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1 Introduction

As part of sub-project 3 of the Netspar theme ("Risk sharing in pension schemes in the presence

of economic and demographic risks: applied stochastic modelling"), we want to compare pure

DB schemes with pure (collective) DC schemes and with hybrid schemes that combine DB and

DC elements. We want to focus on how schemes affect households directly. Therefore, we

compare the different schemes in terms of premiums, benefits and net profits (benefits minus

premiums, where the measurement is done in present-value terms). We do this for a large

number of scenarios, allowing us to compare the pension schemes for typical scenarios and for

large sets of scenarios on the basis of means and variances. We also want to account for

economic behaviour, in particular saving and investment behaviour, as it would be difficult to

motivate that large-scale reforms of the pension scheme would not induce any behavioural

reaction on part of households.

Models that contain overlapping generations of forward-looking households and that feature

aggregate uncertainty are often quite difficult to solve numerically however. Simplification, for

example through linearization, could then be beneficial, if the approximation errors involved are

relatively small. Therefore, it is an interesting exercise to compare different numerical

approaches using a model that is so stylized that solving it numerically does not present

problems. The aim of such an exercise is then to highlight the benefits (a.o., computer time) and

costs (computational errors) attached to simplifying the original model.

This is what this paper does. It takes a standard life cycle model with a consumption-saving

decision, a portfolio-allocation decision (two assets, of which one is risky), microeconomic

uncertainty regarding the length of life, and aggregate uncertainty regarding the rate of return on

equity (the risky asset). Labour productivity is non-stochastic, leaving us in a setting of complete

markets. Labour supply is taken exogenous. We then first solve this model numerically. Second,

we approximate the model, adopting two different approaches. The first approach derives

first-order conditions for optimal household behaviour and approximates relations based on

these first-order conditions. This approach leads to precautionary saving as the third derivative

of the felicity function is positive. The second approach approximates the original problem with

a quadratic utility function and linear restrictions. The second approach needs robust decision

making to account for precautionary saving.

More saving due to increasing variability of exogenous random shocks is called

precautionary saving (Kimball (1990)). Two competitive theories can explain precautionary

saving. The prudence theory states that precautionary saving occurs due to prudence (convexity

of the marginal utility function) with risk. The prudence with risk theory is the more traditional

explanation of economic theory for precautionary saving. Alternatively, the distrust theory does
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not make use of convexity of the marginal utility function (quadratic utility is allowed) but

introduces distrust of households’ knowledge about the real world. This distrust theory makes

use of robust control and has quite recently been developed (Hansen and Sargent (2007)).

This paper formulates and compares two household models each based on one of the two

explanations of precautionary saving. The traditional, prudence model uses utility functions with

positive third derivatives. For instance CRRA instantaneous utility functions have this property.

The distrust model uses a linear quadratic instantaneous utility function and has linear

restrictions. Without distrust standard linear quadratic Gaussian control (LQG) could be applied.

Features of LQG are:

1. it can be used as a second-order approximation of nonlinear quadratic control problems

2. the optimal decision rule is linear and becomes time-invariant in an infinite horizon setting

3. the optimal decision rule is invariant to the magnitude of the stochastic disturbances in the model

(certainty equivalence).

The first characteristic links the method to theoretical practise to linearize complicated models to

make them empirically manageable. The second characteristic holds only partially in

overlapping generation models. A characteristic of overlapping generation models is the finite

horizon of households. This characteristic leads to age-dependent linear optimal decision rules

of households, which are not time-dependent. The third characteristic of LQG reduces the

applicability for consumption-saving decisions. Standard LQG predicts savings independent of

the degree of uncertainty. Jacobson (1973) and Whittle (1981, 1990) sought to retain the good

features of the LQG problem (linearity and time invariance) while incorporating some role for

the variance of the disturbances in the optimal decision rule. Their approach is known as robust

control. Hansen and Sargent (2007) modified robust control methods to make them useful for

economic applications. Robust control introduces distrust about the model specification. The

actual developments may lay in an environment of the specified model. This leads to utility

maximization given a possible worst case scenario which is constructed using an entropy

measure for possible misspecification. Robust control makes the decision rule robust against

possible misspecification.

Apart from comparing both explanations for precautionary saving, this paper contributes to

the development of robust control methods. Hansen and Sargent (2007) and Tallarini (2000) use

robust control in real business cycle models with one representative household with an infinite

time horizon leading to a time-invariant optimal decision rule. The model discussed here is

developed for a household with a finite life expectancy. The optimal decision rule becomes

age-dependent.

The linear recursive character of the robust control model is convenient. It makes stochastic
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simulation within an overlapping generation model to study insurance against macro-economic

risks easier to implement than the prudence approach.

2 Prudence with risk as explanation for precautionary saving

2.1 Introduction

This section starts in 2.2 with formulating a household problem based on CRRA instantaneous

utility. Households save due to a precautionary saving motive. Only one macroeconomic risk is

distinguished: equity income is uncertain. So, labour income is nonstochastic. Household

behaviour comes into discussion in 2.3. Subsection 2.4 discusses the calibration of the model.

The simulation results are presented in 2.5.

2.2 Household decision problem

An individual of agej maximizes his expected remaining lifetime utilityU , which depends on

per-period utilityu and on the subjective discount factords. Expectations have to be formed for

two reasons. First the returns on assets are uncertain. Second, length of life is uncertain, so it is

assumed that individuals weigh their future per-period utility with survival probabilities. The

lifetime utility function reads as

U j = E j

je

∑
i= j

uidsi with (2.1)

ds(i) = δ
−(i− j)

i−1

∏
l= j

ζl+1 .

In this equationje (=99) is the maximum attainable age1, δ the time preference factor, which

measures the impatience to consume,ζ j the conditional (upon being alive at the start of periodj )

probability of living through the next year, andE j the expectations operator,i.e. expectations

conditional on information available at the start of agej . Households derive no utility from

leaving bequests. The subjective discount factor consists of two elements. The first element is

the already mentioned survival probability which gives a lower weight to per-period utility in

more distant years. This survival probability equals the accumulated conditional survival rates

ζ .2 The second element of the subjective discount factor gives a lower weight to per-period

1 The minimum age of independent decision making is 20. Children do not supply labour and their material consumption

is attributed to their parents. This, in part, accounts for the hump-shaped life-cycle consumption profile used for calibration.

2 Note, we use as convention ∏ j−1
l= j ζl+1 = 1
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utility further in the future due to the impatience of individuals. This impatience element

depends on the time preference parameterδ . Per period utility,u, is a function of the

consumption of commodities,ci

ui = αi
c1−γ

i

1− γ
. (2.2)

In this equation 1/γ is the intertemporal substitution elasticity (γ > 1) andαi are positive age

dependent taste shifters which are used for calibration purposes.

Households have at the start of periodi wealthsi , they receive a certain incomewi , consume

ci and invest in periodi s∗hi in assetsh. Assets have a uncertain returnrhi+1 which is received at

the start of next periodi +1. So, income from wealth is certain at the start of a period but

uncertain for future periods. Households can diversify their mortality risk on the capital market,

i.e. they have micro-economic risk but no macro-economic risk. More precisely there is a market

that transfers the wealth of the fraction of each cohort that dies in each period(1− ζi)si to the

remaining fraction of that cohort. These assumptions lead to budget equation

∑
h

s∗hi = ∑
h

shi +wi −ci , (2.3)

shi+1 =
rhi+1

ζi+1
s∗hi ,

si ≡∑
h

shi .

Assume two assets only, a risk free assetsf and a risky assetss with their respective returnsr f

andrs. The excess return on the risky assets

esi = rsi− r f (2.4)

is stochastic. Before the consumption and portfolio decision is made, information about the

returns over the investments in previous period become known,i.e. at the start of a period. The

stochastic assumptions are

esi = µs +ωssεsi (2.5)

εs are shocks with expected value 0 and variance 1. The variance ofesi is

E (esi− µs)
2 = ω

2
ss (2.6)

Defineσss as

σss= Ee2
si = ω

2
ss+ µ

2
s (2.7)

These assumptions of a constant volatility of equity and a constant risk premium imply that

mean reversion is absent.
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Households maximize their utility 2.1 given the restrictions 2.3 with respect to consumptionc

and investmentss∗hi. Using these assumptions appendix B derives household behaviour, which

will be discussed now.

2.3 Household behaviour

Households allocate total wealth between different periods dependent on relative prices. Total

wealth is the sum of financial wealthsj , current wagesw j and human wealthhc
j , which is the

discounted value of future wage income. The propensity to consume depends on the per period

consumption pricepc j relative to the price of total wealthpfj . Optimal consumption is given by

c j =
(

pc j

pf j

)− 1
γ (

sj +w j +hc
j

)
(2.8)

The total wealth and per period consumption prices are defined as

pfj =

 je

∑
i= j

p
− 1

γ

ci

i−1

∏
l= j

( r f

δ

) 1
γ ζl+1

r f
[
E j (1+aesl+1)

−γ
]− 1

γ

−γ

(2.9)

pcj = α
−1
j

with a the fraction invested in equities (see B.21). The price of total wealthpfj is the composite

price of all future consumption. The weighting factors consists of two elements. The first

element relates to substitution over time. A risk-free rate of return above the time preference

parameter increases savings,i.e. the price of total wealth, which represents future consumption,

decreases. The second term term describes the income effect of returns on investments. A return

increase on investments leads to more consumption possibilities not only in the future but in

current period, too. The returns on investments consist of three elements, the risk free rate, the

survival rate due to our assumption that households participate in a life insurance pool and a

certainty equivalence indicator of the excess return on equity investments.

The price of current consumptionpcj equals the inverse of the per period consumption

preference parameter. A constant fraction of total wealth net of consumption is invested in the

risky asset.

s∗sj = ar f
[
sj +w j +hc

j −c j
]

(2.10)

The fraction invested in the risky asseta is implicitly defined by

0 = E j
[
(1+aesj+1)

−γ esj+1
]

(2.11)

Human wealthhc
j is the discounted value of future labour income

hc
j =

ζ j+1

r f
w j+1 +

ζ j+1

r f
hc

j+1 (2.12)
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Section 2.5 presents simulations based on numerical integration3 of equation (2.11) and of

equation (B.16), a transformation of the excess return certainty equivalence indicator (which

appears in the price of total wealth 2.9). Section 3 presents simulations based on a second-order

approximations of both relations.

2.4 Calibration

The simulations are produced by combining the structure outlined in the previous section with

exogenous data and parameters. This section starts with a presentation of these data and

parameters. Subsequently a simulation without uncertainty and with uncertainty will be

presented.

Consumption and portfolio decisions are made from the age 20 onwards, so consumption of

children is attributed to their parents. The values of the parameters are set equal to the

parameters in Bovenberg et al. (2007) for convenience. The intertemporal substitution elasticity

equals 0.2 (γ = 5). The rate of time preference and the risk-free rate take a value of 2%.

Wage income during the working ages, which lay between the ages 20 and 65, is constant to

make the interpretation of the results clear cut. For the same reason, assume a constant

consumption profile (α j = 1). The mortality probabilities (1− ζ j ) are taken from the population

forecast of Statistics Netherlands (See: De Jong (2005)).

2.5 Simulations

The left panel of figure 2.1 presents the results without uncertainty (rsi = r f ). Our assumptions

imply a constant consumption. Indeed, the portfolio return equals the time preference parameter.

The figure presents the trajectory of financial, human and total wealth. Human wealth

depreciates between ages 20 and 65. Each year human wealth diminishes due to the pay out of

the corresponding dividend, the wage stream. Financial wealth increases due to saving for life

cycle reasons. At its maximum, financial wealth equals forty four per cent of initial human

wealth. Human wealth dominates financial wealth for the most part of the active working life.

Figure 2.1 shows that total wealth falls over the life cycle. The nonlinearity in the figure is

caused by the multiplicative influence of the rate of return and by the increasing death rates.

The right panel of figure 2.1 presents the results after the introduction of uncertainty. The

results based on numerical integration are indicated with (i). The results based on the Taylor

3 The integrals are approximated by the Gauss-Hermite quadrature formula with both five and seven nodes. The

integration nodes and weights are taken from Judd (1999), Table 7.4.
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Figure 2.1 Development of wealth components over the life cycle; without (left) and with uncertainty (right)

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90

financial wealth
total wealth
human wealth

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90

total wealth (i)
human wealth (i,t)
financial wealth (t)
total wealth (t)
financial wealth (i)

series approximation atEεsj = 0, to be discussed in section 3 are presented with (t). Assume for

the variance parameterσss= 0.04 and for the excess returnµ = 0.04 on investments in equity.

These assumptions imply a large standard deviation of the excess returnωss= 0.2. The results

are presented for the caseεsi = 0, i.e. for the case in which everybody behaves as if aggregate

uncertainty exists, but without actual shocks. A comparison of the certainty and uncertainty case

(using numerical integration) reveals the precautionary saving effect of uncertainty: total wealth

decreases more gradually in the uncertainty case relative to the certainty case due to more

savings. This precautionary saving effect leads to a 30% larger maximum financial wealth than

in the certainty case at the age of 65.

Table 2.1 Financial indicators household behaviour; the exact solution (numerical integration)

Age 20 21 40 41 64 65 66 80 81 99

Wages w j 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

Consumption c j 0.91 0.92 1.00 1.00 1.09 1.10 1.10 1.18 1.19 1.30

Equity income rsjs∗sj−1 0.00 0.37 0.33 0.33 0.22 0.22 0.21 0.12 0.11 0.01

Bond income r f s∗f−1 0.00 − 0.12 0.02 0.03 0.26 0.27 0.26 0.14 0.14 0.01

Intra generational redistribution ζ j sj 0.00 0.00 0.01 0.01 0.12 0.13 0.14 0.41 0.43 0.39

Financial wealth sj 0.00 0.34 7.09 7.47 17.21 17.74 17.25 9.81 9.30 1.30

Investments in bonds s∗fj − 6.15 − 5.79 1.58 2.01 13.49 13.11 12.72 6.80 6.39 0.00

Investments in shares s∗sj 6.23 6.21 5.52 5.46 3.63 3.53 3.43 1.83 1.72 0.00

Total wealth sj +w j +hc
j 30.29 30.20 27.00 26.74 18.21 17.74 17.25 9.81 9.30 1.30

Human wealth w j +hc
j 30.29 29.86 19.90 19.27 1.00 0.00 0.00 0.00 0.00 0.00

Table 2.1 details on household behaviour with uncertainty. The table reveals households take

debt at the start of their working life to invest in equity with a larger but uncertain return. This

portfolio allocation is possible due to the absence of credit restrictions. The average growth rate

of consumption of 0.3 per cent per year can be attributed to the introduction of uncertainty. Half
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of this growth rate can be attributed to a larger portfolio return than the time preference

parameter. The other half is the precautionary saving effect linked to increased variability.

3 Taylor approximation of the prudence model

3.1 Approximating household behaviour

We distinguish two different second-order Taylor approximations of the portfolio equation (2.11)

and of equation (B.16), a transformation of the excess return certainty equivalence indicator

(which appears in the equation for the price of total wealth (2.9) The second-order

approximation (see Appendix B ) of the portfolio equation in the pointesj+1 = 0 leads to an

explicit expression for the portfolio share of equity

a =
µs

γ σss
(3.1)

The investments are proportional to the expected excess returnµs, inversely proportional toσss,

which is related to the variance of the excess return and inversely proportional to the risk

aversion parameter. The second-order approximation of the portfolio equation in the point

esj+1 = µ leads to another explicit expression for the portfolio share of equity

ã =
(
2µ

3
s − γ µsω

2
ss+ γ

2
µsω

2
ss

)−1
(
−2µ

2
s + γ ω

2
ss−ωss

√
−2γ 2µ2

s + γ 2ω2
ss−2γ µ2

s

)
(3.2)

which is approximately equal to

â =
µs

γ ω2
ss

(3.3)

The investments are proportional to the expected excess returnµs, inversely proportional to the

varianceω
2
ss of the excess return and inversely proportional to the risk aversion parameter. This

last expression holds exactly in continuous time models.

3.2 Simulations

The parameters and the Taylor series approximation (equation 3.1) imply an equity portfolio

sharea = 0.2. The Taylor series approximation overestimates risk aversion relative to numerical

integration, which is more accurate. More precisely the equity portfolio sharea = 0.208 is larger

in the case of numerical integration. However, the wealth development is nearly the same.

Table 3.1 reveals the accuracy of both the integration and Taylor series expansion method.

Increasing the number of nodes from five up to seven in case of numerical integration gives the

same portfolio share for equities and the same certainty equivalence indicator of the excess
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Table 3.1 The effect of the number of integration nodes and the approximation point

portfolio share certainty equivalence

of equity indicator

Integration

- 5 integration nodes 0.209 0.997

- 7 integration nodes 0.208 0.997

Taylor expansion

- in 0 0.200 0.997

- in µ 0.208 0.997

return on equity investmentsη (defined in B.16). This indicates that five nodes give already a

very good approximation of the exact solution. This is not the case for the Taylor series

approximation in the zero excess return point. The approximation in the expected value of the

excess return approximates the portfolio share of the exact solution better. The significance of

the approximation point is illustrated with table 3.2 and 3.3. In case of approximation in the

expected valueµ (Table 3.3) the differences become smaller relative to the approximation in

point zero (Table 3.2). The difference are relative to the central projection of Table 2.1.

Table 3.2 Absolute differences between the exact solution (numerical integration) and the Taylor series approx-

imation in point esj = 0

Age 20 21 40 41 64 65 66 80 81 99

Wages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Consumption 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Equity income 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

Bond income 0.00 − 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Intra generational redistribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Financial wealth 0.00 0.01 0.13 0.13 0.20 0.19 0.19 0.14 0.14 0.02

Investments in bonds − 0.24 − 0.24 − 0.11 − 0.11 0.01 0.01 0.01 0.03 0.03 0.00

Investments in shares 0.24 0.24 0.24 0.24 0.18 0.17 0.17 0.10 0.09 0.00

Total wealth 0.00 0.01 0.13 0.13 0.20 0.19 0.19 0.14 0.14 0.02

Human wealth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 Robustness as explanation for precautionary saving

4.1 Introduction

This section starts in 4.2 with formulating a linear quadratic approximating model of the

household problem. Households will not save due to a precautionary saving motive when they
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Table 3.3 Absolute difference between the exact solution (numerical integration) and the Taylor series approxi-

mation in point esj = µ

Age 20 21 40 41 64 65 66 80 81 99

Wages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Consumption 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Equity income 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bond income 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Intra generational redistribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Financial wealth 0.00 0.00 0.03 0.03 0.05 0.05 0.05 0.04 0.03 0.01

Investments in bonds 0.01 0.01 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.00

Investments in shares − 0.01 − 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total wealth 0.00 0.00 0.03 0.03 0.05 0.05 0.05 0.04 0.03 0.01

Human wealth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

use quadratic utility. However when they realize their incomplete knowledge about the real

world, i.e. they have an approximating model of the real world, precautionary saving will occur

because they will plan using a worst case scenario. Indeed, this will be the case when

households use robust control to determine their behaviour. Subsection 4.3 digresses on robust

control. Household behaviour comes into discussion in 4.4. Subsection 4.5 presents the

simulation results.

4.2 A linear quadratic model of the household decision

The household problem formulated in section 2.2 can be written as

Vj = maxE j

[
α j

1− γ
c1−γ

j + δ
−1

ζ j+1Vj+1

]
(4.1)

with

c j =
r f

ζ j
s∗j−1 +

esj

ζ j
ar f
[
s∗j−1 +hc

j−1

]
+w j −s∗j (4.2)

in whichs∗j (= ∑h s∗hj) the total portfolio invested inj anda, as before, the fraction of wealth

invested in the risky asset. Assume, the fraction invested in the risky asset is known for

convenience. More specifically, the fraction is determined by equation 3.1. So, the robust model

assumes in fact only one asset with a stochastic return. The objective function is maximized

given the linear restriction

esj+1 = µs +ωssεsj (4.3)

This equation corresponds with equation 2.5. Households do not derive utility from bequests,

this implies that they don’t invest at the end of their life (s∗je = 0), i.e.in the end yearj = je. This
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implies for the value function

Vj (sje−1) = αje
c1−γ

je

1− γ

The problem is thus written as the maximization of a nonlinear objective function subject to one

linear constraint. The objective function (i.e. equation 4.1 after substitution of 4.2) can be

approximated around the non-stochastic version of the nonlinear model (witha = 0.2 and

esj = 0)4. This leads to a linear quadratic Gaussian control problem5

max

u j

Vj (x j ) =−x′j R j x j −u′j Q j u j + δ
−1E j ζ j+1V(x j+1) (4.4)

x j+1 = A j x j +Bu j +Cε j+1 (4.5)

Eεε
′ = I (4.6)

and

Vje(xje) =−x′jeRjexje (4.7)

with x the vector of state variables,u the vector of control variables. The elements of the state

vectorx are financial wealths∗, the excess returnes and constant term 1. The vector of control

variablesu has only one element: a transformation6 of s∗ the investments in financial wealth in

current period. Note the covariance matrixE j (x j+1−E j x j+1)(x j+1−E j x j+1)′ = CC′.

This procedure is known as the Kydland and Prescot method (Benigno and Woodford (2006)

discuss this method and give extensions). This procedure results in a correct local linear

approximation to the optimal policy belonging to the original problem. However, precautionary

saving is based on the third derivatives of the utility function. So using Linear Quadratic

Gaussian control (LQG) leads to misspecified dynamics due to misspecified utility. There is

another reason to consider this model as an approximating model for household behaviour. To

take into account the approximating nature of the linear quadratic model robust control can be

used. The knowledge of households that they have only an approximating model of the world,

i.e. of the excess return processesj, leads to precautionary saving.

4 We linearize in a = 0.2 to get non zero derivatives of the excess return.

5 Appendix C shows that the linear terms can be included in the quadratic one by defining an additional help-vector.

6 Appendix C.1 gives details.
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4.3 A digression on robust control

Robust control7 was developed to deal with the idea that agents have incomplete knowledge

about the world. More specifically, robust control assumes that the decision maker thinks that

his model (equation 4.5) approximates the true data generating process, which he cannot specify.

The error terms in 4.5 can represent only a very limited class of approximation errors and in

particular cannot account for misspecified dynamics. To represent dynamic misspecification, the

decision maker surrounds 4.5 with a set of alternative models of the form

x j+1 = A j x j +Bu j +C(ε j+1 +a j+1) (4.8)

a j+1 = b j (x j ,x j−1, . . .)

Eεε
′ = I

The decision maker believes that the data are generated by a model of the form 4.8 with

unknown processa j . In caseε in 4.8 has a distributionN(0, I) then model 4.5 must be

misspecified because its error term will be distributedN(a j+1, I) rather thanN(0, I). However,

agents know that model 4.5 is a good approximation if the actual model is located in the

surround 4.8. So, robust control assumes uncertainty about the autocorrelation (a j depends on

the lagged state vectorx j ) and abstracts from misspecification of higher moment of theε j+1

distribution. Moreover there is no uncertainty about the modelparameters (the variance

covariance structure, determined byC, is hold constant, too). Hansen and Sargent (2007) show

this specification is not as restrictive as it might at first seem. To express the idea that 4.5 is a

good approximation we constrain the approximation errors by

E j ∑
i

δ
−1

ζi+1ai+1ai+1 < χ j (4.9)

whereE denotes the mathematical expectation andχ j a parameter to be calibrated. This

introduced parameterχ j is without a counterpart in the prudence approach (This parameter is

related to the separate risk aversion parameter in the Epstein-Zin utility function as Tallarini

(2000) shows). The restriction 4.9 is known as the entropy constraint. The decision maker want

good decisions over a set of models 4.8 satisfying entropy constraint 4.9 because he distrusts

model 4.5. Such decisions are said to be robust to model misspecification. So, robust control

states that households maximize the (forward solution of) objective function 4.4 subject to this

actual law of motion (4.8) and the entropy constraint 4.9 given an estimated worst case scenario,

i.e. households maximize (the forward solution of) 4.4 with respect tou after minimizing (the

forward solution of) 4.4 overa given the constraints 4.8 and 4.9, which is under some regularity

7 This section is based on Hansen and Sargent (2007).
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conditions equal to[

Vj (x j ) =
max min

u j a j+1

E j
[
−x′j R j x j −u′j Q j u j+ (4.10)

+θ δ
−1

ζ j+1a′j+1a j+1 + δ
−1

ζ j+1Vj+1(x j+1)
]

(4.11)

given the distorted model 4.8. The parameterθ is related to the entropy measureχ . It restrains

the minimizing choice ofa j and determines the degree of risk aversion.

4.4 Household behaviour

The robust decision rule is a linear function of the state of the economy (j < je)

u j =−F j x j (4.12)

just as in the standard LQG problem. The decision maker will combine his approximating model

4.5 with this robust decision rule. These simple relations lead to a recursive closed form solution

for the state of the economy

x j+1 = (A j −BF j )x j +Cε j+1 (4.13)

which makes stochastic simulation easy to handle in case the decision maker’s fear of model

misspecification is unfounded,i.e. ε j+1 ∼ N(0, I). Without shocks, equation (4.13) determines

an investment profile over the life cycle. Shocks will cause parallel movements with this

investment profile. The Consumption and portfolio allocation can be recursively determined

after the investments are fixed.

4.5 Simulations using a robust linear regulator

The left panel of Figure 4.1 compares the simulation results using the robust linear regulator

(indicated withr ) with the results based on the Taylor series approximation in the zero excess

return point of the prudence model (indicated with at). The entropy related parameter (θ = 7) is

calibrated such that the consumption at the age of 20 equals the consumption in the prudence

model (see the right panel). The right panel presents consumption also forθ = ∞ (indicated with

z) which is equal to the standard Linear Quadratic Gaussian (LQG) control solution. Comparing

consumption for the two different values ofθ reveals the precautionary saving effect at the start

of the working ages. Buffers are built up early in life to meet uncertainty after which

consumption becomes a little bit larger later on. The difference between the robust control and

prudence model has to be attributed to the difference in the intertemporal substitution elasticity.

Linearization in the expected excess return will bring them more in line.

14



Figure 4.1 Development of wealth components over the life cycle (left) and consumption over the life cycle (right)
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Table 4.1 Financial indicators household behaviour; the robust solution

Age 20 21 40 41 64 65 66 80 81 99

Wages w j 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

Consumption c j 0.91 0.92 1.01 1.01 1.05 1.05 1.05 1.06 1.06 1.07

Equity income rsjs∗sj−1 0.00 0.36 0.31 0.31 0.20 0.19 0.19 0.10 0.09 0.01

Bond income rsjs∗f−1 0.00 − 0.12 0.02 0.02 0.24 0.25 0.24 0.13 0.12 0.01

Intra generational redistribution ζ j sj 0.00 0.00 0.00 0.01 0.11 0.12 0.13 0.36 0.38 0.32

Financial wealth sj 0.00 0.33 6.34 6.67 15.74 16.25 15.76 8.59 8.12 1.07

Investments in bonds s∗fj − 5.90 − 5.56 1.18 1.57 12.49 12.11 11.71 6.00 5.62 0.00

Investments in shares s∗sj 5.99 5.97 5.15 5.09 3.20 3.10 3.00 1.54 1.44 0.00

Total wealth sj +w j +hc
j 30.29 30.19 26.24 25.95 16.74 16.25 15.76 8.59 8.12 1.07

Human wealth w j +hc
j 30.29 29.86 19.90 19.27 1.00 0.00 0.00 0.00 0.00 0.00

Table 4.1 presents the development of some financial indicators of household behaviour in case

of robust control. They illustrate the main graphical results. The difference with the prudence

model are given in table 4.2

The robust control outcomes can approximate the prudence outcome by changing the time

preference parameterδ and the entropy parameterθ . With θ = 1.9 andδ = .075 we get the

results Figure 4.2 and table 4.3. However, these parameter adjustments have huge impact on

the dynamic characteristics of the model. This is illustrated in figure 4.3. At the start of the

working life a negative equity premium shock (εsi =−1) takes place. The prudence model

(Taylor series approximation ines j+1 = 0) gives a rather constant adjustment. The robust results

without adjustment of the time preference parameter (robust 1) gives a large precautionary

saving effect in the first years. After increasing the time preference parameter the consumption

adjustment are large at the end of the life cycle. Figure 4.4 presents both the central projection

15



Table 4.2 Absolute differences between the robust solution and the Taylor series approximation in point esj = 0

Age 20 21 40 41 64 65 66 80 81 99

Wages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Consumption 0.00 − 0.01 − 0.02 − 0.02 0.04 0.04 0.04 0.11 0.11 0.21

Equity income 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.00

Bond income 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.00

Intra generational redistribution 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.05 0.05 0.06

Financial wealth 0.00 0.00 0.63 0.66 1.28 1.29 1.30 1.08 1.05 0.21

Investments in bonds 0.00 0.00 0.51 0.54 0.99 1.00 1.00 0.77 0.74 0.00

Investments in shares 0.00 0.00 0.13 0.14 0.25 0.26 0.26 0.20 0.19 0.00

Total wealth 0.00 0.00 0.63 0.66 1.28 1.29 1.30 1.08 1.05 0.21

Human wealth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

indicated withc and the alternative path indicated witha with the equity return shock for both

consumption and wealth. The results for the robust model in this figure are the results after the

parameter adjustments.

Figure 4.2 Development of wealth components over the life cycle (left) and consumption over the life cycle (right)
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Table 4.3 Absolute differences between the robust solution and the Taylor series approximation in point esj = 0

Age 20 21 40 41 64 65 66 80 81 99

Wages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Consumption 0.00 0.00 − 0.01 − 0.01 0.01 0.01 0.02 0.03 0.03 − 0.05

Equity income 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bond income 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

Intra generational redistribution 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 − 0.01

Financial wealth 0.00 0.00 0.23 0.25 0.37 0.37 0.37 0.19 0.17 − 0.05

Investments in bonds 0.00 0.00 0.19 0.20 0.28 0.28 0.28 0.12 0.11 0.00

Investments in shares 0.00 0.00 0.05 0.05 0.07 0.07 0.07 0.03 0.03 0.00

Total wealth 0.00 0.00 0.23 0.25 0.37 0.37 0.37 0.19 0.17 − 0.05

Human wealth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 Summary

This paper compares two models of household behaviour that can explain precautionary saving,

i.e. saving associated with the variability of exogenous random shocks. The prudence model

assumes convexity of the marginal utility function. The distrust model is based on robust

decision making given incomplete knowledge about the real world. The prudence model leads to

first-order conditions for optimal behaviour in which expectations play a role. Numerical

integration is compared with Taylor series expansion to get rid of this expectation term. We find

Figure 4.3 Absolute consumption changes over the life cycle after an equity premium shock
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Figure 4.4 Development of consumption and financial wealth over the life cycle; prudence (left) robust (right)
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that Taylor series approximation can lead to the same results as numerical integration dependent

on the point of linearization. Robust control leads to linear decision rules which need no further

approximations. The robust model is found to approximate the outcomes of the prudence model

reasonably well after increasing the time preference parameter and decreasing the entropy

related parameter.

Two caveats are in order. The first is that the comparison of different approaches in this paper

adopts a stylized model. We have no guarantee that the results for this stylized model can be

exported to models that are more detailed. The second caveat is that our list of approaches is

incomplete. For example, we did not pay attention to the linearization approach that is

introduced by Campbell and Viceira (see for instance Viceira (2001)), although we feel that their

approach is very close to our Taylor series approximation. Their portfolio allocation equation is

exactly ours although their derivation is different. Their approach seems more appropriate in a

representative agents framework while the approach adopted here is more natural in an

overlapping generation context. We also did not pay attention to perturbation methods as

discussed by Judd (1999). Perturbation is a numerical method to obtain first and higher-order

Taylor expansions. Due to the numerical approach the applicability is larger. For instance,

Taylor series expansions can be obtained of rational expectations policy functions around the

steady state.
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Appendix A Symbols main text

Matrices

A coefficient matrix model

B coefficient matrix model

C coefficient matrix model, determining variance covariances of the state variables

F policy function matrix

Q utility weights control variables

R utility weights state variables

Vectors

a distortion vector

x state variables

u control variables

Variables

a1 fraction invested in equity

c consumption

ds subjective discount factor

es excess return equities

hc human capital

rh rate of return asseth∈ { f ,s}
pc consumption price

pf price total wealth

s total amount invested in assets; begin of the period, before the new portfolio decision

s∗ total amount invested in assets; begin of the period, after the new portfolio decision

sh amount invested in asseth∈ { f ,s}; begin of the period, before the new portfolio decision

s∗h amount invested in asseth∈ { f ,s}; begin of the period, after the new portfolio decision

U expected utility

u instantaneous utility

V value function

w wages

coefficients and shock term

α taste shifter
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γ inverse intertemporal substitution coefficient

δ time preference

εs stochastic shock term equity

ζ survival rate

θ entropy related coefficient

µ expected value excess return

σss variance indicator equity

ωss standard deviation excess return equity

χ entropy measure

Operators

E expectation operator
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Appendix B Derivations section 2 and 3

Making use of the value functionVj (sj ) = maxU j the decision problem 2.1 can be written as a

sequence of one period decisions

Vj (sj ) = max
(
u j + δ

−1
ζ j+1E jVj+1(sj+1)

)
(B.1)

Note

sj+1 =
r f

ζ j+1
(sj +w j −c j )+

ej+1

ζ j+1
s∗s j (B.2)

The lagrangian of the problem is

L = u j + δ
−1

ζ j+1E j

(
Vj+1

(
∑
h

rh j+1

ζ j+1
s∗h j

)
+λ j

[
∑
h

(
s∗h j −sh j

)
−w j +c j

])
(B.3)

First order conditions are

ι .
∂ L
∂ c j

= u′j + δ
−1

ζ j+1E j λ j = 0 (B.4)

ι ι .
∂ L

∂ s∗h j
= δ

−1
ζ j+1

(
E j

(
∂Vj+1

∂ sj+1

rh j+1

ζ j+1

)
+E j λ j

)
= 0 (B.5)

From the Belmann equation follows

ι ι ι .
∂Vj

∂ sh j
= δ

−1
ζ j+1E j

∂Vj+1

∂ sj+1

rh j+1

ζ j+1
(B.6)

Subsitution ofι ι into ι ι ι gives the envelop theorem

∂Vj

∂ sh j
=−δ

−1
ζ j+1E j λ j = u′j (B.7)

Substitution of this relation into equationι ι ι gives the two Euler equations

ιν . u′j = E j u
′
j+1

rh j+1

δ
(B.8)

Subtraction of the two Euler equations (forh∈ {s, f }) and using the excess return definition

gives

0 = E j u
′
j+1es j+1 (B.9)

Substitution of the marginal utility intoι gives

ι . α j c
−γ

j + δ
−1

ζ j+1E j λ j = 0 (B.10)
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Assume the value function has the form

Vj (sj ) = kγ

j

(
sj +w j +hc

j

)1−γ

1− γ
+ l j (B.11)

for some constantshc
j . . .h

c
je , k j . . .kje, l j . . . l je to be specified. We assume non stochastichc, k

andl this assumption has to be checked at the end of the derivation. The derivative of the value

function becomes

∂Vj

∂ sh j
= kγ

j

(
sj +w j +hc

j

)−γ
(B.12)

Substitute this result and envelop theorem B.7 into B.9, subsitute budget equation B.2 ,and

devide both sides by the non stochastic part, which leads to8

0 = E j (1+aes j+1)
−γ es j+1 (B.13)

with

a =
s∗s j

r f (sj +w j −c j )+ ζ j+1w j+1 + ζ j+1hc
j+1

(B.14)

So, we derived an implicit equation for the portfolio share invested in the risky asset. To get an

expression forhc
j we need to solve the consumption decision first. Subsitute first order condition

B.5 into first order condition B.4, substitute subsequently the value function B.12 and utility

function derivatives for the caseh = f . This leads after subsitution of budget equation B.2 to

c j =
r f

k j+1η j+1ζ j+1 + r f

(
sj +w j +

ζ j+1

r f
w j+1 +

ζ j+1

r f
hc

j+1

)
(B.15)

with

η j+1 =
(

r f

δ α j
E j (1+aes j+1)

−γ

) 1
γ

(B.16)

Next we have to derive formulas forhc andk. Use the envelop equation B.7, subsitute the

derivative of the value function B.12, the derivative of the instantaneous utility function and

consumption equation B.15

k−1
j

(
sj +w j +hc

j

)
= α

− 1
γ

j
r f

k j+1η j+1ζ j+1 + r f

(
sj +w j +

ζ j+1

r f
w j+1 +

ζ j+1

r f
hc

j+1

)
(B.17)

which leads to

k j = α

1
γ

j
k j+1η j+1ζ j+1 + r f

r f
(B.18)

8 Note, we assume kγ

j 6= 0 and ζ
γ

j 6= 0
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hc
j =

ζ j+1

r f
w j+1 +

ζ j+1

r f
hc

j+1 (B.19)

which is consistent with our assumption thatk j andhc
j are non-stochastic. Solving the equation

forewards leads to

k j =
je

∑
i= j

α

1
γ

i

(
i−1

∏
l= j

α

1
γ

l ηl+1ζl+1r−1
f

)
≡ p

− 1
γ

f j (B.20)

which entails for the propensity to consume

k j+1η j+1ζ j+1r−1
f +1 = p

− 1
γ

f j α
− 1

γ

j ≡ p
− 1

γ

f j p
1
γ

c j (B.21)

Subsitution into B.15 leads to consumption equation 2.8.

We have equations of the formf (y) = (1+ay)−γ y andg(y) = (1+ay)−γ . These equations

will be subsequently approximated iny0 = 0 and iny0 = µ . The most simple expressions are

obtained iny0 = 0. The second order Taylor series approximations become

f (y)≈ y− γ ay2 (B.22)

g(y)≈ 1− γ ay+
1
2

γ (γ +1)a2y2 (B.23)

Subsitute the approximation forf into portfolio equation B.13 to obtain

0≈ µs− γ aσss (B.24)

which leads to portfolio equation 3.1. Subsitute the aproximation forg into B.16 to obtain

η j+1 ≈
(

r f

δ α j

(
1− γ aµs +

1
2

γ (γ +1)a2
σss

)) 1
γ

(B.25)

Approximation of f in y0 = µs leads to

f (y)≈ (1+aµs)−γ
µs (B.26)

+
[
(1+aµs)

−γ − γ a(1+aµs)
−γ−1

µs

]
(y− µs)

+
1
2

[
−2γ a(1+aµs)

−γ−1 + γ (γ +1)a2 (1+aµs)
−γ−2

µs

]
(y− µs)2

Approximateg(y) = (1+ay)−γ in µs using a second order Taylor series

g(y)≈ (1+aµs)−γ − γ a(1+aµs)
−γ−1 (y− µs)+

1
2

γ (γ +1)a2 (1+aµs)
−γ−2 (y− µs)2

(B.27)
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Substitute approximation B.26 into B.13 to obtain

0≈ 1
2

a2
γ

2
µsω

2
ss−

1
2

a2
γ µsω

2
ss+a2

µ
3
s −aγ ω

2
ss+2aµ

2
s + µs (B.28)

which leads to portfolio equation9

ã =
1

2µ3
s − γ µsω2

ss+ γ 2µsω2
ss

(
−2µ

2
s + γ ω

2
ss−ωss

√
−2γ 2µ2

s + γ 2ω2
ss−2γ µ2

s

)
(B.29)

Substitute the approximation B.27 forg into B.16 to obtain

η̃ j+1 ≈
(

r f

δ α j

(
(1+aµs)−γ +

1
2

γ (γ +1)a2 (1+aµ)−γ−2
ω

2
ss

)) 1
γ

(B.30)

Another approximation is obtained after substitution of B.26 into B.13,i.e.

0 = (1+aµs)−γ
µs (B.31)

+
1
2

[
−2γ a(1+aµs)

−γ−1 + γ (γ +1)a2 (1+aµs)
−γ−2

µs

]
ω

2
ss

Make use of(1+aµs)
−1− 1

2(γ +1)a(1+aµs)
−2

µs ≈ 1 to get

â≈ µs

γ ω2
ss

(B.32)

Lastly note that no investments occur at the maximum attainable ages∗sje = 0, moreover human

wealth is zerohc
je = 0, and

k je = α

1
γ

je (B.33)

Appendix C Derivations section 4

C.1 Linear quadratic approximation

The budget restriction 2.3 can be written as

c j +s∗j = sj +w j (C.1)

with s∗j = ∑h s∗hj. Write equity return asrs j = r f +es j. This implies for financial wealth

sj =
r f

ζ j
s∗j−1 +

es j

ζ j
s∗s j−1 (C.2)

9 The other root does not give a solution within the admissible range.
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Substitute C.2 into C.1 and substitute subsequently equation 2.10. This results in budget equation

4.2 . Define functionf , the instanteneous utility function in 4.1, which has to be linearized

− f (z̃ j ) =
α j

1− γ
c1−γ

j (C.3)

c j =
r f

ζ j
s∗j−1 +

es j

ζ j
ar f
[
s∗j−1 +hc

j−1

]
+w j −s∗j

z̃′j ≡
[

x j ũ j

]
=
[

s∗j−1 es j 1 s∗j

]
Write the linear restriction in 4.3 as

s∗j

esj+1

1

=


0 0 0

0 0 µs

0 0 1




s∗j−1

esj

1

+


1

0

0

[s∗j ]+


0

ωss

0

[ εsj+1

]
(C.4)

or

x j+1 = Ãx j +Bũ j +Cε j+1 (C.5)

All nonlinearities in problem 4.1 are absorbed into the composite functionf (z̃ j ). For each agej

we can take a second order Taylor series approximation off (z̃ j ) in point
_
z j , the solution of the

non-stochastic version of the model

f̂ (z̃ j ) = f (
_
z j )+(z̃ j −

_
z j )′

∂ f
∂ z̃ j

+
1
2
(z̃ j −

_
z j )′

∂
2 f

∂ z̃ j ∂ z̃′j
(z̃ j −

_
z j ) (C.6)

≡ z̃′j M j z̃ j

The matrixM equals

M j = d

[
f (

_
z j )−

(
∂ f
∂ z j

)′
_
z j +

1
2

_
z′j

∂
2 f

∂ z j ∂ z′j

_
z

]
d′ (C.7)

+
1
2

(
∂ f
∂ z j

d′−d
_
z′j

∂
2 f

∂ z j ∂ z′j
− ∂

2 f
∂ z j ∂ z′j

_
z j d′+d

∂ f
∂ z j

′
)

+
1
2

(
∂

2 f
∂ z j ∂ z′

)
with d a vector with all zero’s except a 1 in row 3 corresponding to the constant unity in the state

vector, so 1= d′z j = z′j d.

Note, the linearization leads to a modified version of the optimal linear regulator problem. In

particular, cross products occur between state and control variables. Hansen and Sargent (2004)

discusses a transformation to write the problem in the standard format (equations 4.4, 4.5). More

precisely, the instantaneous utility function can be written as

z̃′j M j z̃ j =
[

x′j ũ′j

] R̃ j W j

W′
j Q j

 x j

ũ j

 (C.8)

= x′j R̃ j x j + ũ′j Q j ũ j +2ũ′j W
′
j x j

= u′j Q j u j +x j R j x j
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using the transformations

u j = ũ j +Q−1
j W′

j x j (C.9)

R j = R̃ j −W j Q−1
j W′

j (C.10)

Substitute equation C.9 into C.5 leads to transition rule 4.5 if

A j = Ã−BQ−1
j W′

j (C.11)

Note, there are no cross productsbetween states and controls forj = je. This implies that a

transformation is not necessary for the end year.

C.2 Derivations robust control

AssumeV =−x′Px−d for the value function. The construction of the worstcase scenario reads

as

min

a j+1

E j
[
θ δ

−1
ζ j+1a′j+1a j+1− δ

−1
ζ j+1x′j+1P j+1x j+1

]
− δ

−1
ζ j+1d j+1 (C.12)

The first order condition is

a j+1 = K j x j (C.13)

K j =
1
θ

[
I − 1

θ
C′P j+1C

]−1

C′P j+1 [A j −BF j ]

if u j =−F j x j . In that case holdsA j x j +Bu j = A j x j −BFj x j ≡ Ă j x j The minimized value of

problem C.12 is

−δ
−1

ζ j+1x′j Ă
′
j D(P j+1)Ă j x j − δ

−1
ζ j+1 trP j+1CC′− δ

−1
ζ j+1d j+1 (C.14)

with

D(P j+1) =

(
1
θ

P j+1C
[
I − 1

θ
C′P j+1C

]−1

C′P j+1 +P j+1

)
(C.15)

Substitution into the objective function 4.10 gives

Vj (x j ) =
max

u j

[
−x′j R j x j −u′j Q j u j (C.16)

−δ
−1

ζ j+1
((

x′j A
′
j +u′j B

′)D(P j+1)(A j x j +Bu j )+ trP j+1CC′+d j+1
)]
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The first order condition is

u j =−δ
−1

ζ j+1
[
Q j + δ

−1
ζ j+1B′D(P j+1)B

]−1
B′D(P j+1)A j x j ≡−F j x j (C.17)

Substitute this result into C.16 and replace the left hand side with the initial guess forVj to get

recursive expressions forP andd

P j = R j + δ
−1

ζ j+1A′
j D(P j+1)A j − δ

−1
ζ j+1F′j B

′D(P j+1)A j (C.18)

Pje = Rje

d j = δ
−1

ζ j+1
(
trP j+1CC′+d j+1

)
(C.19)

dje = 0
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