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Abstract

Mirror data are observations of bilateral variables such as trade
from one country to another, reported by both countries. The efficient
estimation of a bilateral variable from its mirror data, for example
when compiling consistent international trade statistics, requires in-
formation about the accuracy of the reporters.

This paper discusses the simultaneous estimation of the accuracy
of multiple reporters, from all mirror data. This requires a model with
an identification restriction. Two models are presented, each with the
same simple kind of identifying restriction. The inadequate treatment
of this restriction in the literature might be an explanation for the
limited presence of integrated international statistics.
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1 Introduction

Mirror data are bilateral data where each quantity is reported twice. For in-
stance with international trade data we may have for a particular trade flow
the value reported by the exporter and the value reported by the importer.
Other examples are international migration, direct foreign investment, and
foreign debt. The UN does not produce consistent statistics of the trade
among its member countries, nor do the OECD or the EU.

Efficient harmonization of mirror data requires the simultaneous estima-
tion of the accuracies of all reporters. Such models require an identifying
restriction; otherwise the model cannot distinguish between for instance all
countries reporting exactly correct and all countries reporting 10% too much.

The following principles are proposed concerning the identifying restric-
tion:

∙ If all discrepancies are zero, then the estimated reporting error param-
eters are zero.

∙ All countries are treated symmetrically, and also exporting and im-
porting are treated symmetrically.

∙ One restriction is enough.

These principles are satisfied in the two reporting models presented below,
in sections 3 and 4 respectively.

In the literature this identification problem has been dealt with in a
variety of ways. None of the following papers satisfies all our principles.

Tsigas et al. (1992) try the impossible with a model with country-specific
reporting biases: identify from the data a country with a zero export report-
ing bias and another country with a zero import reporting bias; see Ten Cate
(2007), appendix E for a discussion. In Gaulier and Zignago (2010), equation
(5), an identifying restriction for export reporting is assumed and also one
for import reporting (without a constant term), instead of one restriction
for both.

In Poulain and Dal (2008) and in De Beer et al. (2010), the immigra-
tion reported by Sweden is assumed to have no bias. The table 2.2 in
Van Leeuwen and Lejour (2006) is based on a similar assumption about
Belgium and Luxembourg combined.

The procedure of the GTAP organization does not use a simultaneous
model: a country-specific accuracy is derived from the discrepancies of that
country. In a second round this is recalculated without the discrepancies
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with its trading partner which was the least accurate in the first round. See
Gehlhar (1996).

2 The setting

Without loss of generality, we will use the wording of international trade.
For all pairs 𝑖, 𝑗 with 𝑖 ̸= 𝑗, let 𝑌𝑖𝑗 be the unknown true value of the trade

flow from country 𝑖 to country 𝑗. Let 𝑌 exp
𝑖𝑗 and 𝑌 imp

𝑖𝑗 be the 𝑌𝑖𝑗 as reported

by the exporter 𝑖 and by the importer 𝑗, respectively. All 𝑌 exp
𝑖𝑗 and 𝑌 imp

𝑖𝑗 are
stochastic, and distributed independently. Lowercase 𝑦 indicates logarithms.
Relative reporting discrepancies are defined as differences between logs:

Δ𝑦𝑖𝑗 ≡ 𝑦exp𝑖𝑗 − 𝑦imp
𝑖𝑗 (1)

3 Country-specific means

3.1 The model

Following the pioneering Tsigas et al. (1992), we assume country-specific
systematic deviations from the true value, as follows. For all pairs 𝑖, 𝑗 with
𝑖 ̸= 𝑗:

E
[︁
𝑦exp𝑖𝑗

]︁
= 𝑦𝑖𝑗 + 𝜇exp

𝑖 and E
[︁
𝑦imp
𝑖𝑗

]︁
= 𝑦𝑖𝑗 + 𝜇imp

𝑗 (2)

Hence, with definition (1) we have:

E [Δ𝑦𝑖𝑗 ] = 𝜇exp
𝑖 − 𝜇imp

𝑗 (3)

Also, let all 𝑦exp𝑖𝑗 and 𝑦imp
𝑖𝑗 have the same variance, say 𝜎2. Then this is

an ANOVA-like homoscedastic linear regression model. In the case of in-
ternational trade in goods, the right-hand side of (3) absorbs the cif/fob
margin.

Of course, this model is not identified without a restriction on the pa-
rameters: adding the same number to all parameters has no effect on the
right-hand side of (3).

3.2 The identifying restriction

In order to solve the identification problem using the principles stated above,
we assume that the expected value of the average of the reported total export
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and the reported total import is equal to the true total trade:

E

⎡⎣1
2

⎛⎝∑︁
𝑖

∑︁
𝑗

𝑌 exp
𝑖𝑗 +

∑︁
𝑖

∑︁
𝑗

𝑌 imp
𝑖𝑗

⎞⎠⎤⎦ =
∑︁
𝑖

∑︁
𝑗

𝑌𝑖𝑗 (4)

or

E

⎡⎣∑︁
𝑖

∑︁
𝑗

(︁
𝑌 exp
𝑖𝑗 − 𝑌𝑖𝑗

)︁
+
∑︁
𝑖

∑︁
𝑗

(︁
𝑌 imp
𝑖𝑗 − 𝑌𝑖𝑗

)︁⎤⎦ = 0 (5)

Next, we use this approximation:

E

[︃
𝑌 exp
𝑖𝑗

𝑌𝑖𝑗
− 1

]︃
≈ E

[︃
log

(︃
𝑌 exp
𝑖𝑗

𝑌𝑖𝑗

)︃]︃
= E

[︁
𝑦exp𝑖𝑗 − 𝑦𝑖𝑗

]︁
= 𝜇exp

𝑖 (6)

and similarly for the importers. Then equation (5) can be approximated as:

∑︁
𝑖

⎛⎝𝜇exp
𝑖

∑︁
𝑗

𝑌𝑖𝑗

⎞⎠+
∑︁
𝑗

(︃
𝜇imp
𝑗

∑︁
𝑖

𝑌𝑖𝑗

)︃
= 0 (7)

Thus, the restriction equates the sum of the relative biases, weighted with
the country’s trade size, to zero. This satisfies the first of the principles
above: if all discrepancies are zero then all estimated 𝜇exp

𝑖 and 𝜇imp
𝑗 are

zero, with all regression residuals equal to zero. The other principles are
clearly satisfied as well.

The weights must be approximated from the reported values; for exam-
ple: ∑︁

𝑗

𝑌𝑖𝑗 ≈
1

2

∑︁
𝑗

(︁
𝑌 exp
𝑖𝑗 + 𝑌 imp

𝑖𝑗

)︁
(8)

3.3 Estimation

Estimation with an identifying restriction can be done easily as follows.
First, fix arbitrarily one parameter and estimate the model. Then add a
vector to the parameter vector such that the right-hand side of (3) does not
change: ̂︀𝜇 = ̂︀𝜇F + 𝑐q (9)

where 𝑐 is some number and q is a vector of ones, since adding the same
number to all parameters does not change the right-hand side of (3). The
restriction, say g′̂︀𝜇 = 0, is met if and only if

𝑐 = −g′̂︀𝜇F

g′q
(10)
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The variance of ̂︀𝜇 remains to be estimated, as follows. Substitution of (10)
into (9) gives:

̂︀𝜇 = ̂︀𝜇F − q
g′̂︀𝜇F

g′q
=

(︂
I− 1

g′q
qg′
)︂ ̂︀𝜇F ≡ R̂︀𝜇F (11)

The estimated variance matrix of ̂︀𝜇 isRΩFR
′ whereΩF is the old estimated

variance matrix with zeroes for the fixed parameter.
This approach can also be used with the more complicated models in

section 4 and 5 below. For the present model there is a simple closed form
of the restricted estimate. Writing the model as E[Δy] = X𝜇 we have ̂︀𝜇 =
ZX′Δy where Z ≡ (X′X+ gg′)−1. The variance matrix is 𝜎2(Z− Zgg′Z).
See for instance theorem 7 of chapter 13 in Magnus and Neudecker (1988)
and later editions.

4 Country-specific variances

4.1 The model

The traditional method of optimally combining inconsistent reports uses the
reciprocal error variances as weights; see Stone et al. (1942). In this section
we present a model with country-specific error variances. Assume for all
pairs 𝑖, 𝑗 with 𝑖 ̸= 𝑗:

Var
[︁
𝑦exp𝑖𝑗

]︁
= 𝑉 exp

𝑖 and Var
[︁
𝑦imp
𝑖𝑗

]︁
= 𝑉 imp

𝑗 (12)

and

E [Δ𝑦𝑖𝑗 ] = 𝜇 (13)

Then we have:
E
[︁
(Δ𝑦𝑖𝑗 − 𝜇)2

]︁
= 𝑉 exp

𝑖 + 𝑉 imp
𝑗 (14)

With given 𝜇 this is a regression model like (3) above, though with het-
eroscedastic disturbances:

Var
[︁
(Δ𝑦𝑖𝑗 − 𝜇)2

]︁
= (𝛾2 + 2)

(︁
𝑉 exp
𝑖 + 𝑉 imp

𝑗

)︁2
(15)

where 𝛾2 is the net kurtosis of the distribution of the Δ𝑦𝑖𝑗 . For a derivation,
see appendix A. Note that equation (13), considered as a regression model,
is also heteroscedastic, as shown in (14).
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Similar to section 3, the parameters 𝑉 exp
𝑖 and 𝑉 imp

𝑗 are not estimable
without an identifying restriction: adding the same number to all 𝑉 exp

𝑖 and

subtracting this number from all 𝑉 imp
𝑗 has no effect on the right-hand side

of (14).
In a way, the sections 3 and 4 are themselves mirror images of each

other. This can be expressed by assuming that the discrepancies are nor-
mally distributed. Then the models can be written as Δ𝑦𝑖𝑗 ∼ N(𝛽′x𝑖𝑗 , 𝜎

2)
and Δ𝑦𝑖𝑗 ∼ N(𝜇,𝛽′x𝑖𝑗), respectively. The first model is a standard regres-
sion model; the second model is not.

4.2 Ordering accuracies without the identification restric-
tion

The estimation of the sums 𝑉 exp
𝑖 +𝑉 imp

𝑗 does not depend on the identifying

restriction. Moreover all linear combinations of the 𝑉 exp
𝑖 +𝑉 imp

𝑗 are estimable
without the restriction, such as(︁

𝑉 exp
𝑖 + 𝑉 imp

𝑘

)︁
−
(︁
𝑉 exp
𝑗 + 𝑉 imp

𝑘

)︁
= 𝑉 exp

𝑖 − 𝑉 exp
𝑗 (16)

and similarly 𝑉 imp
𝑖 − 𝑉 imp

𝑗 . The differences (16) allow us to order the coun-
tries by export reporting accuracy without using the restriction

Such ordering is not possible with the means model in section 3: the sign
of a difference between two numbers of unknown sign tells nothing about
the difference between the two magnitudes.

The GTAP procedure, described by Gehlhar (1996) and mentioned in
our Introduction above, ranks countries by reporting accuracy without using
an identifying restriction. This is possible because they ignore the sign of
the discrepancies, as we do in our model (14).

4.3 The identifying restriction

If there is no reason why export reporting would be systematically more,
or less, accurate than import reporting, we choose the following restriction
with 𝜌 = 1:

Var

⎡⎣∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑌 exp
𝑖𝑗

⎤⎦ = 𝜌Var

⎡⎣∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑌 imp
𝑖𝑗

⎤⎦ (17)

Otherwise we choose some other 𝜌 > 0.
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Since the reported values are independently distributed, the left-hand
side of (17) can be rewritten as a sum of variances:

∑︁
𝑖

∑︁
𝑗

Var
[︁
𝑌 exp
𝑖𝑗

]︁
=
∑︁
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗Var

[︃
𝑌 exp
𝑖𝑗

𝑌𝑖𝑗

]︃
=
∑︁
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗Var

[︃
𝑌 exp
𝑖𝑗

𝑌𝑖𝑗
− 1

]︃

≈
∑︁
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗Var

[︁
𝑦exp𝑖𝑗 − 𝑦𝑖𝑗

]︁
=
∑︁
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗Var

[︁
𝑦exp𝑖𝑗

]︁

=
∑︁
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗𝑉

exp
𝑖 =

∑︁
𝑖

⎛⎝𝑉 exp
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗

⎞⎠ (18)

At the ≈ sign, the approximation (6) was used. Rewriting similarly the
right-hand side of (17) gives the following approximation of (17):

∑︁
𝑖

⎛⎝𝑉 exp
𝑖

∑︁
𝑗

𝑌 2
𝑖𝑗

⎞⎠ = 𝜌
∑︁
𝑗

(︃
𝑉 imp
𝑗

∑︁
𝑖

𝑌 2
𝑖𝑗

)︃
(19)

Thus, the variances are weighted with the squared trade. They must also
be approximated using the reported values, as in (8).

The first principle in the Introduction above is satisfied in the sense that
if all Δ𝑦𝑖𝑗 − 𝜇 are zero then all estimated 𝑉 exp

𝑖 and 𝑉 imp
𝑗 are zero, with all

regression residuals of (14) equal to zero. The second principle is satisfied
with 𝜌 = 1.

4.4 Estimation

With (13), the average of the Δ𝑦𝑖𝑗 is an unbiased estimate of 𝜇. This esti-
mate can be improved later on by using estimated variances. Alternatively,
in the case of international trade in goods the scalar 𝜇 might be set at minus
some known average cif/fob margin.

Since we are interested in the variance parameters, we now focus on
model (14). Given the 𝜇, the variances in model (14) can be estimated
unbiased by OLS. The identifying restriction can be applied in the same
way as with the means model in section 3.3, by starting with one fixed
parameter. In this case the vector q consists of elements equal to +1 or −1.

This estimate can be improved by taking into account the heteroscedas-
ticity given in (15): the standard deviation of the dependent variable is
proportional to its expectation. See Amemiya (1973). Unfortunately some
of the OLS-estimated 𝑉 exp

𝑖 + 𝑉 imp
𝑗 in (14) might be negative; see our ap-

pendix B.
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4.5 Negative estimates of country variances

Even if all 𝑉 exp
𝑖 + 𝑉 imp

𝑗 are positive, some of the estimated 𝑉 exp
𝑖 and 𝑉 imp

𝑗

might be negative after they are identified with the restriction. This might
result in the adjustment of the parameters such that we may have for exam-
ple a 𝑉 exp

𝑖 = 0. Then the weight of the exporting country in computing a
harmonized value of the trade from 𝑖 to 𝑗 is as follows, using the reciprocal
of the variances as weights:

lim
𝑉 exp
𝑖 →0

1/𝑉 exp
𝑖

1/𝑉 exp
𝑖 + 1/𝑉 imp

𝑗

= 1 (20)

Note that in this case the estimated 𝑉 imp
𝑗 cannot be zero because the esti-

mated sum 𝑉 exp
𝑖 + 𝑉 imp

𝑗 is positive.

5 Comparing models by likelihood

Any research project aimed at the publication of harmonized international
statistics must start with the decision whether or not to use the sign of the
discrepancies, such as with our means model in section 3 and our variances
model in section 4, respectively1.

In order to give this choice an empirical foundation, our two models
might be compared empirically by their likelihood, assuming normally dis-
tributed discrepancies. Maximum likelihood was not considered above be-
cause there might be multiple local maxima in the variances model, with
likelihood values near to each other but widely differing parameters; see the
example in section 6.

The loglikelihood is
∑︀

𝑖

∑︀
𝑗 ̸=𝑖 ℓ𝑖𝑗 with

ℓ𝑖𝑗 = −1

2

(︃
(Δ𝑦𝑖𝑗 − 𝜇𝑖𝑗)

2

𝜎2
𝑖𝑗

+ log 𝜎2
𝑖𝑗 + log 2𝜋

)︃
(21)

where either the 𝜇𝑖𝑗 and 𝜎2
𝑖𝑗 are conform the means model in section 3 (with

all 𝜎2
𝑖𝑗 equal to an unknown 𝜎2), or conform the variances model in section

4 (with all 𝜇𝑖𝑗 equal to a given 𝜇). The 𝜇 of the variances model cannot be
estimated with maximum likelihood; see appendix C. Given 𝜇, this model

1These two possibilities are more or less evenly distributed among the papers discussed
in the Introduction. Signed: Tsigas et al. (1992), Poulain and Dal (2008), De Beer et al.
(2010). Unsigned: Gehlhar (1996), Gaulier and Zignago (2010). Van Leeuwen and Lejour
(2006) do both in their table 2.2.
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can be estimated with maximum likelihood using standard software when
considering it as a GLM model; see appendix D.

This comparison requires the appraisal of a loglikelihood difference be-
tween non-nested model estimates. The absence of a null hypothesis makes
it more difficult to answer the question “is this a large difference?” See
Gourieroux and Monfort (1994) for a review of the literature.

Here we simply consider a loglikelihood difference of more than 2 as large,
or “significant”. This value coincides with the widely used ±2𝜎 significance
limits in the following situation: a statistic 𝑥 is normally distributed with
unknown mean 𝜇 and known variance 𝜎2.

To see this, note that the loglikelihood function of this 𝜇 is −(𝜇−𝑥)2/2𝜎2

+ constant. Hence the loglikelihood at 𝜇 = 𝑥± 2𝜎 is 2 lower than at 𝜇 = 𝑥.
See also Edwards (1972), p. 182.

6 Illustration

6.1 The data and the ML estimates

We illustrate the above models with the data in table 1, showing the reported
trade in services between France, Germany, Italy and the UK, obtained
from OECD statistics. The discrepancies are extremely large; it might be
profitable to study individual transactions in order to find the cause of this,
but these data may also serve us as an interesting example. All computations
are based on the integer percentages in the last column of table 1.

Table 2 shows the results for our means model in section 3. The stan-
dard errors of the 𝜇 parameters are estimated using maximum likelihood,
assuming normally distributed reporting and using the “observed informa-
tion matrix”.

Table 3 shows three local likelihood maxima for our variances model in
section 4. We used 𝜇 = 0, since the mean of the 𝑌 exp

𝑖𝑗 − 𝑌 imp
𝑖𝑗 is very small:

−0.1 billion USD with a standard deviation of 2.3. Also, we used 𝜌 = 1
in restriction (17). Compared with the benchmark loglikelihood difference
of 2 from section 5, the differences between the loglikelihood values in the
bottom line of table 3 are very small. The 𝑉 are allowed to be negative here;
this flatters the loglikelihood. Estimated standard errors of the

√
𝑉 in the

table are quite meaningless here, because of the variation between the three
estimates. See appendix E for details. Further research must tell whether
this occurs more generally.
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Table 1: Reported trade in services, OCS (2002, billion USD)

reporting reporting reported reported discrepancy
exporter importer export import (%)

𝑖 𝑗 𝑌 exp
𝑖𝑗 𝑌 imp

𝑖𝑗 Δ𝑦𝑖𝑗
France Germany 1.3 4.8 −131
France Italy 1.8 3.7 −72
France UK 3.8 3.3 14
Germany France 4.7 3.6 27
Germany Italy 1.8 3.6 −69
Germany UK 6.6 3.9 53
Italy France 3.3 1.5 79
Italy Germany 3.4 1.4 89
Italy UK 3.6 1.2 110
UK France 5.7 4.8 17
UK Germany 7.5 9.1 −19
UK Italy 2.9 7.0 −88

Total 46.4 47.9
Source: OECD Statistics on International Trade in Services.

Note: The discrepancies are presented as a percentage by merely
multiplying them with 100, without first transforming them with

“exp(. . . )− 1”.

Table 2: Estimate of the means model, in percentages

𝜇exp st.err 𝜇imp st.err

France −55 22 −19 21
Germany −2 21 26 21
Italy 75 22 54 21
UK −6 19 −52 22
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Table 3: Three local likelihood maxima of the variances model

√
𝑉 exp

√
𝑉 imp

√
𝑉 exp

√
𝑉 imp

√
𝑉 exp

√
𝑉 imp

France 29 𝑉 < 0 63 46 86 19
Germany 54 86 77 47 20 21
Italy 96 63 108 84 87 74
UK 50 𝑉 < 0 𝑉 < 0 𝑉 < 0 𝑉 < 0 44

loglikelihood reference −0.2 −0.3

Notes. The
√
𝑉 are percentages. The loglikelihood values give the
difference with the first local maximum.

6.2 Empirical comparison of the two models

As discussed in section 5, the two maximum loglikelihoods are compared.
The maximum loglikelihood of the means model in table 2 is 10 larger than
the maximum loglikelihood of the variances model in table 3. This is a large
difference, compared with the benchmark value of 2 from section 5. Also, it
dwarfs the loglikelihood differences in table 3. See appendix F for details.

Although this is based on a very small number of countries, we try to
explain this result briefly. Most sources of reporting error might have an
effect on a mean, either positive or negative. One might think of omissions
in the reporting, or incorrect identification of a partner country. (If 𝐴 thinks
its export go to 𝐵 while it actually goes to 𝐶 than 𝐵 seems to under-report
its imports and 𝐶 seems to over-report.)

7 Conclusions

In this paper we have explored models and estimation methods for the anal-
ysis of discrepancies in mirror data. These models provide a foundation for
harmonizing mirror data, such as the compilation of consistent international
trade statistics. The models require an identifying restriction.

Starting with the country-specific biases of Tsigas et al. (1992), their
treatment of the estimable functions has been improved and a proper iden-
tifying restriction is proposed.

A similar restriction has been applied to a new model, with country-
specific reporting variances. This supplies the weights for the traditional
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method of combining mirror data, weighting with the reciprocal of the
country-specific error variances.

A small data set on international trade is used as an illustration. The
data fits by far the best to the means model, where “by far” is obtained
from a somewhat unconventional criterion.

A Proof of equation (15)

The proof of equation (15) is given here. The following shorthand notations
are used: Δ for the net discrepancy Δ𝑦𝑖𝑗 −𝜇 and 𝑉 for the variance 𝑉 exp

𝑖 +

𝑉 imp
𝑗 . Then:

E[Δ] = 0 (22)

E
[︀
Δ2
]︀
= Var[Δ] = 𝑉 (23)

Hence:

Var
[︀
Δ2
]︀

= E
[︁(︀
Δ2 − E

[︀
Δ2
]︀)︀2]︁

= E
[︁(︀
Δ2 − 𝑉

)︀2]︁
= E

[︀
Δ4
]︀
+ 𝑉 2 − 2𝑉 E

[︀
Δ2
]︀

= 𝜇4 + 𝑉 2 − 2𝑉 2 = 𝜇4 − 𝑉 2 =
(︁ 𝜇4

𝑉 2
− 1
)︁
𝑉 2

= (𝛾2 + 2)𝑉 2 (24)

where 𝜇4 ≡ E
[︀
Δ4
]︀
and 𝛾2 ≡ 𝜇4/𝑉

2 − 3 is the excess kurtosis of the distri-
bution of Δ.

With normally distributed discrepancies, (24) can be derived very simple
as follows. The variances model can then be written as:

Δ ∼ N(0, 𝑉 ) (25)

and hence
Δ2

𝑉
∼ 𝜒2

1 (26)

Hence the variance of Δ2/𝑉 is 2, which can be written as

Var
[︀
Δ2
]︀
= 2𝑉 2 (27)

This is (24) with 𝛾2 = 0 due to the assumed normal distribution.
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B Two remarks about Amemiya (1973)

Amemiya (1973) discusses the estimation of a model like our model (14)
with (15). Equation (14) is estimated with OLS and the result is used to
optimally weight (14) according to (15). Two remarks are made.

First : in many applications the dependent variable will be nonnegative.
This is the case with our variances model and also with Amemiya’s example,
where the dependent variable is a time duration. Then it makes no sense
to use the reciprocal of a squared estimated expectation as optimal weight,
when this estimated expectation is negative: a low value of the expectation
should give a large weight. This problem occurs with our example data in
section 6 above. Also, when the last observation in the example in Amemiya
(1973) is omitted then there are two (identical) observations with a negative
estimated expected dependent variable.

This problem is not discussed in Amemiya (1973). One might solve it by
subtracting the following expression from all elements of the vector of the
estimated expected dependent variable, in a general notation:

𝑎 min
(︁
0, Ê [𝑦1], Ê [𝑦2], Ê [𝑦3], . . .

)︁
(28)

with 𝑎 > 1. In our example in section 6 the result with 𝑎 = 2 is: export
√
𝑉

in percent = 77, 48, 82, 21; import = (negative 𝑉 ), 67, 46, 28. With 𝑎 = 4
the result is nearly the same. Compare with table 3.

Second : repeating until convergence Amemiya’s procedure of weighted
least squares solves the first order condition for maximum likelihood with
a gamma distributed dependent variable (and hence also for our variances
model with normally distributed discrepancies). This can be seen as follows,
starting with the first order condition for weighted least squares. In the
notation of Amemiya (1973):

𝜕

𝜕𝛽

∑︁
𝑡

1

Var[𝑦𝑡]

(︀
𝑦𝑡 − 𝛽′x𝑡

)︀2
=

∑︁
𝑡

1

𝜂2
(︀
𝛽′x𝑡

)︀2 𝜕
(︀
𝑦𝑡 − 𝛽′x𝑡

)︀2
𝜕𝛽

=
2

𝜂2

∑︁
𝑡

1(︀
𝛽′x𝑡

)︀2 (︀𝑦𝑡 − 𝛽′x𝑡

)︀
x𝑡 = 0 (29)

The last line shows Amemiya’s equation (2.24): the first order condition for
the maximum likelihood of the gamma model.
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Amemiya’s 𝜆 is known in our model to be one half. Amemiya finds that
one-step optimally weighted least squares has the same asymptotic efficiency
as ML with gamma distributed data.

C No ML estimation of the 𝜇 in the variances
model

As noted above, it follows from (13) that the average of the Δ𝑦𝑖𝑗 is an
unbiased estimator of 𝜇. Can 𝜇 also be estimated with maximum likelihood,
assuming normally distributed discrepancies? Following (21), the log of the
density of discrepancy Δ𝑦𝑖𝑗 is:

ℓ𝑖𝑗 = −1

2

(︃
(Δ𝑦𝑖𝑗 − 𝜇)2

𝑉 exp
𝑖 + 𝑉 imp

𝑗

+ log
(︁
𝑉 exp
𝑖 + 𝑉 imp

𝑗

)︁
+ log 2𝜋

)︃
(30)

Maximization with respect to 𝜇 alone is not possible, since the log density
is not additively separable in 𝜇 and the other parameters.

Unfortunately it is also impossible to estimate 𝜇 simultaneously with
the other parameters using maximum likelihood: the total loglikelihood∑︀

𝑖

∑︀
𝑗 ℓ𝑖𝑗 “can be made as large as desired” by taking 𝜇 equal to some

Δ𝑦𝑖𝑗 , giving ℓ𝑖𝑗 = −(log(𝑉 exp
𝑖 + 𝑉 imp

𝑗 ) + log 2𝜋)/2. The 𝑉 exp
𝑖 + 𝑉 imp

𝑗 can be

made sufficiently close to zero by a proper choice of 𝑉 exp
𝑖 and 𝑉 imp

𝑗 . The
quote is from Ferguson (1982), p. 831.

D ML estimation of the variances model (given 𝜇)
with GLM

Given a value of 𝜇, the (Δ𝑦𝑖𝑗 − 𝜇)2 are a set of sufficient statistics for the

likelihood function of the 𝑉 exp
𝑖 and 𝑉 imp

𝑗 parameters. It follows from (26)

that the (Δ𝑦𝑖𝑗 − 𝜇)2 are distributed according to the gamma distribution.
Hence (14) is a Generalized Linear Model (GLM) with gamma distributed
data, as introduced by Nelder and Wedderburn (1972). The GLM allows us
to estimate this with standard software.

The translation to the GLM is as follows. Define

𝑠𝑖𝑗 ≡ (Δ𝑦𝑖𝑗 − 𝜇)2 (31)
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The log of the density of 𝑠𝑖𝑗 is equal to the ℓ𝑖𝑗 in (30), apart from known
terms, as follows, with the right-hand side being the standard GLM decom-
position of a log likelihood:

ℓ𝑖𝑗 − log 2− 1

2
log 𝑠𝑖𝑗 =

1

𝜑

(︁
𝑠𝑖𝑗𝜃𝑖𝑗 − 𝑎 (𝜃𝑖𝑗)

)︁
+ 𝑏 (𝑠𝑖𝑗 , 𝜑) (32)

with 𝑎(𝜃𝑖𝑗) = − log(−𝜃𝑖𝑗). The 𝑏 function will be discussed later.
The left-hand side of (32) follows from the density of a square, with

𝑠 = 𝑥2 ̸= 0:

𝑓(𝑠) =
𝑔(𝑥)

|d𝑠/d𝑥|
=

𝑔(𝑥)

|2𝑥|
=

𝑔(𝑥)

2
√
𝑠
= exp

(︂
log 𝑔 − log 2− 1

2
log 𝑠

)︂
(33)

Following Wedderburn (1976) at the bottom of p. 28, it is assumed that all
Δ𝑦𝑖𝑗 − 𝜇 are nonzero, which is almost surely the case.

In GLM vocabulary, the 𝜑 in (32) is the GLM scale (or “dispersion”)
parameter and 𝜃𝑖𝑗 is the GLM canonical (or “natural”) parameter, which is

a function of 𝑉 exp
𝑖 +𝑉 imp

𝑗 . In this case the GLM link function is the identity

function, since E[𝑠𝑖𝑗 ] = 𝑉 exp
𝑖 +𝑉 imp

𝑗 . This link function is not the canonical
link function for the gamma GLM. Unfortunately, with the identity link
function the gamma GLM might have multiple local likelihood maxima; see
Wedderburn (1976), the 𝑌 =𝜇 line in table 1(a).

The value of 𝜑 can be derived by equating the 𝑠𝑖𝑗𝜃𝑖𝑗/𝜑 in the right-hand
side of (32) with the corresponding term in (30). This gives

𝜃𝑖𝑗
𝜑

=
−1

2(𝑉 exp
𝑖 + 𝑉 imp

𝑗 )
(34)

With a gamma GLM we have −1/𝜃𝑖𝑗 = E[𝑠𝑖𝑗 ]. Substitution into (34) and

using E[𝑠𝑖𝑗 ] = 𝑉 exp
𝑖 + 𝑉 imp

𝑗 gives 𝜑 = 2. Hence the 𝑏 function in (32) does
not depend on unknown parameters and is therefore irrelevant.

E The computation of table 3

The three local maxima in table 3 on page 12 are obtained by repeatedly
setting one parameter to zero, without any other restriction. This gives
8 solutions, with 3 unique loglikelihood values. These solutions have been
transformed such that restriction (19) holds, by adding a suitable number
to the export variances and subtracting the same number from the import
variances. (This number might be negative, of course.)
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The result has been verified by using these parameters as a starting
point of the estimation under restriction (19). The negative 𝑉 in table 3 are
started at zero, thereby making sure that a reader can also verify table 3 by
programming the estimation herself, using only tables 1 and 3.

F Computing non-nested loglikelihood differences

The computation of a loglikelihood difference between non-nested models
with a different type of probability distribution requires some care.

In the first place, the densities might have a different dimension. In our
case, we have the normal density of the discrepancies in section 3 and the
gamma density of the squared discrepancies in section 4.

In the second place, the software may omit terms and positive factors
from the loglikelihood which are independent of the parameters. For in-
stance, the Stata procedure for GLM with the gamma distribution prints
the value of

∑︀∑︀
𝑠𝑖𝑗𝜃𝑖𝑗 − 𝑎(𝜃𝑖𝑗) in (32), instead of the value of (32) itself.

The Stata procedure for GLM with the normal distribution omits nothing,
printing the value of (21).

Both problems have been solved by computing the loglikelihood (21) for
both models after the parameter estimation. Note that this “normalization”
has no effect on the loglikelihood differences in table 3: differences between
values of (32) for various parameters vectors are equal to the differences
between values of (21) for the same parameter vectors.

As anecdotal evidence of this problem: unfortunately in table B.1 of
Ten Cate (2007) the concentrated loglikelihood of the means model was
computed from the value of ̂︀𝜎2 and the latter was based on the unbiased
estimate of 𝜎2, using the degrees of freedom; contrary to what is stated in
that paper. This reduces the loglikelihood with (12/2) log(12/(12 − (8 −
1))) = 5.25. Hence the loglikelihood difference of 5 in table B.1, instead of
our 10.
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