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Abstract

We consider a cooperative game with a bipartition that indicates which players are participating. This paper

provides an analytical solution for the Shapley value when the worth of a coalition only depends on the number

of participating coalition players. The computational complexity grows linearly in the number of players, which

contrasts with the usual exponential increase. Our result remains true when we introduce (i) randomization of the

bipartition, and (ii) randomly draw a characteristic function.
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1 Introduction

A cooperative game (N,v) consists of a player set N and a characteristic function v ∈F N , where F N denotes the

class of functions v : 2N → R that satisfy v( /0) = 0. The worth v(N) of the game is the worth generated by the

coalition of all n players in N. The Shapley value φ : F N → Rn (Shapley [1953]) is an allocation of this worth.

For any player i ∈ N:

φi(v) = ∑
{S:i/∈S}

|S|!(n−|S|−1)!
n!

[v(S∪ i)− v(S)] (1)

where |S| is the number of players in S. It follows from (1) that the Shapley value is a linear function:

φ(v) = αφ(w)+βφ(z) α,β ∈ R w,z ∈F N

where v ∈F N is for each S ⊆ N defined as v(S) = αw(S)+β z(S). The Shapley value is fair in the sense that it

satisfies several axiomatizations (see Winter [2002] for an overview). For instance, Myerson [1980] shows that the

Shapley value is the unique allocation that satisfies the following two axioms:
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(i) Efficiency

The sum of the allocated values adds up to the total worth of the game:

∑
i∈N

φi(v) = v(N)

(ii) Balanced contributions

For any game (N,v) with players i and j (i 6= j), the loss that player i incurs after player j is removed from

the game is equal to the loss that player j incurs after player i is removed from the game:

φi(v)−φi(v|N\ j) = φ j(v)−φ j(v|N\i)

where v|S is the restriction of v to the subsets of S, and φi(v|S) denotes the allocation to player i in the

subgame (S, v|S).

For each player, the number of possible subsets S in (1) equals 2n−1. Thus the computational complexity

increases exponentially in the number of players (see e.g. Faigle and Kern [1992]). Several papers have proposed

approximation techniques where the computational complexity increases only linearly in the number of players

(e.g., Fatima et al [2008] and Castro et al [2009]). Our focus is on an exact determination of the Shapley value for

a specific class of characteristic functions.

Megiddo [1978] shows that the Shapley value is obtained in O(n) computations for games where players are

nodes in a tree. Granot et al [2002] extend this result to heterogeneous preferences of the players. A computational

complexity of O(n2) is found in Deng and Papadimitriou [1994] for a game in which the players are nodes in an

undirected graph. This computational complexity can never be smaller for this class of games since the number of

arcs is O(n2) for a complete graph.

For some classes of characteristic functions, the computational complexity of the Shapley value is polynomial

in the number of players. For example, the Shapley value of a weighted majority game is computed in O(n3)

computations in Algaba et al [2003]. Another example is in Littlechild and Owen [1973], who show that the

computational complexity is O(n) if the worth of a coalition equals the maximal worth of a single coalition player.

We identify in Section 2 another class which has the tractable linear computational complexity. This class con-

sists of characteristic functions where the worth only depends on the number of participating coalition players. In

Section 3 it is shown that the linearity of the Shapley value implies that the computational complexity is unaffected

when we (i) randomize participations, and (ii) randomly draw a characteristic function. Section 4 illustrates the

results by means of an example.

2 Deterministic setting

We start with a deterministic version of our main result that the computational complexity is linear in the number

of players when the characteristic function depends on the number of participating players. Consider a game (N,v)

with n players in N. A bipartition on N indicates which players are participating. For notational convenience, we
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use the participation vector B ∈ [0,1]n to characterize the bipartition:

Bi =

 0 if i is a null player

1 if i is a participating player

The total number of participating players in the coalition S is given by κS = ∑i∈S Bi, and we define κ := κN as the

total number of participating players. The following proposition enables us to obtain the Shapley value in O(n)

computations for a special class of characteristic functions.

Proposition 1. Consider the setting described above. If the characteristic function v is of the type

v(S) = κS f (κS) S ∈ 2N

where f : {0,1, . . . ,n}→ R, then the Shapley value of player i equals

φi(v) = Bi f (κ)

This means that the Shapley value of player i equals the fraction Bi
κ

of the worth v(N) of the game.

Proof. We show that the allocation φ(v) satisfies the efficiency axiom as well as the balanced contributions axiom.

It is easy to see that φ(v) satisfies the efficiency axiom because

∑
i∈N

φi(v) = ∑
i∈N

Bi f (κ) = κ f (κ) = v(N)

For any i, j ∈ N (i 6= j), we have φi(v) = Bi f (κ) and φi(v|N\ j) = Bi f (κ−B j), such that the balanced contributions

axiom is necessarily satisfied if

Bi f (κ)−Bi f (κ−B j) = B j f (κ)−B j f (κ−Bi) (2)

Obviously, this equation holds for any of the four possibilities of the pair (Bi,B j). This implies that φ(v) satisfies

the balanced contributions axiom for any game (N,v), as required.

Proposition 1 makes clear that the vector φ(v) is obtained by first computing f (κ) and subsequently Bi f (κ)

for each player i ∈ N. This results in a computational complexity that grows linearly in the number of players in

N.

The class of characteristic functions in Proposition 1 nests the class of voting games where each player has

the same weight. However, it cannot be generalized to weighted Shapley values. For an arbitrary nonzero weight

vector w ∈ Rn (w 6= 0), the balanced contributions axiom changes then into (see Kalai and Samet [1987]):

w j

[
φi(v)−φi(v|N\ j)

]
= wi

[
φ j(v)−φ j(v|N\i)

]
The case wi 6= 0 for exactly one player i is neglected, because the weight vector would become the zero vector

in the game (N\i, v|N\i). We write the allocation in the functional form φi(v|S) = wiγ
S
i Bi f (κS) and show that γS

i

depends on the functional form of f . This makes the simple closed form solution in Proposition 1 infeasible. The

efficiency axiom imposes

∑i∈N wiγ
N
i Bi f (κ) = κ f (κ)
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If γN
i does not depend on the functional form of f , then we need to have (i) γN

i = 1
wi

or (ii) γN
i = κ (∑k∈N wkBk)

−1.

By the imposed functional form, the balanced contributions axiom (2) is satisfied for (Bi,B j) = (1,1) when

w jwi

[
γN

i f (κ)− γ
N\ j
i f (κ−1)

]
= wiw j

[
γN

j f (κ)− γ
N\i
j f (κ−1)

]
The latter equation is only satisfied for any function f if γN

i = γN
j and γ

N\ j
i = γ

N\i
j . This shows that (i) and (ii) are

both inappropriate, except for the special case w1 = . . .= wn 6= 0 which corresponds with Proposition 1.

3 Stochastic setting

We allow the participation vector B to be a random vector. Besides the fact that the outcome Bi of player i becomes

stochastic, the outcome Bi can be correlated with the outcome B j of another player j. We assume that T different

realizations of the elements in B represent the probability distribution of B.

First, the characteristic function is some given deterministic function. Then, we generalize the setting to a

randomization over a set of characteristic functions.

Deterministic characteristic function The following proposition extends Proposition 1 to stochastic participa-

tion vectors.

Proposition 2. Suppose that the characteristic function v of the game (N,v) is defined as

v(S) = E[κS f (κS)] S ∈ 2N

where f : {0,1, . . . ,n} → R, and the expectation is with respect to the realization of the random vector B. The

Shapley value of player i is then

φi(v) = E[Bi f (κ)]

In words, the Shapley value of player i equals the expectation of the fraction Bi
κ

of the realization of the worth

function κ f (κ).

Proof. Along the lines of the proof of Proposition 1, we show that the allocation of φ(v) satisfies the efficiency

axiom as well as the balanced contributions axiom. It is easy to see that φ(v) satisfies the efficiency axiom because

by the linearity of the expectations operator

∑
i∈N

φi(v) = E

[
∑
i∈N

Bi f (κ)

]
= E[κ f (κ)] = v(N)

For any i, j ∈ N (i 6= j), we have φi(v) = E[Bi f (κ)] and φi(v|N\ j) = E[Bi f (κ−B j)]. Then, the balanced contribu-

tions axiom is necessarily satisfied if for any realization B̂ of B:

B̂i f (κ̂)− B̂i f (κ̂− B̂ j) = B̂ j f (κ̂)− B̂ j f (κ̂− B̂i)

where κ̂ = ∑i∈N B̂i. Obviously, this equation holds for any of the four possible realizations of the pair (B̂i, B̂ j), and

so for any realization B̂ of B. Therefore, this equation is still valid if we take the expectation with respect to B.

This implies that φ(v) satisfies the balanced contributions axiom, as required.
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Since we compute Bi f (κ) for each of the n players and each of the T realizations of B, it is straightforward

that the computational complexity of φ(v) grows linearly in n as well as in T . This result can be generalized to

the setting where the characteristic function v admits v(S) = ∑
T
t=1 κ

(t)
S f (κ(t)

S )h(t,B(t)) for some h : {1, . . . ,T}×
[0,1]n→ R, where B(t) is the t-th realization of B and κ(t) = ∑i∈N B(t)

i . The Shapley value of player i is then given

by φi(v) = ∑
T
t=1 B(t)

i f (κ(t))h(t,B(t)).1 Proposition 2 refers to the special case h≡ 1
T . Notice that the characteristic

function and the Shapley value remain deterministic after introducing randomization in B.

Randomization over characteristic functions We extend the stochastic setting to a randomization over a set of

characteristic functions. The set V contains all possible realizations v̂ : 2N → R of the characteristic function v.

The probability measure P is defined on the elements of V . The characteristic function v̄ : 2N→R of the composed

game (N, v̄) is defined as v̄(S) = Ev[v(S)], where Ev denotes the expectation with respect to the realization of v. In

other words, the characteristic function v̄ attaches the weight P(v = v̂) to the outcome v̂ of v.

The player set N is the same for each v̂ ∈ V . In this way, the dimension of the allocation vector φ(v̂) that

determines the Shapley value is the same for each v̂ ∈ V . The distribution of B is allowed to depend on v̂. A

sample of T joint realizations for B and v represent the joint distribution of B and v.

The following proposition extends Proposition 2 to this more general class of games. Additionally, it shows

that a function does not affect the computational complexity if this function does not depend on B, nor on the

coalition S. Again, we obtain the allocation of the Shapley value with a computational complexity that depends

linearly on the number of players as well as the number of observations.

Proposition 3. In the setting described above, let each v̂ ∈ V be separable as

v̂(S) = EB|v̂[ fv̂(BS)]gv̂

where the expectation is with respect to the realization of B conditional on the event {v = v̂}, BS is the restriction of

B to the players in S ∈ 2N , fv̂ : [0,1]|S|→ R,2 and gv̂ is a constant or a function that may depend on the realization

v̂ of v, but does not depend on S or the realization of B. The Shapley value of (N, v̄) is then

φ(v̄) = Ev
[
φ(v f )gv

]
where for each v̂ ∈ V

v̂ f (S) = EB|v̂[ fv̂(BS)]

Roughly speaking, the Shapley value is simply a weighted average of Shapley values where the weight P(v = v̂) is

attached to the Shapley value of the game (N, v̂). The factor gv̂ is only a scaling factor for the Shapley value of

(N, v̂).

Proof. The characteristic function of the composed game (N, v̄) can be written as

v̄(S) = Ev[v(S)] = Ev
[
v f gv

]
1Here, we do not need to assume that the realizations of B represent its probability distribution.
2This is a slight abuse of notation as the number of arguments of fv̂ depends on the number of players in S. Nevertheless, this should not

introduce any confusion. Otherwise, one could define fv̂ on [0,1]n and impose that fv̂ does not depend on Bi if i /∈ S.
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where v̂ f (S) = EB|v̂[ fv̂(BS)]. By the linearity of the Shapley value and the linearity of the expectations operator:

φ(v̄) = φ
(
Ev
[
v f gv

])
= Ev

[
φ(v f )gv

]

This proposition is easily generalized to linear characteristic functions v̄(S) = ∑v̂∈V αv̂v̂(S). The corresponding

Shapley value equals φ(v̄) = ∑v̂∈V αv̂φ(v̂ f )gv̂. Proposition 3 is then the special case αv̂ = P(v = v̂).

It is known for each of the T realizations of B to which game (N, v̂) it belongs. Therefore, the computational

complexity of φ(v̄) increases linearly in n, the number of players, and in T , the number of realizations of B.

4 Example

Let the set Nv̂ contain the non-null players in the game (N, v̂). There are at least 2 players in this set for each v̂∈ V .

Only a null player does not affect κS = ∑i∈S Bi for any S ∈ 2N . Thus κ := κN = κNv̂ and P(Bi = 0) = 1 if and only

if i /∈Nv̂. The joint distribution of B and v is known. This means that after selecting a characteristic function v̂∈ V ,

the probability distribution of B in the game (N, v̂) is known. Let each v̂ ∈ V admit3

v̂(S) =
EB|v̂[κS(κS−1)]
|Nv̂|−1

(3)

Since v̄(S) = Ev[v(S)], the worth of the game (N, v̄) equals

v̄(N) = Ev,B

[
κ (κ−1)
|Nv|−1

]
.

We define a dependence measure to measure player i’s dependence on other players. This measure is the fraction

of other participating non-null players given that player i is a participating player:4

ξi := Ev,B

[
κ−1
|Nv̂|−1

∣∣∣∣Bi = 1
]

The vector ξ contains this dependence measure for each player i ∈ N. We show that the Shapley value of player i

equals the product of the probability on the event {Bi = 1} and the dependence measure ξi:

φi(v̄) = P(Bi = 1)ξi = Ev,B

[
Bi(κ−1)
|Nv|−1

]
(4)

As a consequence, the dependence measure ξi is related to the Shapley value in such a way that the computational

complexity of both φ(v̄) and ξ is linear in the number of players. We show this result by means of (i) Proposition

2 and 3 as well as (ii) for a specific numerical example.

3Because this v̂ is convex in κS, it follows that the game (N, v̂) is convex such that the Shapley value is in the core (see Prop. 18.AA.1 in
Mas-Colell et al [1995]). This means that no coalition S ∈ 2N can collectively increase their allocation by playing (S,v).

4This measure is closely related to the systemic importance index in Zhou [2010].
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(i) Notice that v̂(S) = wv̂(S)+ zv̂(S) for the separable functions

wv̂(S) = EB|v̂
[
κ

2
S
]

gv̂ zv̂(S) =−EB|v̂[κS]gv̂

where gv̂ = (|Nv̂|−1)−1. By Proposition 2, the Shapley value of player i associated with the characteristic

function

w f
v̂ (S) = EB|v̂

[
κ

2
S
]

is given by:

φi(w
f
v̂ ) = EB|v̂[Biκ]

Using w̄(S) = Ev[wv(S)], it follows from Proposition 3 that gv̂ can be interpreted as a scaling factor in

determining the Shapley value of w̄:

φi(w̄) = Ev
[
φi(w f

v )gv
]
= Ev,B

[
Biκ

|Nv|−1

]
Similarly, for z:

φi(z̄) =−Ev,B

[
Bi

|Nv|−1

]
The linearity of the Shapley value now gives the desired result (4).

(ii) We confirm the result in (4) for the following numerical example. In the game (N, v̄) with n = 3 players, the

characteristic function is given by (3). The game is over T = 50 equally weighted periods. Player 3 is a null

player during the first 20 periods, which means that the corresponding characteristic function v1 is given by

(3) with Nv1 = {1,2}. In period 21, player 3 enters and remains in the game. The characteristic function v2 is

then given by (3) with Nv2 = {1,2,3}. Table 1 contains the realizations of B and v for this game. Intuitively,

player 3 contributes most to the total value since player 3 participates always simultaneously with another

player. Table 2 provides for each S ∈ 2N the outcomes of the characteristic function v1(S) and v2(S).

Table 1: Realizations for the participation vector B and the characteristic function v. The integer time periods are
ordered by 1≤ t1 < t2 ≤ 20 < t3 < t4 < t5 ≤ 50.

B1 B2 B3 κ v Nv
κ−1
|Nv|−1

t1 1 1 0 2 v1 {1,2} 1
t2 0 1 0 1 v1 {1,2} 0
other t ∈ {1, . . . ,20} 0 0 0 0 v1 {1,2} –1
t3 1 0 0 1 v2 {1,2,3} 0
t4 1 1 1 3 v2 {1,2,3} 1
t5 1 0 1 2 v2 {1,2,3} 1/2
other t ∈ {21, . . . ,50} 0 0 0 0 v2 {1,2,3} –1/2
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Table 2: Outcomes for v̂(S) =
EB|v̂[κS(κS−1)]
|Nv̂|−1 as in (3)

S v1 v2

/0 0 0
{1} 0 0
{2} 0 0
{3} 0 0
{1,2} 1/10 1/30

{1,3} 0 2/30

{2,3} 0 1/30

{1,2,3} 1/10 4/30

Using (1), the Shapley value distributes v1(N) = 1
10 and v2(N) = 4

30 as follows among the players:

φ1(v1) =
2 ·0+1 · (1/10−0)+1 · (0−0)+2 · (1/10−0)

6
=

1
20

φ2(v1) =
2 ·0+1 · (1/10−0)+1 · (0−0)+2 · (1/10−0)

6
=

1
20

φ3(v1) =
2 ·0+1 · (0−0)+1 · (0−0)+2 · (1/10− 1/10)

6
= 0

φ1(v2) =
2 ·0+1 · (1/30−0)+1 · (2/30−0)+2 · (4/30− 1/30)

6
=

1
20

φ2(v2) =
2 ·0+1 · (1/30−0)+1 · (1/30−0)+2 · (4/30− 2/30)

6
=

1
30

φ3(v2) =
2 ·0+1 · (1/30−0)+1 · (2/30−0)+2 · (4/30− 1/30)

6
=

1
20

We use that φi(v̄) = Ev[φi(v)] = 20
50 φi(v1)+

30
50 φi(v2) to obtain the second column in Table 3. Hence, the

computations require O(n2nT ) computations. The third and fourth column in Table 3 follow from Table 1,

but require only O(nT ) computations. Indeed, player 3 has the largest dependence measure ξi. It follows

that the second column is equal to the product of the third column and the fourth column, as predicted by

(4). This means that the Shapley value is obtained in O(nT ) computations.

Table 3: Shapley value, participation probabilities, and the dependence measure

Player φi(v̄) P(Bi = 1) ξi

1 1/20 4/50 5/8

2 1/25 3/50 2/3

3 3/100 2/50 3/4
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