: 

( ) ( ( ), ( )) ( ( ), ) ( )dT t T t K t dt s T t t dw tθ γ ′ ′= +  (2.3) 

where γ  is a vector whose ith element is describing the pollution intensity of the ith sector and 

( ( ), ) ( ( ), )s T t t s T t t′  is the variance of temperature. Here, ( ( ), )s T t t is a vector of dimension 1n ×  

and γ is of dimension 1n × . The flow of pollution ( )K tγ ′  is fully determined by size and 

distribution of the capital stock over the n  sectors. This implies that in each sector the ratio 

between capital and pollution is fixed. Pollution depends of the expected rate of return in the 

economy, ( )( ) /
K

E dK t dt I α= . This follows from the observation that the flow of 

 
6
 To facilitate interpretation we present the stochastic differential equation for sector i, where we have divided both sides by 

( )
i

K t . This differential equation reads:  ( ) / ( ) ( , ) ( , ) ( )i i i idK t K t T t dt g T t dw tα= + . Here,
ig is the ith row vector of G . 
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pollution ( )
K

K t Iγ γ α′ ′= ɶ , where 
i i i

γ γ α=ɶ .
7
 Pollution leads to an expected drift in 

temperature, which is co-determined by the current level of temperature, ( )T t . Although 

equation (2.3) includes a broad range of stochastic processes for the evolution of temperature 

over time,
8
 we do not defend the position that the impact of carbon dioxide on the stochastic 

process of temperature can be described anywhere along the lines of equation (2.3). All that is 

important for our purposes here is that the flow of pollution changes the drift of temperature and 

that this change is positive, i.e. 
2

0θ > . Moreover, it would be possible - albeit at the cost of 

greater complexity – to write down a more comprehensive model describing the interaction 

between the emissions of carbon, the stock of carbon in the atmosphere and oceans, the sea 

level and temperature.
9
 

 

Equations (2.1)-(2.3) show that temperature may affect utility in three ways. First, it may affect 

utility directly. Higher temperatures lead to lower utility. Second, it may affect utility indirectly 

by changing the marginal value of consumption. Third, it may affect utility indirectly by both 

changing the expected rates of return, the volatility of production in each of the n  sectors as 

well as the volatility in temperature itself. 

 

In the model, abatement is represented by shifting investment in capital from dirty to clean(er) 

sectors. When abatement is costly we have: 

1 2 1
0

n n
γ γ γ γ−= < < <⋯  and  

1 2 1
0

n n
α α α α−< < < < <⋯  (2.4) 

That is, sectors with lower pollution intensities, represented by a lower i , have a lower expected 

rate of return. Since all sectors produce the same aggregate consumption good, one may think 

of these sectors using different energy inputs. For example, in the case of two sectors, sector 1 

may use renewables having zero pollution and a low expected rate of return, , whereas sector 2 

may use coal for its production process having a high rate of pollution and a high expected rate 

of return. The use of a different energy source as input may – besides affecting the expected rate 

of return – also effect the variability and the covariance of the returns. Notice that under our 

assumptions it is possible that optimal investment is zero in some sectors. As in CIR (1985) we 

explicitly allow for this possibility. The covariance between unanticipated changes in ( )K t  and 

( )T t  is given by s G′ . For the moment we postpone the discussion of its sign and simply note 

that this covariance is allowed to be either positive, zero or negative depending on the sector. It 

may also change sign over time. 

 

 
7
 Alternatively, pollution could be made dependent on the actual rate of return. We will discuss this case in section 4.  

8
 Examples are (Geometric) Brownian motion as well as (Geometric) Mean Reversion (see e.g. Metcalf and Hasset, 1995). 

9
 See for example Cox, Ingersoll and Ross (1985) who model the movement of a k-dimensional vector of state variables. 
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Individuals can lend and borrow at an endogenously determined interest rate r  and can invest 

in each of the n  production possibilities and one contingent claim. The value of this claim is 

governed by the following stochastic differential equation:  

( ) ( )dF F dt Fh dw tβ ζ ′= − +  (2.5) 

and will depend in general on all variables necessary to describe the state of the economy. Here, 

F β  is the total mean return on the claim and ζ  is the payout received. Notice that it is not 

necessary to assume relation (2.5). It can be derived within the context of the model (see 

Appendix A). h is an 1n + dimensional vector. The variance of the rate of return on this claim is 

given by h h′ .  

 

The representative individual allocates his wealth among the ( 1)n +  investment opportunities in 

the basis and the riskless opportunity, borrowing or lending.
10

 His budget constraint is then 

described by 

( ) ( )( 1) ( 1) ( )dW a r W b r W rW C dt W a G bh dw tα β′ ′ ′= − + − + − + +  (2.6) 

where aW  and bW  denote the amount of wealth invested in each of the production processes 

and the contingent claim. Expected changes in wealth are determined by the excess return
11

 on 

the production processes and the contingent claim plus the risk free return minus (the flow of) 

consumption. We want to maximize utility over consumption and the investment strategy. 

Setting up the Bellman equation we get
12

 

{ }
, ,

( , )
( , ) max ( , )

C a b

E dJ W T
J W T U C T

dt
δ

  
= +   

 (2.7) 

where the maximum is subject to 0, 0C a≥ ≥ . Using (2.3) and (2.6) and the fact that in 

equilibrium invested capital must equal the share of wealth allocated to each sector, i.e. 

( ) ( )K t aW t= , (2.7) can be written as: 

, ,

2 2 21

2

1

2

( , ) max { ( , ) ( )

( 2 )

( ) }

W T
C a b

WW

WT TT

J W T U C T W W J J

W a GG a W a Ghb W bh hb J

Wa Gs Wbh s J s sJ

δ µ θ= + + +

′ ′ ′ ′+ + +

′ ′ ′+ +

 (2.8) 

 
10

 The basis is defined as the set of production processes and contingent claims such that any other contingent claim can be 

written as a linear combination of the assets in the basis. See Merton (1977) for a complete description of this concept. 
11

 The return in excess of the equilibrium interest rate. 
12

 Throughout the paper we assume that the problem is well-defined, i.e.  0WJ > , 0TJ < , 0
TT

J < , 0WWJ <  and 

2( ) 0
WW TT WT

J J J− > . 
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where ( )( ) /W W E dW dtµ =  and ( ( ), ( ))T t K tθ θ γ ′= . For the value function subscripts denote 

derivatives with respect to the states W and T . Differentiating (2.8) with respect to the controls 

,C a en b gives the first order conditions
13

 

( ) ( )

( ) ( )

2

2

2

0

0

1 0

0

0

C C W

C

a W T WW WT

a

b W WW WT

U J

C

r WJ WJ GG a Ghb W J GsWJ

a

r WJ h G a h hb W J h sWJ

ψ

ψ

ψ α θ γ

ψ

ψ β

= − ≤

=

′= − + + + + ≤

′ =

′ ′ ′ ′= − + + + =

 (2.9) 

where , ,
C a b

ψ ψ ψ are defined implicitly and 
2

θ  denotes the partial derivative of θ  with respect 

to its second argument, the flow of pollution. We follow CIR (1985) in defining an equilibrium 

as a set of stochastic processes ( , ; , )r a Cβ  satisfying (2.9) and the market clearing conditions 

1
i

a =∑ and 0b = . We now turn to the determination of the equilibrium values of r and β . 

The equilibrium interest rate is given by
14

 

2

var ( ) cov ( , )
ˆ( , , ) ( ) WW WTT

W W W

J JJ W W T
r W T t a

J J W J W
α θ γ

   − −   
′= + − −            

. (2.10) 

while the equilibrium expected excess rate of return on any contingent claim F is given by 

( )
W W T T

r F F Fβ ϕ ϕ− = +  (2.11) 

Here, 
W

ϕ  and 
T

ϕ  are the risk premia associated with the state variables wealth and 

temperature. These are given by 

var( ) cov( , )WW WT

W

W W

J J
W W T

J J
ϕ

   − −
= +      

 (2.12) 

var( ) cov( , )WT WW

T

W W

J J
T W T

J J
ϕ

   − −
= +      

 (2.13) 

Here, the risk premium 
W

ϕ  can be interpreted as the excess expected return on an asset whose 

value is always equal to W . To see this construct an asset whose value is always equal to W , 

i.e. F W= . For such an asset, we have 1
W

F = and 0
T

F = . Hence, from (2.11) we have 

( )
W

r Fβ ϕ− = . An identical interpretation holds for 
T

ϕ . Combining equations (2.11) with 

(2.12) and (2.13) gives 

( ) cov( , ) /
W W

r F J FJβ − = −  (2.14) 

 
13

 We refer to CIR (1985) for the assumptions under which such an equilibrium exists. 
14

 Proofs of equations (2.10) - (2.14) are given in Appendix B.  
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The expected excess return on a contingent claim is equal to the negative of the covariance of 

its rate of return with the rate of change in the marginal utility of wealth. Individuals demand a 

higher rate of return on assets that tend to pay of more when marginal utility is lower. Hence, 

such securities will have a higher risk premium. Our results are similar to the results obtained 

by CIR (1985) with the exception of (2.10). It is the expected social return on assets, 

2
ˆ ( )

T W
a J Jα θ γ′ + , not the expected private return, â α′ , that is relevant for the equilibrium 

interest rate in the social optimum. The damage caused by an increase in temperature as a result 

of an additional unit of pollution – measured in terms of the marginal utility of wealth – must be 

subtracted from the private return on markets in order to get the equilibrium interest rate in the 

social optimum. This is intuitive as the equilibrium interest rate measures the expected rate of 

change in the marginal utility of wealth which is equal to the expected social rate of return on 

wealth plus the covariance of the rate of return on wealth with the rate of change in the marginal 

utility of wealth.
15

 Finally, in case ( , ) ( )U C T U C=  it is easy to show that the expression for the 

risk free rate in (2.10) simplifies to the extended Ramsey equation. Under certainty, it simplifies 

further to the Ramsey equation.
16

 This implies that the discussion on discounting in the 

literature (see for example Stern (2007), Nordhaus (2007) and Dasgupta (2008) is in fact a 

discussion on the appropriate level of the risk free rate. 

 

Regarding the intuition behind the risk premia, first consider an asset whose value is perfectly 

correlated with wealth. Such an asset will command an excess expected return of 
W

ϕ . The 

payoff of this asset will be high (low), when wealth is high (low). Hence, it requires a positive 

risk premium, which is reflected by the first part of the RHS of (2.12). The sign of the effect of 

temperate on the risk premium for wealth depends on the signs of 
WT

J  and cov( , )W T . If both 

are positive, the second part of (2.12) will be negative.  In that case, the payoff of the asset is 

high (low) when wealth and temperature are high (low) as the latter are positively correlated. 

Given that high (low) temperatures lead to a high (low) marginal value of wealth, the payoff of 

such an asset is high (low) when the marginal value of wealth is high (low). The intuition 

behind the risk premium for temperature which is displayed in (2.13) is similar. 

 

Before relating our results to the economic literature on global warming, we provide further 

intuition for the risk premia. To that effect we rewrite equations (2.12) and (2.13) as follows 

(see Appendix E):  

ˆcov( , ) cov( , )CC CT

W

C C

U U
C W W T

U U
ϕ

   − −
= +      

 (2.15) 

ˆcov( , ) var( )CC CT

T

C C

U U
C T T

U U
ϕ

   − −
= +      

 (2.16) 

 
15

 For a proof, see appendix C. 
16

 For a proof, see Appendix D. 
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We are now ready to decompose the risk premia into a risk premium belonging to the level of 

consumption (‘the level effect’) and a risk premium belonging to the change in marginal utility 

(‘the utility effect’). Consider first an asset whose value is perfectly correlated with wealth. The 

risk premium corresponding to the level effect is equal to the product of coefficient of absolute 

risk aversion times the covariance of optimal consumption and wealth. This is a familiar result 

in the asset pricing literature, see f.e. Breeden  (1979). Notice that although temperature does no 

longer appear in ˆcov( , )C W  it is actually subsumed in it (see Appendix E for details). The risk 

premium corresponding to the utility effect is equal to the product of the relative change in the 

marginal utility of consumption times the covariance between wealth and temperature. To give 

an example of the utility effect, suppose that consumption and temperature are substitutes in the 

sense of Edgeworth-Pareto, i.e. 0
CT

U <  and that wealth and temperature move together, i.e. 

cov( , ) 0W T > . First, high (low) wealth implies a low (high) marginal value of wealth. Second, 

we have from the assumption that wealth and temperature are moving together that high (low) 

wealth will mean high (low) temperature. As consumption and temperature are substitutes high 

(low) temperature will entail low (high) marginal utility of consumption. Summarizing, we have 

that high (low) wealth means low (high) marginal utility not only because wealth is high, but 

also because consumption is valued less. The utility effect reinforces the level effect. This is 

reversed when consumption and temperature are complements. This is intuitive as when goods 

are substitutes the value of goods moving together is less compared to the case where they are 

complements. It is also reversed when wealth and temperature are moving in opposite 

directions. 

 

Next, we turn to risk premium for temperature. Consider an asset whose value is perfectly 

correlated with temperature. The risk premium corresponding to the level effect is equal to the 

product of coefficient of absolute risk aversion times the covariance of optimal consumption 

and temperature. Again notice that although wealth does no longer appear in ˆcov( , )C T  it 

actually is subsumed in it (see Appendix E for details). The risk premium corresponding to the 

utility effect is equal to the product of the relative change in the marginal utility of consumption 

times the variance of temperature. To give an example of the utility effect: if consumption and 

temperature are substitutes in the sense of Edgeworth-Pareto, i.e. 0
CT

U < , high (low) 

temperature will mean that the marginal utility of consumption is low (high). From the 

consumer’s point of view, valuing (the marginal unit of) existing consumption less is equivalent 

to having more consumption (which reduces the value of the marginal unit of consumption). 

Hence, whenever consumption and temperature are substitutes in consumption it is as if they 

tend to move together. This leads to a positive risk premium as the first part on the RHS of 

(2.18) shows. This conclusion is reversed when consumption and temperature are complements. 
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3 Discounting climate investments 

The cost-benefit ratio of long-term projects like the prevention of climate change depends 

crucially on the choice of the discount rate. The Stern Review uses a discount rate of 1.4% per 

annum and concludes that “the benefits of strong, early action considerably outweigh the 

costs.”
17

 In his most recent study, Nordhaus (2008) uses a discount rate of 5.5% for the first half 

century and 4% for the first century.
18

 His conclusion is that “efficient emissions reductions 

[…] involve modest rates of emissions reductions in the near term, followed by sharp 

reductions in the medium and long terms.” That the choice of discount rate is for a large part 

‘responsible’ for the widely diverging conclusions of Stern and Nordhaus has been made 

plausible by Nordhaus when he recalculates the optimal policy using Stern’s discount rate. This 

Stern Review run of the DICE model produces results similar (in terms of the required carbon 

tax)  to the Stern Review.
19

 So, the choice of the discount rate seems to be the crucial variable 

in judging whether or not early action is the efficient strategy in the face of climate change.  

 

The above argument hinges on the assumption that all investments in the economy – climate 

and non-climate investments
20

 – (should) earn the same rate of return.
21

 A lower required return 

on climate investments compared to non-climate investments would raise the level of climate 

investments without inducing inefficiencies. This possibility has been brought forward by 

Weitzman (2007) who has argued that the beta of climate investments might indeed be lower 

than the beta of non-climate investments. In order to frame this issue in terms of our model, we 

distinguish between non-climate investments, investments in adaptation and investments in 

mitigation and describe the benefits of these investments as contingent claims. These are 

denoted by the superscripts ,n a  en m  respectively.  Thus, ( , )aF W T denotes the value of the 

benefits of an investment in adaptation. The specification of the claim includes a full 

description all the benefits (payoffs) that may be received from that claim. These benefits may 

depend on the state variables aggregate wealth and temperature. In a similar way the contingent 

claims, ( , )mF W T  and ( , )nF W T , denote the value of the benefits of an investment in mitigation 

and the value of a non-climate investment respectively.
22

 Using (2.11), we have that the 

difference in the equilibrium expected rate of return between a climate investment, either 

adaptation or mitigation, and non-climate investments is given by  

 
17

 Stern Review, Executive summary, page vi, http://www.hm-treasury.gov.uk/d/Summary_of_Conclusions.pdf. 
18

 “With this pair of assumptions, the real return on capital around 5 ½ percent per year for the first half century of the 

projections, and this is our estimate of the return on capital.” (p. 61) and “The estimated discount rate in the model averages 

4 percent per year over the next century”  (p. 10)  
19

 Similar conclusions have been drawn by Hope (2006a) and Mityakov (2007). 
20

 We use the term non-climate investments to denote all investments except climate investments. 
21

 Nordhaus is aware of this argument: “the discussion here assumes that climatic investments share the risk properties of 

other capital investments.” (Nordhaus 2008, p. 217, footnote 18).  
22

 Here, we have used the fact that the expected rate of return of contingent claims not in the basis are uniquely determined 

by the equilibrium expected rate of return of those in the basis. CIR (1985, p. 374) show that equation (2.11) holds for all 

claims, basis and non-basis. 
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( ) ( ) ( ), , .
i n i n i n

i n W W T T T T

W T Ti n i n i n

F F F F F F
i a m

F F F F F F
β β φ φ φ− = − + − = − =   (3.1) 

where we have assumed that all investments have equal risk characteristics in terms of wealth.
23

 

Equation (3.1) shows that the difference in the equilibrium expected rate of return between 

climate and non-climate investments is given by ( / / )i i n n

T T T
F F F Fφ − , the product of the risk 

premium with respect to temperature and the difference of the percentage change in the value of 

the contingent claims with respect to temperature. For non-climate investments and high 

enough temperatures, this partial derivative will be negative: an increase in temperature will 

decrease the value of a non-climate investment, i.e. 0n

T
F < . Notice that this is simply a 

restatement of the fact that climate change will damage the economy, that is 0
T

J < . We 

recognize that some sectors in some countries might actually benefit from a modest rise in 

temperature (see f.e. Tol (2008)), but focus on the more long-term and more interesting  case in 

which higher temperatures result in damages. As the benefits of mitigation and adaptation are 

equal to the avoided damages, we have , 0a m

T T
F F > . A rise in temperature increases the value of 

a climate investment (see also Stern, 2007, Ch. 18). Hence, we have that climate investments 

can be seen as a hedge for non-climate investments with respect to changes in temperature. 

However, as climate investments may be risky with respect to wealth, they are not necessarily a 

hedge with respect to changes in wealth. 

 

We are now finally in the position to write down the major contributions of the paper. The 

following proposition specifies sufficient and necessary conditions for climate investments to 

have a lower, equal or higher expected equilibrium rate of return than non-climate investments. 

 

Proposition 1 Given equal risk characteristics in terms of wealth, the difference in the 

equilibrium expected rate of return between climate and non-climate investments given by (3.1) 

is determined by the sign of the risk premium with respect to temperature, 
T

φ .  

 

The proposition follows immediately from (3.1) and the fact that , , 0
m a n

F F F >  and 

, 0, 0m a n

T T T
F F F> < . Proposition 1 allows us to make two observations. First, climate and non-

climate investments must in general be discounted at a different rate. Only in the special case 

where 
,

: cov( , ) var( )
W T WW WT

W T J T J∀ = −  , we have that 0
T

φ = . Second, in any model without 

environmental risk,
24

 i.e. var( ) 0T = , climate and non-climate investment must be discounted at 

the same rate of return given that they have similar risk characteristics in terms of terms of 

 
23

 Of course, the risk premia of two investments may differ because the investments have different risk characteristics in 

terms of wealth. As the focus of this paper is on different risk characteristics in terms of temperature, we will assume 

throughout this section that the risk characteristics in terms of wealth are equal.  
24

 To the best of our knowledge almost all the major Integrated Assessment Models fall into this category with the exception 

of Stern (2006) and Nordhaus (2008, Ch. 7).  
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wealth. This follows from the fact that var( ) 0T = implies cov( , ) 0W T = . Hence, by (2.13) we 

have 0
T

φ = . 
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4 The sign of the risk premium with respect to temperature 

The sign of the risk premium with respect to temperature, 
T

φ , is determined by the sign of the 

partial derivative of (optimal) consumption with respect to temperature, the cross-derivative of 

the utility function and the covariance between wealth and temperature. In this section, we 

discuss possible restrictions on the sign of these determinants and interpret these in terms of 

literature on (the economics of) climate change.  

 

We start with the case where both the cross-derivative of the utility function,
CT

U , and the 

covariance between wealth and temperature, cov( , )W T , are zero. This case is of considerable 

interest as it includes as a special case the type of climate change model used in the literature 

(Stern (2007), Nordhaus (2008)).
25

 The risk premium with respect to temperature is given by 

ˆ var( )
T CC C T

U U C Tφ = −  implying that its sign is fully determined by the sign of the partial 

derivative of optimal consumption with respect to temperature.
26

 What do we know about the 

change in consumption as a result of a change in temperature when the level of wealth constant? 

Suppose for the moment that the change in temperature will result in a decrease in future wealth 

and will leave the variance of the stochastic processes of wealth and temperature unchanged. 

The decrease of future wealth implies a rise of the marginal value of future wealth. Hence, the 

consumer would like to increase future wealth at the expense of current wealth by reducing 

current consumption. Under the conditions specified, both the sign of the partial derivate of 

consumption with respect to temperature and the risk premium with respect to temperature will 

be negative. Climate investments are discounted at a rate smaller than non-climate investments. 

When the increase in temperature affects the (co)variance of the stochastic processes of either 

wealth or temperature or both, additional effects may come into play. For example, an 

exogenous increase in uncertainty increases the prudent consumers’ willingness to save, which 

is reflected in higher risk free rate (Leland (1968)). The increased willingness to save decreases 

current consumption, i.e. the partial derivative of uncertainty on consumption is negative for a 

prudent consumer. In the context of a stochastic dynamic model of optimal consumption Gollier 

(2002a, 2002b, 2007) shows that the properties of the term structure of the risk free rate depend 

on both the properties of the utility function and the properties of the stochastic process of 

wealth.  In the special case where the growth of the economy follows a stationary random 

process and the representative agent has a constant relative risk aversion, the wealth and 

uncertainty effect exactly compensate each other.
27

  

 
25

 Both Nordhaus (2008) and Stern (2007) use ( , ) ( )U C T U C= and (implicitly) assume cov( , ) 0W T = . 
26

 There exists a sizeable literature on the Environmental Kuznetz Curve by now. Recent theoretical work includes papers by 

Andreoni and Levinson (2001) and Johansson and Kriström (2007). Note, however, that his literature is concerned with the 

sign of the total derivative of consumption with respect to the flow pollution instead of the partial derivative of consumption 

with respect to temperature (which is a stock variable). 
27

 We are not aware of any studies that have empirically tried to estimate the partial effect of temperature on consumption. A 

number of studies have tried to estimate the partial effect of temperature on GDP though (see f,e. Horowitz (2006) and Dell 

et. al. (2008)), but we are interested the partial effect on temperature on consumption. 
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In case consumption and temperature are not independent goods in consumption, 0
CT

U ≠ , the 

risk premium with respect to temperature is given by ˆ( ) var( )
T CC T CT C

U C U U Tφ = − + . 

Inspection shows that the effect of the partial derivative is reinforced by cross derivative if their 

signs are opposite. For example, in case ˆ 0
T

C < and 0
CT

U > the risk premium with respect to 

temperature is unambiguously negative.  What do we know about the sign of this cross-

derivative? Heal (2008) observes that this “is not an issue that has been discussed in the 

literature, as we almost always work with one-good models.” Subsequently, he argues that for 

‘low temperatures’, temperature and consumption are likely to be complements, i.e. 0
CT

U > , 

whereas for ‘high temperatures’ they are likely to be substitutes, i.e. 0
CT

U < .
28

 The general 

idea here is that there is a minimum level of ecosystem services needed for survival, i.e. the 

provision of water, air and basic foodstuffs. For high temperatures, the ecosystem approaches 

its limits and there is no substitutability between the ecosystem and produced consumption 

goods. As temperature and the quality of the ecosystem are negatively related, we have that 

produced consumption and temperature must be substitutes. For low temperatures, we will still 

have substitutability between consumption and the ecosystem implying that consumption and 

temperature must be complements. In terms of the risk premium with respect to temperature, 

this means that as long as consumption and temperature are complements, the risk premium will 

decrease, thus making abatement and mitigation more attractive. This case is relevant as long as 

temperature remains ‘low’. When the limits of the ecosystem are approached, the risk premium 

will increase thereby making abatement and mitigation less attractive. This case is relevant 

when temperature is ‘high’, i.e. when the effects of climate change are likely to be severe. 

 

If the stochastic processes of wealth and temperature are dependent, the risk premium of 

temperature is given by ˆ ˆ( ) var( ) cov( , )
T CC T CT C CC C W

U C U U T U U C W Tφ = − + − .   From the 

first order condition for consumption, we can derive that ˆ 0
W

C > . Hence, the sign of the 

additional term introduced by the dependency of the stochastic processes of wealth and 

temperature will be equal to the sign of the covariance between wealth and temperature. This 

covariance captures the instantaneous movement between these state variables. In order to 

understand the type of effects captured by this covariance rewrite (2.3) and (2.6) as follows: 

( )( ) ( ) ( ) ( )

( ) ( ) ( ( ), ( ))

W t t W t a W t C t W t a G w

T t t T t T t aW t t s w

α

θ γ

′ ′+ ∆ = + − ∆ + ∆

′ ′+ ∆ = + ∆ + ∆
 (4.1) 

For small t∆ we have that ( )W t t+ ∆ is equal to ( )W t plus the expected change is the period 

( , )t t t+ ∆ plus the unexpected change at time t t+ ∆ . Notice that during the time period 

 
28

 Heal develops his argument in terms of consumption and environmental quality. As environmental quality and temperature 

are negatively related, his argument is easily restated in terms of consumption and temperature. Hence, when consumption 

and environmental quality are substitutes, consumption and temperature are complements are vice versa.  



 21 

( , )t t t+ ∆ both ( )W t and ( )T t are kept constant. Hence, any effect from temperature on wealth 

(and vice versa) may not be caused by a change in temperature (wealth). For in that case, it 

would be captured by their respective drifts. 

 

Under what circumstances may we expect the covariance between wealth and temperature to be 

different from zero? First of all, emissions at time t  may be related to the actual instead the 

expected rate of return. In that case unexpected changes in wealth will be positively correlated 

with unexpected changes in temperature as higher (lower) wealth leads to higher (lower) 

emissions. As a result the covariance between wealth and temperature would be positive. 

Second, unexpected changes in temperature at time t  may lead to (unexpected) changes in 

wealth in time t . As these changes must be contemporaneous, the effect on wealth may not 

operate through a change in temperature. This excludes most of the so-called feedback effects 

mentioned in the literature on climate change as these either increase (positive feedbacks) or 

decrease (negative feedbacks) temperature. For example, the unexpected release of methane 

from sinks on land or the deep ocean is a positive feedback. Such an unexpected release would 

raise global temperatures and hence would decrease future wealth, but would not have a 

contemporaneous effect on wealth (methane in itself does not damage wealth). A possible 

exception is an unexpected change in water vapour. Unexpected increases in water vapour may 

be contemporaneously correlated with more intense precipitation, more severe storms and more 

intense flooding (Meehl and Stocker, (2007)). This would mean that the covariance between 

wealth and temperature is negative. We are unaware of any studies that have tried to estimate 

this instantaneous covariance. Hence, not only the sign but also the magnitude of the covariance 

between wealth and temperature is undetermined. Finally, notice that a non-zero covariance 

may be the result of an underlying third factor influencing both wealth and temperature 

simultaneously. Although we cannot rule out this possibility, we are unaware that such a third 

factor actually exists. 
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5 Conclusion 

A general insight from the literature on cost-benefit analysis is that investments should be 

discounted at a rate that reflects their non-diversifiable risk in aggregate wealth. In this paper, 

we have generalized this insight to include non-diversifiable risk with respect to average global 

temperature. Using this result, we have shown that climate and non-climate investments will in 

general be discounted at a different rate. This allows us to substantiate Weitzman´s argument 

that climate investments may indeed be discounted at a lower rate compared to non-climate 

investments. Our analysis shows that this is more likely when (i) the partial derivative of 

optimal consumption with respect to temperature is smaller than zero; (ii) consumption and 

temperature are complements in consumption; and (iii) the covariance of wealth and 

temperature is negative. We have discussed when these conditions are likely to be met, but 

noted that there has been little discussion on these topics in the literature. Weitzman (2007) 

further suggested that spending more money to combat climate change may be more about 

insurance than about consumption smoothing. We note that – given a suitably chosen process 

for average global temperature – our model encompasses the possibility that climate change 

might be predominantly about small risk and large losses. 
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Appendix A 

Recognizing that the value of a contingent claim is a function of the state variables W and T , 

we get, applying Ito’s Lemma: 

[ ] 2 21

2
( , ) ( ) 2 ( )( ) ( )t W T WW WT TTdF W T F dt F dW F dT F dW F dW dT F dT = + + + + +   

Using equations (2.3) and (2.6) to substitute out dW  and dT  we get after some 

rearrangements: 

 

( ) ( )dF F dt Fh dw tβ ζ ′= − +  

 

where 

2 21

2

( )

ˆ ˆ( ( 2 ) 2 ( ) )

t W T

WW WT TT

F F F a W b W C F

F W a GG a a Ghb b h h F W a G bh s F s s

β ζ α β θ′− = + + − + +

′ ′ ′ ′ ′ ′ ′+ + + + +
 

and 

 

W W T
Fh F Wa G F bh F s′ ′ ′ ′= + +  
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Appendix B 

For convenience, we repeat equation (2.9) containing the first order conditions:  

( ) ( )

( ) ( )

2

2

2

0

0

1 0

0

0

C C W

C

a W T WW WT

a

b W WW WT

U J

C

r WJ WJ GG a Ghb W J GsWJ

a

r WJ h G a h hb W J h sWJ

ψ

ψ

ψ α θ γ

ψ

ψ β

= − ≤

=

′= − + + + + ≤

′ =

′ ′ ′ ′= − + + + =

 (B.1) 

We first turn to the proof for the expression of the equilibrium interest rate given in (2.10). 

From (B.1) we see that the equilibrium solution for ,a r and β  in terms of the (derivates of the) 

value function J is partially separable. When 0b = the third and the fourth first order condition 

determine a  and r . Given a and r , the fifth first order condition will determine β . Denote the 

equilibrium value of the control variables in (B.1) by ˆˆ ˆ( , , )C a b . As in CIR (1985) the optimal 

value of the equilibrium interest rate can be determined by examining two related planning 

problems. The first planning problem has the same physical production opportunities and 

interaction between the economy and the environment, but has no borrowing, lending and 

contingent claims. The second planning problem is identical to the first planning problem with 

borrowing and lending allowed (but contingent claims not). 

 

Let aɶ and Cɶ denotes the optimal physical investment and consumption strategy for the first 

planning problem and Jɶ the corresponding indirect utility (or value) function. The portfolio 

allocation of the first planning problem can now be written as a quadratic programming 

problem: 

max

subject to

1 1

0

a
a a Da

a

a

φ′ ′+

′ =

≥

 (B.2) 

where 
2W T WT

WJ WJ GsWJφ α θ γ= + +ɶ ɶ ɶ  and 21

2 WW
D GG W J′= ɶ . Notice that solving (B.2) gives 

the third and fourth first order condition of (B.1) when there is no borrowing or lending, i.e. 

0r = , and there are no contingent claims, i.e. 0b = . As aɶ is optimal, then by the Kuhn-Tucker 

theorem there exists a λɶ such that 

*1 2 0

( *1 2 ) 0

Da

a Da

φ λ

φ λ

− + ≤

′ − + =

ɶ ɶ

ɶɶ ɶ
 (B.3) 
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Here λɶ is the shadow price corresponding to the market clearing condition 1 1a′ = . Now we turn 

to the second planning problem with borrowing and lending at rɶ and indirect utility at J
ɶɶ . 

Comparing the first and the second planning problem shows that if J J=
ɶɶ ɶ and 

W
r WJλ= ɶ ɶɶ , we 

have that ( , , )r a Cɶɶ ɶ is the equilibrium for the second planning problem. The equilibrium interest 

rate in this economy is proportional to the shadow price, λɶ , in the first planning problem. 

Hence, in equilibrium we will have Ĉ C= ɶ , â a= ɶ , r r= ɶ and J J J= =
ɶɶ ɶ . This gives the 

following expression for the equilibrium interest rate: 

21
2 2

2

ˆ ˆ( 2 )
( , , )

var ( ) cov ( , )
ˆ ( )

W T WT WW

W W

WW WTT

W W W

a WJ WJ GsWJ GG aW J
r W T t

WJ WJ

J JJ W W T
a

J J W J W

α θ γλ

α θ γ

′ ′+ + +
= =

   − −   
′= + − −            

ɶ

 (B.4) 

The last step follows directly by substituting in the expressions for the variance of wealth and 

the covariance between wealth and temperature evaluated at the optimal values for a and b . 

These definitions follow directly from (2.3) and (2.6). 

 

Subsequently, we turn to the proof for the expression of the expected rate of return on any 

contingent claim (2.11) and the associated risk premia (2.12). Rearranging the fifth first order 

condition of (B.1) and multiplying by F we get:  

[ ] [ ]

ˆ

ˆ ˆ ˆ

WT WW

W W

WT WW

W M W T

W W

W W T T

J WJ
F rF Fh s Fh G a

J J

J WJ
rF F Wa G F s s F Wa G F s G a

J J

rF F F

β

ϕ ϕ

′ ′ ′= − −

′ ′ ′ ′ ′= − + − +

= + +

 (B.5) 

Here, we have used the expression for Fh′  (evaluated at 0b = ) that was derived in Appendix 

A for the second equality and have rearranged terms on 
W

F  and 
T

F to derive the third equality. 

The risk premia 
W

ϕ  and 
T

ϕ have been implicitly defined and are equal to 

 

ˆ ˆ ˆ

var( ) cov( , )

WT WW

W

W W

WW WT

W W

J WJ
Wa Gs Wa GG a

J J

J J
W W T

J J

ϕ ′ ′ ′= − −

   
= − + −      

 (B.6) 
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ˆ

var( ) cov( , )

WT WW

T

W W

WT WW

W W

J WJ
s s s G a

J J

J J
T W T

J J

ϕ ′ ′ ′= − −

   
= − + −      

 (B.7) 

Finally, the proof of equation (2.13) is given by 

2

( ) /

ˆ ˆ ˆ ˆ

cov( , ) /

W W T T

WW W WT W WT WWT T

W W W W

W W

r F F F

J F J F J JF F
W a GGa Wa Gs s s Wa Gs

J F J F J F J F

F J FJ

β ϕ ϕ− = +

′ ′ ′ ′= − − − −

= −

 

The first equality follows directly from (B.5). The second from substituting in (B.6) and (B.7) 

as well as the expressions for var( )W , var( )T and cov( , )W T . Finally, the third equality follows 

from applying Ito’s Lemma to write out ( , )
W

dJ W T explicitly and using the result of Appendix 

A to determine cov( , )
W

F J . This completes the proof. 
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Appendix C 

We want to show that the equilibrium interest rate is equal to minus the expected rate of change 

in the marginal utility of wealth which in turn is equal to the expected social rate of return on 

wealth plus the covariance of the rate of return on wealth with the rate of change in the marginal 

utility of wealth. First, we develop an expression for the expected rate of change in the marginal 

utility of wealth by applying Ito´s Lemma to
W

dJ . This gives 

21

2

1

2

ˆˆ ˆ ˆ( ( )

ˆ ˆ) ( ) ( )

W W WW WT WWW

WWT WTT WW WT

dJ J a W C J J a GG aW J

a GWsJ s sJ dt a GWJ J s dw t

δ α θ′ ′ ′= − + − + + +

′ ′ ′ ′+ + +
. (C.1) 

Hence, the drift term in (C.1) is equal to the expected rate of change in the marginal utility of 

wealth. Second, we prove that the equilibrium interest rate equals minus the expected rate of 

change in the marginal utility of wealth. From equation (2.10) we have: 

2

1

2

1

2

var ( ) cov ( , )
ˆ( , , ) ( )

ˆˆ( var( ) cov( , ) ( )

{ }
) /

WW WTT

W W W

WWW WWT WW

W

MT WTT W W

w

J JJ W W T
r W T t a

J J W J W

W J W T J a W C J

E dJ
J s sJ J J

J dt

α θ γ

α

θ δ

   − −   
′= + − −            

′= + + − +

′+ + = −

 (C.2) 

The second equality follows from differentiating the Bellman equation (2.8) with respect to 

W recognizing that both C and a are functions of W and using the first order conditions on 

C and a . The third equality follows from (C.1). 

 

Finally, we show that the equilibrium interest rate is equal to the expected social rate of return 

plus the covariance of the rate of return on wealth with the rate of change in the marginal utility 

of wealth.  

[ ] [ ]

2

2

2

var ( ) cov ( , )
ˆ( , , ) ( )

1
ˆ ˆ ˆ( )

cov( , )
ˆ ( )

WW WTT

W W W

T

WW WT

W W

WT

W W

J JJ W W T
r W T t a

J J W J W

J
a J a GW J s a G

J J

W JJ
a

J WJ

α θ γ

α θ γ

α θ γ

   − −   
′= + − −            

′
′ ′ ′ ′= + − +

′= + +

 (C.3) 

where the third equality follows from (C.1) and (2.6). 
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Appendix D 

We want to show that the expression in (2.10) simplifies to the extended Ramsey equation if 

( , ) ( )U C T U C= . Starting from (C.2) we have: 

2

1

2

1

2

var ( ) cov ( , )
ˆ( , , ) ( )

ˆˆ( var( ) cov( , ) ( )

) /

WW WTT

W W W

WWW WWT WW

WT WTT W W

J JJ W W T
r W T t a

J J W J W

W J W T J a W C J

J s sJ J J

α θ γ

α

θ δ

   − −   
′= + − −            

′= + + − +

′+ +

 (D.1) 

Differentiation of 
W C

J U= with respect to W and T gives ˆ
WW CC W

J U C=  and ˆ
WT CC T

J U C= . 

Differentiating these expression again with respect to W and T gives 

2ˆ ˆ
WWW CCC W CC WW

J U C U C= + ,  ˆ ˆ ˆ
WWT CCC W T CC WT

J U C C U C= +  and 2ˆ ˆ
WTT CCC T CC TT

J U C U C= + . 

Substituting these expressions into (D.1) and rearranging terms gives: 

1 1

2 2

2 21 1

2 2

ˆ ˆ ˆˆ( , , ) (( )

ˆ ˆ ˆvar( ) cov( , ) var( ) )

ˆ ˆ ˆ ˆ( var( ) cov( , ) var( ) )

CC

W T

C

WW WT TT

CCC

W W T T

CC

U
r W T t a W C C C

U

W C W T C T C

U
W C W T C C T C

U

δ α θ
 

′= + − − +  
+ + + +

 
− + +  

 (D.2) 

Applying Ito’s lemma to ˆ ( , )dC W T gives: 

 

(
)

( )

1

2

1 1

2 2

ˆ ˆ ˆ ˆ ˆˆ( , ) ( ) var( )

ˆ ˆcov( , ) var( )

ˆ ˆˆ ( )

W W WW

WT TT

W T

dC W T C a W C C C W

C W T C T dt

C a GW C s dw t

α θ′= − + +

+ +

′ ′+ +

 (D.3) 

Using this to rewrite (D.3) gives the desired result: 

1ˆ ˆ ˆ ˆ ˆ( ) { ( )} ( ) ( ) var( ( ))
2

r C E g C P C C g Cδ η η= + − , (C.4) 

where ( )η • and ( )P • are respectively the coefficient of relative risk aversion and relative 

prudence. Equation (C.4) is the extended Ramsey equation. In the absence of uncertainty 

ˆvar( ( )) 0g C =  and (C.4) becomes the Ramsey equation.  
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Appendix E 

Using 
W C

J U= , we obtain by differentiation ˆ
WW CC W

J U C=  and ˆ
WT CC T CT

J U C U= + . 

Here, ˆ
W

C and ˆ
T

C denote the partial derivative of optimal consumption with respect to wealth 

and temperature respectively. Substituting these expressions into (2.12) and (2.13) we get: 

( )ˆ ˆvar( ) cov( , ) cov( , )CC W T
CT

W

C C

U C W C W T U W T

U U
ϕ

 − +  − = +      
 (E.1) 

( )ˆ ˆcov( , ) var( ) var( )CC W T
CT

T

C C

U C W T C T U T

U U
ϕ

 − +  − = +      
 (E.2) 

Second, we rewrite (2.15) and (2.16) by applying Ito’s Lemma to ( , )dC W T . From appendix D 

we have:  

(
)

( )

1

2

1 1

2 2

ˆ ˆ ˆ ˆ ˆˆ( , ) ( ) var( )

ˆ ˆcov( , ) var( )

ˆ ˆˆ ( )

W W WW

WT TT

W T

dC W T C a W C C C W

C W T C T dt

C a GW C s dw t

α θ′= − + +

+ +

′ ′+ +

 (E.3) 

Together with (2.3) and (2.6) this gives: 

2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆcov( , ) var( ) cov( , )

ˆ ˆcov( , ) cov( , ) var( )

W T W T

W T W T

C W C a GGaW C a GsW C W C W T

C T C a GsW C s s C W T C T

′ ′= + = +

′ ′= + = +
 (E.4) 

Substituting (E.4) into (E.1) and (E.2) we obtain (2.15) and (2.16). 
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